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Process Pharmacology: A Pharmacological Data Science
Approach to Drug Development and Therapy

J€orn L€otsch1,2* and Alfred Ultsch3

A novel functional-genomics based concept of pharmacology that uses artificial intelligence techniques for mining and
knowledge discovery in ‘‘big data’’ providing comprehensive information about the drugs’ targets and their functional
genomics is proposed. In ‘‘process pharmacology’’, drugs are associated with biological processes. This puts the disease,
regarded as alterations in the activity in one or several cellular processes, in the focus of drug therapy. In this setting, the
molecular drug targets are merely intermediates. The identification of drugs for therapeutic or repurposing is based on
similarities in the high-dimensional space of the biological processes that a drug influences. Applying this principle to data
associated with lymphoblastic leukemia identified a short list of candidate drugs, including one that was recently proposed as
novel rescue medication for lymphocytic leukemia. The pharmacological data science approach provides successful
selections of drug candidates within development and repurposing tasks.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 192–200; doi:10.1002/psp4.12072; published online 24 March 2016.

The conceptual framework of current pharmacological treat-

ment of a disease is the administration of a drug to manipu-

late a gene product called the drug target. However, the

physician’s primary intention is not to alter the gene product

but to produce a favorable modulation of a trait or disease.

The drug targets steer the disease-relevant biological pro-

cesses within the organism. Drug targets are the intermedi-

ates between the drug and the disease at which the therapy

is aimed. With the increasing accessibility of the world’s

knowledge about the action of drugs and about the biological

roles of genes and, hence, drug targets, it becomes possible

to influence processes as the role of the prescribed drugs

rather than to influence targets.
Using pharmacological data science, we developed a

novel concept of “process pharmacology” that puts the dis-

ease, defined via the biological processes involved in its

pathophysiology, in the focus of drug therapy. The molecu-

lar drug targets merely act as the link between the drug

and the modulated biological processes, thereby directly

accommodating the therapeutic setting of treating a dis-

ease. The drug targets, respectively, their genetic determi-

nants, are accessible in worldwide available databases.

The biological roles of genes, respectively, gene products,

can be queried in knowledge bases, such as the Gene

Ontology (GO). These relate genes to locations in a cell,

molecular functions, and biological processes. These bio-

logical processes are defined in functional genomics as a

series of events or molecular functions with a defined

beginning and end.1

In summary, using modern statistical and computational

tools, drugs can be associated with particular biological

processes.2 In the proposed framework of “process

pharmacology”, traits or diseases are regarded as a result

of alterations of the activity in one or several biological

processes (Figure 1). Therapies can be directed toward
modulating the activities of disease-relevant biological pro-
cesses, moving the genetically determined targets from the
focus of classical pharmacological concepts toward media-
tion between drugs and biological processes.

METHODS

In “process pharmacology,” drugs are ultimately connected
with biological processes. Their molecular targets serve as
the intermediates. This moves targets from the focus of
classical pharmacological concepts to the link between
drugs and biological processes. These processes become
the main therapeutic focus. The necessary associations of
drugs with targets, drug targets with genes, and genes with
biological processes are possible by querying publically
accessible databases using bioinformatics tools and com-
putational methods. This provides a vector of biological
processes associated to each drug. Subsequently, a simi-
larity measure in the high-dimensional space is possible to
group drugs. This can be used to find repurposing candi-
dates based on this similarity, or to identify drugs that
promise to address biological processes identified else-
where as being disease-relevant (Figure 2). The methods
are described in detail and exemplified in the following. The
concept is emergent (i.e., new knowledge is discovered
from available knowledge about drugs and diseases).

Association of drugs with biological processes
The association of drugs with biological processes was
obtained via the systems biology information available for
the genes coding for the drug targets. This used computa-
tional biology and knowledge discovery methods to query
the information in publicly available databases. Analyses
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were performed using the R version 3.2.1 for Linux (http://
CRAN.R-project.org/) and Matlab (MathWorks, Natick, MA)
software packages.

Associating drugs with genes
Comprehensive information about drugs and their molecu-

lar targets is available in publicly available databases. A

standard in pharmacology is the DrugBank database3,4

accessible at http://www.drugbank.ca (version 4.3). Query-

ing this database provided the molecular drug targets

coded as UniProt IDs (http://www.uniprot.org). These were

converted to National Center for Biotechnology Information

numbers of the coding genes using the DAVID database5

(http://david.abcc.ncifcrf.gov/conversion.jsp). A query of the

DrugBank database in October 2015, identified 1,501 drugs

interacting with a total of 1,384 unique targets. This pro-

vided a 1,501 3 1,384 “drug vs. gene” association matrix

as the basis of subsequent computational analyses.

Associating genes with biological processes
The global knowledge about the roles of genes in an orga-
nism is represented in publicly accessible knowledge
bases, of which the gold-standard in functional genomics is
the GO knowledgebase (http://www.geneontology.org/6).
Genes are annotated to a controlled vocabulary of GO
terms (categories) providing a canonical description of their
known biological functions.7,8 These are subdivided into
molecular functions, cellular components, and biological
processes. Relations among these biological functions are
described as a polyhierarchy of GO terms.6 The particular
biological roles of genes coding for drug targets could be
identified by means of overrepresentation analysis.9 For the
set of 1,384 genes, which are influenced by drugs, the
overrepresentation analysis identifies subsets of these
genes (targets) that address a particular GO term, among
all terms of the GO, more frequent than expected by
chance. For the deviation from chance, a conservative P
value threshold, tp, of 1 � 10210 with subsequent multiple
testing error correction according to Bonferroni10 was
applied. This calculation resulted in 794 GO terms, among
all GO terms, which can be considered as specifically
describing the biological processes in which the currently
known 1,384 targets of the drugs are involved. This was
captured in a “gene vs. biological process” matrix associat-
ing the 1,384 targets to 794 GO terms.

Associating drugs with biological processes
To associate drugs with biological processes, the 1,501 3

1,384 “drug vs. gene matrix” obtained from the DrugBank
database had to be linked with the 1,384 3 794 “gene vs.
biological process matrix” obtained from the GO database
with subsequent overrepresentation analysis. If a drug is
related to a gene and this particular gene is annotated to a
biological process, then this establishes one connection of
a drug to a biological process. The sum of all such interac-
tions articulates the strength of the connection mediated
via the molecular function of the particular genes. This
was obtained as the scalar product of the two matrices
(i.e., the “drug vs. gene matrix” and “gene vs. biological
process matrix”). Their scalar product provided the desired
1,384 3 794 “drug vs. biological process” matrix as the
basis of the functional-genomics based concept of “process
pharmacology.” The 1,384 3 794 “drug vs. biological proc-
ess” matrix associated each drug with a 794 item-long

Figure 1 Split of a trait into several biological processes, which
can, for example, be grouped as so-called “functional areas”
[2,.,n].2 According to the functional genomics approach at phar-
macology, a trait or disease is viewed as resulting from altera-
tions of the activity in one or a number of certain biological
processes, for example activation (upregulation) of some proc-
esses (green) and/or downregulation of other processes (red).
Treatment aims at reestablishing physiological degrees of pro-
cess activity.

Figure 2 Scheme of the workflow of the proposed method of “process pharmacology” applying a functional-genomics based data sci-
ence approach to drug development and therapy. The concept starts from a set of genes associated with a trait, which was obtained
by microarray, proteomic analyses, or from other sources, such as database query of topical gene sets. Following association of drugs
with biological processes and using a similarity measure, drugs can now be searched for similarity among each other for repurposing,
similarity with disease-relevant processes for drug development, or dissimilarity for drug rotation.
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vector of biological functions. The contents correspond to
the number of the drug’s target genes annotated to this
particular process.

Analysis of drug and process dissimilarity and
similarity
Definition and validation of a similarity measure. The identi-
fication of drugs for therapeutic or repurposing aims is
based on similarities in the high-dimensional vector space
of each drug’s functional genomics. Therefore, a process-
based similarity measure for drugs was defined as a scaled

version of the Euclidean distance on the “drug vs. biologi-
cal process” matrix. The validity of this measure was tested
for the 77 drugs with analgesic effects queried from the
DrugBank. In 50 repeated experiments, 20% (n 5 17) of
these analgesics were extracted from the dataset, splitting
the dataset into a set A of 1,372 drugs and a set B of 17
drugs. The term vector of each analgesic (set B) was com-

pared to set A using the described similarity. The most fre-
quent classification of the k 5 3 most similar drugs was
used as calculated classification of the set B. For 50
repeated experiments, this resulted in an average classifi-
cation accuracy of 98.2% 6 2.97%. This supports the
applicability of the similarity measure.

Identification of antihypertensive drug classes and
subclasses. As a proof-of-concept bioinformatics

“experiment” , the classification of antihypertensive drugs was
assessed. A broad selection of 112 drugs used presently or in
the past or at least qualifying as antihypertensive drugs was
queried from the DrugBank database (Table 1). First, these
drugs were classified based on empirical pharmacological
knowledge into 8 classes comprising angiotensin-converting
enzyme inhibitors, AT1 antagonists, b-blockers, catechol or

dopaminergic modulators, diuretics, calcium channel blockers,
nitric compounds, and others. Subsequently, the drugs were
classified again by applying a machine-learned algorithm on
the GO term vector associated with each drug. A high-
dimensional multivariate analysis was performed using an
emergent self-organizing map to project the 794 dimensional
dataset onto a two-dimensional toroid grid11 of so-called neu-

rons with 20 rows and 30 columns (n 5 600 units). In contrast
with classical projection algorithms, such as, for example, prin-
cipal component analysis or multidimensional scaling, this
type of projection preserves complex cluster structures. Clus-
ter structures can be detected on top of the neuron grid using
a so-called U-Matrix.12,13 This displays the distances in the

high-dimensional space as heights.12,13 A geographical map
analogy using watersheds was used to indicate borders of
data clusters. The process was performed using the Data-
bionic emergent self-organizing map Tools,14 publicly available
at http://www.uni-marburg.de/fb12/datenbionik/software. An
excellent agreement between these assigned classes and the
pharmaceutical classification was observed.

Analysis of analgesic drug similarity
Following the precedent experiment, which established that
the concept is able to detect meaningful drug subclasses,

process pharmacology was applied on the clinical problem
of opioid rotation. This is an incompletely understood clini-
cal observation indicating that a ceased opioid analgesia

can occasionally be reestablished by changing the opioid.15

In the present context, the hypothesis was pursued that
using dissimilar opioids with respect to their associated bio-
logical processes may be particularly suitable for this task.
At this end, for the 77 different analgesic drugs, a high-
dimensional multivariate analysis was performed similarly
as described above. An emergent self-organizing map was
used to project the 794 dimensional dataset onto a two-
dimensional toroid grid11 of neurons.

Analysis of drug and genomics similarity
The idea behind using functional genomics for drug
repurposing is to use the similarity measure in the high-
dimensional vector space of the biological functions associ-
ated with the drugs. This can be used for the identification
of substances qualifying for the treatment of certain traits in
addition to already available options, or for the identification
of substances that qualify for the therapeutic modulation of
diseases defined by biological processes or functional
areas (i.e., groups of related biological processes, known to
contribute to a disease).

To assess this approach, a suitable disease-relevant
gene set was obtained from the MalaCards database16 of
human maladies (http://www.malacards.org/, MCID:
CHR090) comprised of 553 genes considered to be
involved in chronic lymphatic leukemia (CLL). The biological
processes associated with this set of genes were identified
by means of an overrepresentation analysis, as described
above for the set of drug target coding genes. Subse-
quently, a prototype of the biological processes characteriz-
ing leukemia was obtained as a total of 689 terms of which
299 were also terms of the biological process of drugs. The
identification of drugs qualifying as treatments for the
selected trait used a k nearest neighbors approach.17 Spe-
cifically, the 1,384 3 794 dissimilarity matrix resulting from
distance analysis in the high-dimensional vector space of
the similarly sized “drug vs. biological process” matrix was
searched for items that, in this space, were located at clos-
est distances to the CLL prototype.

RESULTS
Functional genomic-based drug classification
Antihypertensive drugs. Using the U-Matrix, which displays
the distances in the high-dimensional space as heights, the
10 distinct pharmacological classes of antihypertensive
drugs were well-reflected in the projection of the high-
dimensional vector space of each drug’s functional
genomics and the clustering based on this unsupervised
machine-learned method (Figure 3). This led to a clear
and, in the utmost cases, correct association of the drugs
to the pharmacological classes of antihypertensives
(Table 2). Moreover, the analysis was able to identify addi-
tional subgroups among the drugs not provided with the ini-
tial pharmacological classification, raising the original
classification from 8 to 10 different classes. For example,
the heterogeneously assembled pharmacological class of
adrenergic modulators was divided into further clusters of
which one contained mainly a2 adrenoceptor agonists, such
as clonidine. The other was dominated by a1 adrenoceptor
antagonist, such as doxasozine. Similarly, carvedilol, initially
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assigned to the b-blockers, was correctly assigned to the a-

blocker, thus standing apart from its former class members

consistent with its a-blocking activity. The also heterogene-

ous class of diuretics was divided into at least two sub-

classes, which emphasizes that this group has members

with different pharmacology.

Functional genomic-based drug rotation
Analgesic drugs. Having established the ability of the

approach to identify correct subclasses, a further U-Matrix

analysis was used on analgesic drugs. This identified three

distinct clusters (Figure 4). A clear and flawless distinction

between opioid and nonopioid analgesics was obtained;

however, opioids formed two distinct subgroups (Table 2).

Overrepresentation analysis indicated that these subgroups

differed with respect to the importance of several biological

processes. In particular, class II was characterized by a

comparatively higher importance of positive regulation of

protein phosphorylation (GO:0001934), which suggests a

possible implication in opioid tolerance in which phosphoryl-

ation of opioid receptors is known to be involved.18 The

association of methadone to this class, although morphine

belonged to class I, supports this assumption. This is in

line with actual laboratory research showing that metha-

done reversed the analgesic tolerance induced by

morphine.19

Functional genomic-based drug repurposing
The analysis of similarities in the vector space between bio-

logical processes overrepresented in leukemia and those

addressed by the available drugs identified a list of 17

drugs that fulfilled the criterion of neighborhood in the high-

dimensional space (Table 3). One item on this list, namely

tofacitinib, had been only 4 weeks ago presented as a

potential novel rescue mediation for lymphocytic leukemia,

based on classical molecular and clinical research.20

Hence, present results were again in line with the state of

the art of actual laboratory research.

DISCUSSION

The concept of “process pharmacology” associates drugs

directly with diseases characterized by biological process

that are pathophysiologically upregulated or downregulated.

Biological processes are defined as a series of events or

Figure 3 U-Matrix top view (top) and three-dimensional view (bottom) on a pseudo three-dimensional map of the grouping of antihyper-
tensive drugs in the high-dimensional space. This is constructed by the vectors of each antihypertensive drug composed of the infor-
mation about the drug’s involvement in biological processes. The U-Matrix32 is a representation of the distances in this space on top of
a map space that consists of a two-dimensional grid of 50 3 82 5 4200 units (“neurons”). The representation is intended for a geo-
graphical interpretation (for technical details of the presentation, see http://www.uni-marburg.de/fb12/datenbionik/forschung/esom).
Brown or snow-covered heights symbolizing large high-dimensional distances between the antihypertensive drugs (see also the
inserted three-dimensional view of the same U-Matrix at the bottom left corner), whereas green valleys or blue lakes represent small
distances. In this geographical map analogy, the points (i.e., the “antihypertensives”), laying together in a valley of the U-Matrix indicate
that these drugs share a common pattern of biological processes (i.e., they are members of the same cluster). Watersheds in the U-
Matrix indicate borders between clusters. The dots represent the neurons, colored separately for each class of antihypertensives, that
best represented a projection of the drugs functional genomics from the high dimensional onto the two-dimensional space. The other
neurons of the grid space are omitted. Please note that the projection grid is toroidal where opposite edges are connected. Classes of
antihypertensives occurring twice indicate that the original pharmacologically assigned class had been identified as comprising sub-
groups, which were located at different places on the U-Matrix.
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molecular functions with a defined beginning and end.1

Their regulation occurs when they are modulated in fre-

quency, rate, or extent, following, for example, changes in

the expression of genes, protein modifications, or interac-

tion between proteins and substrates. Biological processes

represent higher-level organizations of gene products21 in

which each process is maintained by several different

genes and each gene contributes to several biological pro-

cesses. Therefore, targeting biological processes increases

the choice of gene products that might be successfully

addressed therapeutically. If a particular gene has not yet

been implicated in a particular disease, the knowledge of

relevant processes emerging from the functions of the so

far implicated genes possibly suffices to identify it as a

potential molecular drug target because it is GO-annotated

to the relevant process. Hence, this is a working concept

for drug repurposing. Moreover, the analysis of biological

processes characterizing a trait helps selecting candidate

drugs in silico. This was demonstrated on leukemia in

which the identification of a drug was based on the inter-

section between disease-relevant biological processes with

the association of drugs to any process.
Computational methods aim at reducing the time and

costs of drug discovery and development. Their results pro-

vide a basis for subsequent laboratory or clinical research

under the condition that they are biologically plausible and

convincing that these efforts may be successful. The pres-

ent analysis showed (i) that the concept is suitable to iden-

tify subgroups among drugs that quite satisfactorily

corresponded to the known pharmacological groups, as

exemplified with antihypertensive drugs, (ii) that, therefore,

it qualifies as a method of classification of opioid analge-

sics, which can contribute to the selection of alternatives

during clinical opioid rotation, and (iii) the concept is able to

identify a drug repurposing candidate for the treatment of

leukemia.

Replacing an opioid with another to reestablished analge-

sia15 is not attributed to opioid pharmacokinetics. Among pro-

posed mechanisms are differences among opioids with

respect to ligand-selective biased signaling, addressing the

coupling to distinct m-opioid receptor downstream pathways

following receptor activation by different agonists.18,22 The

functional genomic differences between the two groups of

opioids identified in the present approach indicate an implica-

tion of distinct mechanisms of opioid tolerance. That is, results

suggested that the first but not the second group is particularly

active at protein phosphorylation known to be involved in

opioid receptor internalization and recovery.18 This may pro-

duce receptor tolerance, which is reversible when replacing

the opioid with one of the other group, clearly less addressing

this mechanism. Indeed, analgesic tolerance developed to

chronic exposure to morphine, which belongs to opioid group

I, could be experimentally reversed with methadone, which

belongs to opioid group II.19 Therefore, the present approach

that inherently includes all known interactions of the opioid

with several molecular targets may provide an alternative

basis for opioid rotation in pain therapy.
The third result, the identification of a tofacitinib being

among potential treatments of lymphatic leukemia, satisfies

the expectations for drug repurposing. Tofacitinib is a Janus

kinase inhibitor with immunomodulation properties used as

a second-line treatment of rheumatoid arthritis. As an

immunosuppressant, it potentially reactivates malignant

processes; however, the association of clonal expansion of

cytotoxic T lymphocytes with autoimmune disorders sug-

gested intersections with rheumatoid arthritis, which was

used as the basis for the successful repurposing of the

drug for the treatment of lymphocytic leukemia.20 Present

results are in remarkable vicinity to this novel finding,

although derived from a gene set of CLL, which is not iden-

tical to acute lymphoblastic leukemia, but results may sug-

gest a utility of tofacitinib for CLL as well.

Table 2 Classes of analgesics drugs as identified following emergent self-organizing map based projection of the functional-genomics of the drugs from the

high-dimensional space into a representable plane and subsequent cluster identification (Figure 3).

Class #1 Class #2 Class #3

Buprenorphine Alfentanil Acetaminophen Icosapent Piroxicam

Butorphanol Anileridine Acetylsalicylic acid Indomethacin Pomalidomide

Codeine Dextromethorphan Aminosalicylic Acid Ketoprofen Salicylate-sodium

Dextropropoxyphene Dezocine Antipyrine Ketorolac Salicylic acid

Diphenoxylate Ethylmorphine Antrafenine Lenalidomide Salsalate

Fentanyl Ketobemidone Balsalazide Lornoxicam Sulfasalazine

Heroin Levomethadyl Acetate Bromfenac Lumiracoxib Sulindac

Hydrocodone Methadone Carprofen Magnesium salicylate Suprofen

Hydromorphone Methadyl Acetate Celecoxib Meclofenamic acid Tenoxicam

Levorphanol Pentazocine Diclofenac Mefenamic acid Thalidomide

Morphine Pethidine Diflunisal Meloxicam Tiaprofenic acid

Oxycodone Tapentadol Dihomo-gamma-linolenic acid Mesalazine Tolmetin

Oxymorphone Tramadol Etodolac Nabumetone Trisalicylate-choline

Remifentanil Etoricoxib Naproxen

Sufentanil Fenoprofen Nepafenac

Flurbiprofen Niflumic Acid

Ginseng Oxaprozin

Ibuprofen Phenylbutazone
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Although having provided biologically plausible results
agreeing with contemporary molecular or clinical research,
“process pharmacology” still depends on the accuracy and
completeness of the information made available in the
queried databases. This makes it vulnerable to both,
research bias in functional genomics or pharmacology and
outdated or erroneous information in the databases. On the
other hand, the approach profits from the increasing trend
toward “big data,” which supports the expectation of a con-
tinuously broadening availability of data. Moreover, missing
pharmacological information can be increasingly substituted
by means of computational prediction of drug vs. target inter-
actions.23 A further limitation at this stage is the unsigned
inclusion of drug vs. target interactions (i.e., without distinc-
tion of agonistic from antagonistic actions). Therefore, the
artificial intelligence (AI) underlying the present analysis is
not perfect. As in many other applications of AI, topical
experts’ knowledge is required to correct its shortcomings. A

further limitation is the so far missing weight of the interac-

tions with biological processes resulting from the different

potencies and efficacies of drugs at their different targets. A

consequence of this lack has probably been observed with

the diuretics in the presented canonical example. The thia-

zides were assigned with carboanhydrase inhibitors in the

same cluster. Indeed, thiazide diuretics have an affinity to

that enzyme, however, only at high doses. This could not be

distinguished with the present information. It will require

future inclusion of additional databases, such as ChEMBL

(https://www.ebi.ac.uk/chembl/), and associated refinements

of the presently proposed methodology toward AI.
Future perspectives include the utility of the concept for

drug discovery and drug combination therapies. The con-

cept has been shown to be suitable for choosing therapeu-

tic alternatives or for drug repurposing. An exclusion of

drug discovery (i.e., the finding of novel drugs rather than

the deviation of the clinical application of available drugs),

is not principal. By identifying biological processes, the

most revenant genes can be used as candidate targets for

drugs with a novel principle of action. Moreover, “process

pharmacology” inherently includes drug combinations. Bio-

logical processes are maintained by the products of differ-

ent genes, which may provide a basis for multitarget or

drug combination therapies advancing previous concepts,

such as the polypill concept24 or the idea of using low-dose

drug combinations along molecular pathways.25

The present approach used the collected knowledge

about the biological roles of genes, presented in a directed

acyclic graph as the basic organizational structure of the

GO database, which is the main basis of functional analysis

on drugs. This fundamentally differs from mechanistic

approaches to systems pharmacology. These use acquired

knowledge from several sources gathered in bioinformatics

databases and aim at identifying molecular, biochemical,

signaling pathways, and their drug-relevant interconnec-

tions, or apply computational tools for the modeling of protein

networks.26,27 They use, for example, software packages, such

as the systems biology workbench (http://jdesigner.sourceforge.

net/Site/Welcome.html), the Metabolic Pathway Designer and

Analyzer (http://sourceforge.net/projects/metabolic1491/), or the

Figure 4 U-Matrix (top view) on a pseudo three-dimensional
map of the grouping of analgesic drugs in the high-dimensional
space. This is constructed by the vectors of each analgesic drug
composed of the information about the drug’s involvement in bio-
logical processes. The U-Matrix32 is a representation of the dis-
tances in this space on top of a map space that consists of a
two-dimensional grid of 50 3 82 5 4200 units (“neurons”). The
representation is intended for a geographical interpretation (for
technical details of the presentation, see http://www.uni-marburg.
de/fb12/datenbionik/forschung/esom). Brown or snow-covered
heights symbolizing large high-dimensional distances between
the analgesics (see also the inserted three-dimensional view of
the same U-Matrix at the top left corner), whereas green valleys
or blue lakes represent small distances. In this geographical map
analogy, the points, respectively, the “analgesics,” laying together
in a valley of the U-Matrix indicate that these drugs share a com-
mon pattern of biological processes (i.e., they are members of
the same cluster). Watersheds in the U-Matrix indicate borders
between clusters. The highest limits we observed between the
three classes were classes #1 and #2 comprising opioids and
class #3 comprising nonopioids. Please note that the projection
grid is toroidal where opposite edges are connected.

Table 3 Drugs that qualify for repurposing as treatments of CLL as a result

of the similarity analysis between the functional genomics (biological proc-

esses) of CLL based on a gene set (n 5 553) queried from the MalaCards

database16 (MCID: CHR090) and the functional genomics of the 1389 drugs

queried from the DrugBank database.3,4

Drug

Euclidean

distance Drug

Euclidean

distance

Nilotinib 21.82 Tofacitinib (compare20) 24.66

Nintedanib 23.32 Ustekinumab 24.74

Amlexanox 23.83 Tocilizumab 24.74

Antithymocyte globulin 24 Ruxolitinib 24.74

Becaplermin 24.17 Sunitinib 24.82

Pentosan polysulfate 24.41 Dalteparin 24.82

Bevacizumab 24.49 Abatacept 24.98

Lenvatinib 24.49 Belatacept 24.98

Siltuximab 24.58

CLL, chronic lymphatic leukemia.
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SimBiology Matlab toolbox (Mathworks, Natick, MA). Indeed,

network pharmacology approaches are increasingly being

developed and applied to find new therapeutic opportunities

and to repurpose approved drugs.28,29 As stated for the pres-

ent method, among the goals of network pharmacology is the

development of polypharmacology for complex diseases.30

However, the main difference of “process pharmacology” to

these approaches consists of the analytical basis. Other than

systems pharmacology approaches so far, process pharmacol-

ogy is not based on molecular pathways or protein interactions,

but on the results of the activity of these pathways reflected in

the associated biological processes. For process pharmacol-

ogy, the modulation of a process is in the focus. The molecular

background assures only that the gene product had to be

associated with this particular process. At a molecular network

level, the process could be addressed with any mechanism. It

uses the result of the action of molecular pathways as its

basis, rather than the detailed analysis of the mechanisms. In

this respect, it might confer an addition to systems pharmacol-

ogy approaches and can be used in concert with alternatives.

Thus, the presently introduced concept is in close agreement

with established or elsewhere developed approaches, accom-

modating the increasing availability of “big data” in pharmacol-

ogy. The efforts to develop the necessary tools and methods

to translate this knowledge into novel drugs or therapy strat-

egies, perhaps as extended as a paradigm change from an

almost exclusively hypothesis-driven pharmacological research

to an increasing importance of a data-driven pharmacological

science.

CONCLUSIONS

We introduce a novel functional genomic-based concept of

pharmacology that uses AI techniques for the mining of “big

data” for drug and disease relevant knowledge. Using phar-

macological data science, “process pharmacology” exploits

the results of pharmacologic research on their interactions

with target molecules, molecular research on signaling path-

ways, gene regulation in diseases, and on the functions of

genes, which are combined with the results of bioinformatics

research on machine-learning and knowledge-discovery. It is

aimed at improving the present situation in which it often

occurs that highly successful molecularly targeted therapies

are being identified only by chance rather than by design, as

expressed elsewhere.31 The present concept proved to be

suitable for drug discovery by identifying a narrow choice of

repurposing candidates for the treatment of lymphatic leuke-

mia, which is an item that agreed with an actual result of

independent clinical research. Thus, the method provides, by

using automated AI, results that are compatible with those

that have been obtained elsewhere by mechanistic or clinical

reasoning. This is in line with the increasing importance of

computational approaches to pharmacological research.
Conflict of Interest. The authors declared no conflict of

interest.
Author Contributions. J.L. and A.U. wrote the manu-

script. J.L. and A.U. designed the research. J.L. and A.U.

performed the research. J.L. and A.U. analyzed the data.

Source of Funding. The work has been supported by

the Landesoffensive zur Entwicklung wissenschaftlich-
€okonomischer Exzellenz (LOEWE; J.L.), Zentrum: Transla-

tional Medicine and Pharmacology. The research also

received funding, in particular the necessary computation

equipment, from the European Union Seventh Framework

Programme (FP7/2007 - 2013) under grant agreement no.

602919 (J.L.). The funders had no role in method design,

data selection and analysis, decision to publish, or prepara-

tion of the manuscript.

1. Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinfor-
matics 25, 288–289 (2009).

2. Ultsch, A. & L€otsch, J. Functional abstraction as a method to discover knowledge in
gene ontologies. PLoS One 9, e90191 (2014).

3. Wishart, D.S. et al. DrugBank: a knowledgebase for drugs, drug actions and drug tar-
gets. Nucleic Acids Res. 36(Database issue), D901–D906 (2008).

4. Wishart, D.S. et al. DrugBank: a comprehensive resource for in silico drug discovery
and exploration. Nucleic Acids Res. 34(Database issue), D668–D672 (2006).

5. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

6. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

7. Camon, E. et al. The Gene Ontology Annotation (GOA) Database: sharing knowledge
in Uniprot with Gene Ontology. Nucleic Acids Res. 32(Database issue), D262–D266
(2004).

8. Camon, E. et al. The Gene Ontology Annotation (GOA) project: implementation of
GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res. 13, 662–672 (2003).

9. Backes, C. et al. GeneTrail–advanced gene set enrichment analysis. Nucleic Acids
Res. 35(Web Server issue), W186–W192 (2007).

10. Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Bio-
metrika 75, 800–802 (1988).

11. Ultsch, A. Maps for visualization of high-dimensional data spaces (2003). In Proceed-
ings of Workshop on Self-Organizing Maps (WSOM; Kyushu, Japan), 225–230
(2003).

12. Ultsch, A. & Sieman, H.P., eds. Kohonen’s self organizing feature maps for explora-
tory data analysis. In Proc. INNC’90, Int. Neural Network Conference, Dordrecht,
Netherlands: Kluwer, 1990.

13. L€otsch, J. & Ultsch, A. Exploiting the structures of the U-Matrix. In: Villmann, T.,
Schleif, F.-M., Kaden, M. & Lange, M., eds. Advances in Intelligent Systems and
Computing, 248–257 (Springer, Heidelberg, Germany, 2014).

14. Ultsch, A. & Moerchen, F. Databionic ESOM tools 2005. http://databionic-esom.sour-
ceforge.net/devel.html (2005).

15. Inturrisi, C.E. Clinical pharmacology of opioids for pain. Clin. J. Pain 18(4 Suppl),
S3–S13 (2002).

16. Rappaport, N. et al. MalaCards: an integrated compendium for diseases and their
annotation. Database (Oxford) 2013, bat018 (2013).

17. Cover, T.M. & Hart, P.E. Nearest neighbor pattern classification. IEEE Trans. Inf.
Theory 13, 21–27 (1967).

18. Williams, J.T. et al. Regulation of l-opioid receptors: desensitization, phosphorylation,
internalization, and tolerance. Pharmacol. Rev. 65, 223–254 (2013).

19. Posa, L., Accarie, A., Noble, F. & Marie, N. Methadone reverses analgesic tolerance
induced by morphine pretreatment. Int. J. Neuropsychopharmacol. (2015). [Epub
ahead of print]

20. Bilori, B. et al. Tofacitinib as a novel salvage therapy for refractory T-cell large granu-
lar lymphocytic leukemia. Leukemia 29, 2427–2429 (2015).

21. Hu, P., Bader, G., Wigle, D.A. & Emili, A. Computational prediction of cancer-gene
function. Nat. Rev. Cancer 7, 23–34 (2007).

22. Pradhan, A.A., Smith, M.L., Kieffer, B.L. & Evans, C.J. Ligand-directed signalling
within the opioid receptor family. Br. J. Pharmacol. 167, 960–969 (2012).

23. L€otsch, J. et al. Common non-epigenetic drugs as epigenetic modulators. Trends
Mol. Med. 19, 742–753 (2013).

24. Indian Polycap Study (TIPS) et al. Effects of a polypill (Polycap) on risk factors in
middle-aged individuals without cardiovascular disease (TIPS): a phase II, double-
blind, randomised trial. Lancet 373, 1341–1351 (2009).

25. L€otsch, J. & Geisslinger, G. Low-dose drug combinations along molecular pathways
could maximize therapeutic effectiveness while minimizing collateral adverse effects.
Drug Discov. Today 16, 1001–1006 (2011).

26. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J. & Kitano, H. The ERATO
Systems Biology Workbench: enabling interaction and exchange between software
tools for computational biology. Pac. Symp. Biocomput. 450–461 (2002).

27. Frank, T.B., Ravishankar, R.V. & Herbert, M.S. Computational tools for modeling pro-
tein networks. Curr. Proteomics 3, 181–197 (2006).

Process Pharmacology
L€otsch and Ultsch

199

www.wileyonlinelibrary/psp4

http://databionic-esom.sourceforge.net/devel.html
http://databionic-esom.sourceforge.net/devel.html


28. Kibble, M., Saarinen, N., Tang, J., Wennerberg, K., M€akel€a, S. & Aittokallio, T. Net-
work pharmacology applications to map the unexplored target space and therapeutic
potential of natural products. Nat. Prod. Rep. 32, 1249–1266 (2015).

29. Harrold, J.M., Ramanathan, M. & Mager, D.E. Network-based approaches in drug
discovery and early development. Clin. Pharmacol. Ther. 94, 651–658 (2013).

30. Zhao, S. & Iyengar, R. Systems pharmacology: network analysis to identify multi-
scale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 52, 505–521
(2012).

31. Grimwade, D., Mistry, A.R., Solomon, E. & Guidez, F. Acute promyelocytic leukemia:
a paradigm for differentiation therapy. Cancer Treat. Res. 145, 219–235 (2010).

32. Izenmann, A. Modern Multivariate Statistical Techniques (Springer, Berlin, Germany,
2009).

VC 2016 The Authors CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the
terms of the Creative Commons Attribution-
NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no
modifications or adaptations are made.

Process Pharmacology
L€otsch and Ultsch

200

CPT: Pharmacometrics & Systems Pharmacology


