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Abstract: An endophytic fungus, Neofusicoccum parvum JS-0968, was isolated from a plant,
Vitex rotundifolia. The chemical investigation of its cultures led to the isolation of a secondary metabolite,
(3R)-5-hydroxymellein. It has been reported to have antifungal, antibacterial, and antioxidant
activity, but there have been no previous reports on the effects of (3R)-5-hydroxymellein on
atherosclerosis. The oxidation of lipoproteins and foam cell formation have been known to be
significant in the development of atherosclerosis. Therefore, we investigated the inhibitory effects of
(3R)-5-hydroxymellein on atherosclerosis through low-density lipoprotein (LDL) and high-density
lipoprotein (HDL) oxidation and macrophage foam cell formation. LDL and HDL oxidation
were determined by measuring the production of conjugated dienes and malondialdehyde, the
amount of hyperchromicity and carbonyl content, conformational changes, and anti-LDL oxidation.
In addition, the inhibition of foam cell formation was measured by Oil red O staining. As a result,
(3R)-5-hydroxymellein suppressed the oxidation of LDL and HDL through the inhibition of lipid
peroxidation, the decrease of negative charges, the reduction of hyperchromicity and carbonyl
contents, and the prevention of apolipoprotein A-I (ApoA-I) aggregation and apoB-100 fragmentation.
Furthermore, (3R)-5-hydroxymellein significantly reduced foam cell formation induced by oxidized
LDL (oxLDL). Taken together, our data show that (3R)-5-hydroxymellein could be a potential
preventive agent for atherosclerosis via obvious anti-LDL and HDL oxidation and the inhibition of
foam cell formation.

Keywords: (3R)-5-hydroxymellein; low-density lipoprotein; high-density lipoprotein; oxidation;
foam cell; atherosclerosis

1. Introduction

Atherosclerosis, a widespread and chronic progressive arterial disease characterized by lipid
accumulation and chronic inflammation in the arterial wall, is the main cause of coronary heart disease,
cerebrovascular disease, cardiac ischemia, ischemic stroke, and peripheral vascular disease, and it
is a leading major cause of death in the industrial world [1,2]. Atherosclerosis is caused by many
risk factors such as dyslipidemia, hypertension, diabetes, cigarette smoking, alcohol, family history,
and lipoproteins modification [3]. Among them, lipoproteins modification is well established to
promote an impressive role in the initiation and development of atherosclerosis [4].
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Two major lipoproteins in human plasma, low-density lipoprotein (LDL) and high-density
lipoprotein (HDL), are known as the main carriers for delivering cholesterol transportation and
maintaining cholesterol homeostasis in the body [5]. However, they can be easily modified by oxidation,
glycosylation, lipolysis, smoking, and aging [6,7]. Especially, oxidized LDL (oxLDL) acts as the
highest risk factor for the progression of atherosclerosis by up-regulating the adhesion of monocytes to
endothelial cells, a proliferation of vascular smooth muscle cells (VSMCs), and the induction of foam cell
formation of macrophages [8]. In RAW264.7 mouse macrophages, oxLDL induced the increase of several
pro-inflammatory cytokines including such as tumor necrosis factor (TNF)-α and interleukin (IL)-6,
and the up-regulation of scavenger receptor including lectin-like oxidized low-density lipoprotein
receptor-1 (LOX-1) and the cluster of differentiation 36 (CD36) [9,10]. In addition, cells involved
in atherosclerosis such as lymphocytes, and monocyte-derived macrophages, endothelial cells, and
smooth muscle cells become cytotoxic by oxLDL [11,12]. Furthermore, plasma oxLDL levels in patients
with coronary heart disease (CHD), acute myocardial infarction (AMI), metabolic syndrome, diabetes
mellitus (DM), nonalcoholic steatohepatitis (NASH), and hypertension were higher than in the control
group [13–15].

High-density lipoprotein (HDL) is generally well known as one of the most important
anti-atherogenic factors. Numerous cohort studies have demonstrated the close relationship between a
low serum HDL level and a high risk of coronary heart disease (CHD), and it also revealed that a high
level of HDL-C was strongly related to the inhibition of CHD in an independent way [16,17]. Besides,
numerous previous studies have demonstrated that HDL plays an important role in decreasing the risk of
atherosclerosis through anti-oxidative, reverse cholesterol transport, anti-inflammatory, antithrombotic
properties, anti-LDL oxidation, and endothelial cell maintenance functions [18–21]. However, oxidized
HDL causes the risk of atherosclerosis through the loss of their anti-atherogenic functions and increased
cytotoxicity, reactive oxygen species (ROS) production, and lipid accumulation [22,23]. Furthermore,
it has been reported that plasma oxHDL levels in patients with DM and CHD are higher than in healthy
humans [24,25]. Therefore, inhibitors of LDL and HDL oxidation could be a good strategy to prevent
heart diseases.

Endophytes are microbes that spend the whole or parts of their life cycle within a plant and
have a symbiotic relationship without causing apparent pathogenic symptoms [26]. According to
many reports, endophytes are potential sources for secondary metabolites with a variety of biological
activities including antioxidant, antifungal, antiviral, and anticancer [27]. In our continuous studies
on the inhibitory activities of natural compounds against lipoproteins’ modification, an endophytic
fungus was isolated from a plant Vitex rotundifolia, and its chemical investigation was conducted
in this study. The strain was cultivated on potato dextrose agar (PDA) media for three weeks and
extracted with organic solvents. A series of chromatographies were conducted for the isolation
of a secondary metabolite from the fungal extracts. The isolated metabolites were identified to be
(3R)-5-hydroxymellein by interpretation of its spectral data. It was first reported in 1990, and only
a few studies have revealed its biological activities such as antifungal, antibacterial, antioxidant,
the protection of UVB, and inhibition of melanogenesis [28–30]. However, there are no studies on the
anti-atherosclerotic function of (3R)-5-hydroxymellein through lipoproteins (LDL and HDL) oxidation
and the foam cell formation of macrophages. Herein, we first investigate the inhibitory effects of
(3R)-5-hydroxymellein against lipoproteins’ oxidation and foam cell formation.

2. Materials and Methods

2.1. Reagents

Tetramethylsilane was obtained from Cambridge Isotope Laboratories (Tewksbury, MA, USA).
copper sulfate (CuSO4), 1,1,3,3-tetramethoxypropane, dialysis tubing cellulose membrane, bovine
serum albumin (BSA), folin phenol reagent, dichlorofluorescein diacetate (DCFH-DA), and dimethyl
sulfoxide were purchased from Sigma Aldrich (St. Louis, MO, USA). Coomassie brilliant blue R-250
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and trichloroacetic acid (TCA) were purchased from Tokyo Chemical Industry (Tokyo, Japan). Sodium
chloride, sodium bromide, and acetic acid were obtained Merck (Darmsstadt, Germany).

2.2. General Experimental Procedures

Low-resolution electrospray ionization mass spectrometry (LR-ESI−MS) results were collected
using a Waters micromass ZQ mass spectrometer (Waters, Milford, MA, USA). Nuclear magnetic
resonance (NMR) was conducted using a Varian NMR spectrometer (1H, 500 MHz; 13C, 125 MHz; Varian,
CA, USA) with tetramethylsilane, and chemical shifts were displayed as δ values. High-performance
liquid chromatography (HPLC) was subjected to a Waters system equipped with a 600 controller,
UV detector (996 photodiode array), and Luna 5 µm C18(2) 100 Å column (250 mm × 10 cm,
Phenomenex, CA, USA). Open column chromatography was performed with silica gel (Merck,
Germany). For thin-layer chromatography (TLC) analysis, 60 F254 and RP-18 F254S plates (Merck,
Germany) were used, and visualization of the plates was performed using UV light and 10% sulfuric
acid solution.

2.3. Isolation and Cultivation of Fungus Strain

The fungal strain (JS-0968) was isolated from Vitex rotundifolia, which was collected from a
seashore of Jeju island, South Korea in September 2012. Stem tissue was chopped into small pieces
and sterilized using 2% sodium hypochlorite and 70% ethanol, followed by washing with sterilized
distilled water. Fungal strains were cultured on malt extract agar (MEA, Difco) supplemented with
50 ppm of kanamycin, chloramphenicol, and Rose Bengal at 22 ◦C for 7 days. The growing colony was
transferred to fresh potato dextrose agar (PDA medium (24 g of PD broth with 18 g of agar to 1 L of
sterilized distilled water). The fungal strain was identified based on the BLAST (Basic Local Alignment
Search Tool) best hit of ITS (Internal Transcribed Spacers) sequences, and it was stored on glycerol
stocks (20% w/v in H2O) in a liquid nitrogen tank at the Wildlife Genetic Resources Bank at the National
Institute of Biological Resources (Incheon, Korea). The JS-0968 strain was cultured on a PDA plate
(100 mm Petri dish) for 7 days at room temperature, and they were cut into small pieces (10 × 10 mm).
Subsequently, these pieces were inoculated into 500 mL Erlenmeyer flasks containing 67% of solid
rice medium (80 g rice/120 mL sterilized distilled water) on solid rice medium and incubated at room
temperature for 30 days.

2.4. Extraction and Isolation

The cultures were extracted with ethyl acetate to afford 15.7 g of the extract. The crude extract was
separated using vacuum liquid column (VLC) chromatography on silica gel into 13 fractions (fractions
A−M) with elution of n-hexane/acetone/MeOH (100:0:0, 70:1:0, 50:1:0, 40:1:0, 30:1:0, 20:1:0, 10:1:0,
7:1:0, 5:1:0, 3:1:0, 1:1:0, 1:1:0.2, 0:0:100; 3 L each). Fraction I was further subjected to reversed-phase
column chromatography (H2O/MeOH, 60:40→ 0:100, v/v; 300 mL each) to get nine fractions (fraction
I1-I9). Fractions I2 was further subjected to semi-preparative HPLC on reverse phase to afford
3-(R)-hydroxymellein (3 mg) eluted with H2O/acetonitrile (50:50→ 35:65, v/v) gradient solvents.

(3R)-5-hydroxymellein 1H NMR (DMSO-d6, 500 MHz) δH 10.39 (1H, s, 5-OH), 9.44 (1H, s, 8-OH),
7.07 (1H, d, J = 9.0 Hz, H-7), 6.72 (1H, d, J = 9.0 Hz, H-6), 4.73 (1H, m, H-3), 3.07 (1H, dd, J = 17.0,
3.5 Hz, H-4a), 2.59 (1H, dd, J = 17.0, 11.5 Hz, H-4b), 1.43 (3H, d, J = 6.5 Hz, 3-CH3); (+)ESIMS at m/z
195.0 [M + H]+.

2.5. Isolation of LDL and HDL from Human Plasma

This study was approved by the Research Ethics Review Committee of Duksung Women’s
University (IRB No. 2020-004-006-B). Human whole blood was obtained from young and healthy
male volunteers. The blood was collected at Vacutainer plastic tubes (BD sciences, Franklin Lakes,
NJ, USA), and plasma was separated by high-speed centrifugation for 10 min at 4 ◦C at 1690× g (5810R;
Eppendorf, Hamburg, Germany). LDL (1.019–1.063 g/mL) and HDL (1.125–1.225 g/mL) were separated
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from the plasma by sequential density ultracentrifugation [31]. Briefly, ultracentrifugation was run at
235,000× g for 22 hr at 10 ◦C using an LE-80 (Beckman, CA, USA). Isolated LDL and HDL were dialyzed
overnight against Tris buffer (10 mM Tris–HCl, 140 mM NaCl, 5 mM ethylenediaminetetraacetic acid
(EDTA), pH 7.4) at 4 ◦C for 24 h. The protein concentration of LDL and HDL was quantified according
to the Lowry method with slight modification [32].

2.6. Conjugated Dienes (CD) Formation

For measuring the dienes production by the chain reaction of lipid peroxidation, LDL (50 µg
protein/mL) and HDL (200 µg protein/mL) were incubated with CuSO4 (final concentration, 10 µM),
respectively, under the presence or absence of (3R)-5-hydroxymellein (final concentrations, 10, 20,
and 40 µM, respectively) and quercetin (final concentration, 40 µM) as the control in a medium
containing phosphate buffer (10 mM, pH 7.4). During incubation, kinetics for CD formation were
determined by measuring the absorbance at 234 nm with every 2 min interval for a total duration of
180 min using a UV-VIS Spectra Max 190 spectrophotometer (Molecular Devices, CA, USA) [33].

2.7. Thiobarbituric Acid Reactive Substances (TBARS) Formation

Native LDL and HDL (500 µg protein/mL, respectively) with 10 µM CuSO4 in the presence or
absence of (3R)-5-hydroxymellein (final concentrations, 10, 20, and 40 µM, respectively) and quercetin
(final concentration, 40 µM) were incubated for 4 h at 37 ◦C, and 0.5 mM EDTA was added to terminate
oxidation. Afterwards, 20% trichloroacetic acid (TCA) was added to samples, and then the mixtures
were incubated with 0.67% thiobarbituric acid (TBA). The final mixture was placed in a water bath
for 20 min at 90 ◦C, and they were cooled at 4 ◦C and centrifuged for 20 min at 848× g. The optical
density of the supernatant was measured at 532 nm with UV-VIS Spectra Max 190 spectrophotometer
(Molecular Devices, CA, USA) to determine the amount of TBARS.

2.8. Change of Relative Electrophoretic Mobility (REM)

The electrophoretic mobilities of native or oxidized LDL and HDL were performed by agarose
gel electrophoresis [34]. First, 10 µL each of LDL and HDL (4 µg of protein) were loaded onto a
0.5% agarose gel and electrophoresed in an electrophoretic system (100 V for 40 min in TAE buffer;
40 mM Tris-Acetate, 1 mM EDTA, pH 8.0). After electrophoresis, the gels were fixed using a solution
(ethanol/acetic acid/distilled water, 60:10:30, v/v/v), and they were dried for 1 h at 80 ◦C, followed by
staining with coomassie brilliant blue R250 (0.15%) [34].

2.9. Determination of Apolipoproteins Modification by SDS-PAGE

After oxidation, Laemmli sample buffer and 2-mercaptoethanol (15:1, v/v) was applied to each LDL
and HDL sample for denaturation for 5 min at 90 ◦C. SDS polyacrylamide gel electrophoresis (6% and
12% SDS-PAGE, respectively) was conducted to detect the apoB-100 fragmentation and the apoA-I
aggregation. Afterwards, the gels were stained with Coomassie blue (0.15%) to visualize apoB-100
and apoA-I.

2.10. Measurement of UV Absorbance

After oxidation, the UV absorbance of natural or oxidized LDL and HDL was measured at
280 nm using a Spectra Max 190 UV-visible spectrophotometer (Molecular Devices, CA, USA) to
evaluate the change of hyperchromicity, which was calculated by the following equation: percentage
of Hyperchromicity at 280 nm = [Absorbance (Abs) of oxidized sample – Abs of native or compound
treated sample)/Abs of oxidized sample] × 100 [35].
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2.11. Measurement of Protein-Bound Carbonyl Groups

Protein-bound carbonyls were measured using the carbonyl-specific reagent 2,4-dinitrophenylhydrazine
(DNPH) [36,37]. First, 250 µL of native or oxidized samples were mixed with 350 µL of DNPH solution
(7 mM DNPH in 2 N HCl). After 1 h at room temperature for the formation of DNP hydrazones,
20% trichloroacetic acid was added. The mixture was centrifuged with 9425× g for 10 min, and then
the pellet was washed three times with 1 mL of ethanol/ethyl acetate (1:1. v/v) to remove unreacted
DNPH. Afterwards, the pellet was dissolved by 600 µL of a 6 M guanidine hydrochloride (GdnHCl) in
20 mM phosphate buffer. The DNPH samples were read at 379 nm using a UV-visible Spectra Max 190
spectrophotometer (Molecular Devices, CA, USA) and the carbonyl concentration of each sample was
calculated using a ε379 nm = 22,000 M−1

·cm−1 [38].

2.12. Measurement of Dichlorofluorescein (DCF) Fluorescence

HDL (500 µg/mL) was pretreated with 40 µM of (3R)-5-hydroxymellein or quercetin for 4 h at
37 ◦C. Subsequently, the samples were dialyzed during 24 h at 4 ◦C against phosphate buffer (10 mM,
pH 7.4). LDL (170 µg/mL) oxidation was induced by 0.5 µM of CuSO4 for 4 h at 37 ◦C under the
absence or presence of HDL (60 µg/mL). Subsequently, copper ions were removed through dialysis.
Then, 2 mg of dichlorofluorescein diacetate (DCFH-DA) was dissolved in 1 mL of methanol, and then
the mixture was incubated in the dark state (at room temperature, 30 min). Protein mixture (50 µL) was
mixed with DCFH (10 µL) and normal saline (460 µL). Final samples were incubated for 2 h at 37 ◦C in
the dark. DCF fluorescence was measured by the fluorescence intensity (Ex = 485 nm, Em = 538 nm)
using a Synergy 2 multi-mode microplate reader (BioTek, VT, USA) [39,40].

2.13. RAW 264.7 Cell Culture and Treatment

Mouse monocyte line, RAW 264.7 cells, were purchased from the Korean Cell Line Bank (Seoul,
South Korea). The cells were maintained in Dulbecco’s modified Eagle’s medium (Hyclone, Utah,
USA) supplemented with 10% fetal bovine serum (FBS) (Welgene, Gyeongsan, South Korea) and 1%
penicillin/streptomycin (Invitrogen Co., NY, USA) at 37 ◦C in a humidified atmosphere of 5% CO2

incubator. To evaluate the anti-atherogenic effect, RAW264.7 cells were plated onto 24-well plates at a
density of 2 × 105 cells/well and allowed to attach for 24 h, and then the cells were pretreated with
3-(R)-hydroxymellin or quercetin (final concentration, 40 µM) for 4 h, followed by treatment with
oxLDL (final 50 µg/mL) for 24 h.

2.14. Cell Viability Assay

The cytotoxicity of (3R)-5-hydroxymellein on RAW 264.7 cells was evaluated using an ELUS
cell viability assay kit (Biosesang, SeongNam, Korea) according to the manufacturer’s instructions.
Briefly, 1×104 RAW 264.7 cells/well were cultured at 96-well plates for 24 h at 37 ◦C in a humidified
atmosphere of 5% CO2 incubator. Subsequently, cells were treated with (3R)-5-hydroxymellein or
quercetin (final concentration, 40 µM) for 24 h. Afterwards, 10 µL of 2-(2-Methoxy-4-nitrophenyl)-3-
(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium Sodium Salt (WST-8) dye was add to each well,
cells were incubated at 37 ◦C for 4 h, and the absorbance was determined at 450 nm using a Synergy 2
multi-mode microplate reader (BioTek, VT, USA).

2.15. Measurement of Foam Cell Formation

For Oil red O staining, the cells were washed three times with phosphate-buffered saline (PBS)
and fixed with 10% formaldehyde (v/v) for 20 min at room temperature. After fixation, the cells
were rinsed three times with PBS, and then the cells were stained with a 60% Oil Red O solution
(Sigma-Aldrich, MO, USA) for 30 min at 37 ◦C. Subsequently, the cells were washed with ddH2O
to remove the background dye and the foam cell formation observed and photographed under an
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inverted light microscope (TE200; Nikon, Tokyo, Japan), followed by computer image analysis using
Image J software.

2.16. Statistical Analyses

Data were presented as the mean± standard deviation (SD). Statistical significance was determined
using analysis of variance (ANOVA), followed by Bonferroni multiple testing correction. A P-value of
less than 0.05 was considered statistically significant.

3. Results

3.1. Structure Elucidation of (3R)-5-Hydroxymellein

First, (3R)-5-hydroxymellein was isolated from cultures of an endophytic fungus Neofusicoccum
parvum JS-0968, and it was identified by comparing its spectra data with reported literature values [28].

3.2. Effects of (3R)-5-Hydroxymellein on Conjugated Dienes and TBARS Formation from LDL and
HDL Oxidation

Lipid peroxidation in LDL and HDL was evaluated by measuring the total amounts of CD and
TBARS production. Oxidized LDL and HDL mediated by copper ion increased CD formation and
accelerated lag phase compared to the native state (Figures 1A and 2A). However, LDL and HDL
treated with (3R)-5-hydroxymellein (at 10, 20, and 40 µM) significantly decreased CD formation and
delayed lag time in copper ion-induced LDL and HDL oxidation (Figures 1A and 2A). In addition,
the MDA level of oxLDL and oxHDL was found to be significantly higher than that of native LDL
and HDL (Figures 1B and 2B). On the contrary, (3R)-5-hydroxymellein significantly inhibited MDA
formation by LDL and HDL oxidation. LDL treated with (3R)-5-hydroxymellein (at 20 and 40 µM)
reduced MDA formation up to 16% and 92% compared to oxLDL, respectively (Figure 1B). Similarly,
HDL treated with (3R)-5-hydroxymellein (at 10, 20, and 40 µM) inhibited the formation of MDA up to
47%, 92%, and 94% compared to oxHDL, respectively (Figure 2B). Quercetin was used as a positive
control, which results were similar to those treated with 40 µM of 3-(R)-hydroxymellein.

3.3. Effects of (3R)-5-Hydroxymellein on UV Absorption and Carbonyl Content of Oxidized LDL and HDL

The increases of hyperchromicity and carbonyl contents were known as the markers of LDL and
HDL oxidation. In Figure 1C,D and Figure 2C,D, oxLDL and oxHDL were shown to be remarkably
higher than that of native LDL and HDL. However, LDL treated with (3R)-5-hydroxymellein (at 40 µM)
significantly reduced hyperchromicity and carbonyl contents up to 79% and 85% compared to oxLDL,
respectively (Figure 1C,D). In addition, in HDL treated with (3R)-5-hydroxymellein (at 40 µM),
the increase of hyperchromicity and carbonyl content was significantly suppressed (96% and 74%,
respectively) compared to oxidized HDL (Figure 2C,D). Surprisingly, even at a low concentration
of (3R)-5-hydroxymellein (10 and 20 µM), it powerfully inhibited the elevation of hyperchromicity
(86% and 89%, respectively) and carbonyl content (50% and 73%, respectively) (Figure 2C,D).
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hyperchromicity (absorbance at 280 nm) of oxidized LDL (oxLDL) and LDL treated with 
(3R)-5-hydroxymellein (at 10, 20, and 40 μM). (D) Carbonyl content determination of native LDL, 
oxLDL, and LDL treated with (3R)-5-hydroxymellein (at 10, 20, and 40 μM). Quercetin used as a 
positive control. These data are expressed as the mean ± SD of three independent experiments. ### p 
< 0.001 vs. NLDL (native LDL); ** p < 0.01 vs. oxLDL (oxidized LDL); *** p < 0.001 vs. oxLDL 
(oxidized LDL). 

Figure 1. Effect of (3R)-5-hydroxymellein on Cu2+-induced low-density lipoprotein (LDL) oxidation.
(A) Continuous monitoring of the conjugated diene levels by absorbance at 234 nm (A234) during
10 µM copper-ion-mediated LDL oxidation in the presence of (3R)-5-hydroxymellein. (B) Effects of
(3R)-5-hydroxymellein (at 10, 20, and 40 µM) in Thiobarbituric Acid Reactive Substances (TBARS)
production during LDL oxidation induced by CuSO4 for 4 h at 37 ◦C. (C) Percent of hyperchromicity
(absorbance at 280 nm) of oxidized LDL (oxLDL) and LDL treated with (3R)-5-hydroxymellein (at 10,
20, and 40 µM). (D) Carbonyl content determination of native LDL, oxLDL, and LDL treated with
(3R)-5-hydroxymellein (at 10, 20, and 40 µM). Quercetin used as a positive control. These data are
expressed as the mean ± SD of three independent experiments. ### p < 0.001 vs. NLDL (native LDL);
** p < 0.01 vs. oxLDL (oxidized LDL); *** p < 0.001 vs. oxLDL (oxidized LDL).

3.4. Effects of (3R)-5-Hydroxymellein on Change of Charge and apoB-100 Degradation on LDL Oxidation

The change of electrical charge on LDL was evaluated by agarose gel electrophoresis analysis.
The relative electrophoretic mobility (REM) of oxidized LDL increased almost two-fold compared to
the native LDL (Figure 3A,B). However, treatment of (3R)-5-hydroxymellein (at 10, 20, and 40 µM) to
native LDL significantly decreased in a concentration-dependent manner compared to the oxidized
LDL (Figure 3A,B). The inhibitory effects of (3R)-5-hydroxymellein (at 40 µM) on the apolipoprotein
B-100 (apoB-100) degradation of LDL was analyzed using SDS-PAGE (Figure 3C). The apoB-100 band
in oxidized LDL disappeared because of the protein degradation caused by copper ion. Despite copper
ion-induced oxidation, LDL treated with (3R)-5-hydroxymellein (at 40 µM) remarkably recovered
apoB-100 degradation and was similar to the natural state (Figure 3C).
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treated with (3R)-5-hydroxymellein (at 10, 20, and 40 µM). (D) Carbonyl content determination of
native HDL, oxHDL, and HDL treated with (3R)-5-hydroxymellein (at 10, 20, and 40 µM). Quercetin
used as a positive control. These data are expressed as mean ± SD of three independent experiments.
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Figure 3. Effect of (3R)-5-hydroxymellein on conformational changes in oxidized LDL. (A) Electrophoretic
mobility profiles of LDL, which were treated with (3R)-5-hydroxymellein (at 10, 20, and 40 µM) in
the presence of 10 µM of copper ion. (B) The graph shows the calculation of relative electrophoretic
mobility, which was calculated as the distance traveled from the origin. (C) SDS-PAGE of oxidized
LDL by 10 µM copper ion for 4 hr in the absence or presence of extract (at 10, 20, and 40 µM). Quercetin
used as a positive control. These data are expressed as mean ± SD of three independent experiments.
### p < 0.001 vs. NLDL (native LDL); ** p < 0.01 vs. oxLDL (oxidized LDL); *** p < 0.001 vs. oxLDL
(oxidized LDL).



Biomolecules 2020, 10, 715 9 of 15

3.5. Effects of (3R)-5-Hydroxymellein on apoA-I Aggregation and anti-LDL Oxidation in oxHDL

The multimeric pattern of apoA-I shown in oxidized HDL indicated that copper ions accelerated
the aggregation of apoA-I (Figure 4A). However, HDL treated with (3R)-5-hydroxymellein (at 10,
20, and 40 µM) significantly reduced apoA-I aggregation, and surprisingly their apoA-I pattern
was similar to the native HDL (Figure 4A). The inhibitory effects of HDL on LDL oxidation was
performed by measuring DCF fluorescence. Oxidized LDL markedly elevated the DCF fluorescence
compared to native LDL (Figure 4B). However, it was significantly reduced in oxLDL treated with
native HDL (Figure 4B), which means that HDL inhibits the oxidation of LDL. Interestingly, HDLs
treated with (3R)-5-hydroxymellein (at 40 µM) remarkably reduced DCF fluorescence more than the
control (HDL alone) (Figure 4B).
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Figure 4. Effects of (3R)-5-hydroxymellein on apoA-I aggregation and anti-LDL oxidation in oxidized
HDL. (A) SDS-PAGE of oxidized HDL by 10 µM copper ion for 4 hr in the absence or presence of extract
(at 10, 20, and 40 µM). (B) Inhibitory effect of (3R)-5-hydroxymellein treated-HDL on LDL oxidation.
Quercetin used as a positive control. ### p < 0.001 vs. NLDL (native LDL); *** p < 0.001 vs. oxLDL
(oxidized LDL); ••• p < 0.001 vs. control.

3.6. Effect of (3R)-5-Hydroxymellein on Foam Cell Formation

Cell viability analysis showed that 40 µM (3R)-5-hydroxymellein had no toxicity in RAW264.7
cells (Figure 5B). Oil Red O staining was used to measure the effects of (3R)-5-hydroxymellein on lipid
accumulation. In RAW264.7 cells treated with 50 µg/mL of oxidized LDL, the Oil red O staining area
was significantly increased compared to native LDL, indicating that oxLDL effectively induces foam cell
formation (Figure 5A,C). However, the addition of (3R)-5-hydroxymellein (at 40 µM) to oxLDL-induced
foam cells remarkably inhibited the lipid accumulation (Figure 5A,C). Quercetin was used as a positive
control, and the results were similar to those treated with 40 µM of (3R)-5-hydroxymellein.
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cells. (A) RAW264.7 murine macrophage cells treated with native LDL, oxLDL, and oxLDL with
(3R)-5-hydroxymellein were stained with Oil red O solution. Representative images of Oil red O-stained
lipid droplets. (B) Cytotoxicity test of (3R)-5-hydroxymellein in RAW264.7 cells was performed with
ELUS cell viability assay kit. (C) The Oil Red O positive cells stained area was calculated using the
Image J software. Quercetin was used as a positive control. ### p < 0.001 vs. NLDL (native LDL);
*** p < 0.001 vs. oxLDL (oxidized LDL).

4. Discussion

Over the past decade, many researches showed that secondary metabolites produced by endophytic
fungi have diverse bioactivities including antiviral, antifungal, anticancer, and antibacterial properties.
In this study, we isolated (3R)-5-hydroxymellein from an endophytic fungus Neofusicoccum parvum
JS-0968 derived from Vitex rotundifolia. To date, few studies on the biological activity of (3R)-5-
hydroxymellein have been reported. In particular, there has been no studies on its effects on lipoprotein
oxidation and foam cell formation. Herein, we report the isolation of (3R)-5-hydroxymellein from an
endophytic fungus and its inhibitory effects against the oxidation of human plasma LDL and HDL and
formation of foam cells induced by oxLDL.

The measurement of conjugated dienes (CDs) and malondialdehyde (MDA) is the most widely
used method to measure the lipid peroxidation of lipoproteins in vitro [41]. CDs, which are produced
by rearrangement of double bonds in polyunsaturated fatty acids (PUFAs) of LDL/HDL, are generated
in the early stage of the peroxidation of PUFA. The formation of CDs and its lag time are well-known
indicators of lipoprotein oxidation and significantly associated with the risk of coronary heart
disease [42]. MDA is one of the most established final products of lipid peroxidation, and its level
is regarded as a biomarker for oxidative stress. Previous studies have reported that elevated serum
MDA levels are associated with the initiation and development of atherosclerosis [43]. In our results,
(3R)-5-hydroxymellein significantly decreased both CD generation and MDA formation on oxidized
LDL and HDL mediated by copper ions (Figure 1A,B and Figure 2A,B). Even a low concentration
of (3R)-5-hydroxymellein (at 10 µM) significantly inhibited the formation of MDA on oxidized HDL
(Figure 2A,B). These results indicated that (3R)-5-hydroxymellein could inhibit lipid peroxidation
via the inhibition of CD and MDA formation on copper-mediated oxidized LDL and HDL, and it is
particularly more effective for HDL rather than LDL.
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The increase in hyperchromicity reflects exposure to chromophoric aromatic residues via
degradation and unfolding in oxidized proteins [44]. It has been reported that the hyperchromicity
of oxidized LDL and hemoglobin increased significantly compared to the natural state [45,46].
In the present results, LDL treated with (3R)-5-hydroxymellein (at 40 µM) and HDL treated with
(3R)-5-hydroxymellein (at 10, 20, and 40 µM) significantly reduced hyperchromicity (Figures 1C
and 2C). These findings indicated that (3R)-5-hydroxymellein prevented modification including the
unfolding and fragmentation of oxidized LDL and HDL by copper ions.

The oxidation of proteins was known to cause the production of carbonyl groups, which could
be used as a marker of oxidative stress damage [47]. Carbonyl contents were shown to increase in
oxidized LDL and plasma of patients with type 2 diabetes in the previous reports [48,49]. Our present
results showed that the level of carbonyl content of oxidized LDL and HDL was remarkably higher
than that of the native state (Figures 1D and 2D). However, the addition of (3R)-5-hydroxymellein
(at 10, 20, and 40 µM) to LDL and HDL significantly reduced the carbonyl contents by oxidation.
Our results demonstrated that (3R)-5-hydroxymellein is a good scavenger of carbonyl produced in
oxidized LDL and HDL.

It is well known that the oxidation of LDL causes the neutralization of the positive charge of the
ε-amino group of lysine in apoB-100, thereby increasing the migration to the negative charge [50].
Therefore, oxidized LDL has a higher negative charge than native LDL, so relative electrophoretic
mobility (REM) is known to increase in proportion to the oxidation of LDL. In our results, the treatment
of (3R)-5-hydroxymellein (at 10, 20, and 40 µM) remarkably recovered the increased REM of oxidized
LDL (Figure 3A,B). In addition, apoB-100 fragmentation that modifies the conformation of LDL is one
of the well-known features that occur during the oxidation process of LDL [51]. The fragmentation of
apoB-100 can lead to increased recognition by a scavenger receptor as well as the reduced binding
ability to the LDL receptor [52]. The treatment of 40 µM of (3R)-5-hydroxymellein recovered oxidative
fragmentation of apoB-100 in a similar way to the native LDL (Figure 3C), suggesting its strong
inhibitory activity on conformational change by LDL oxidation.

The main constituent of HDL, apolipoprotein A-I (ApoA-I), is the most critical role in reverse
cholesterol transport via the macrophage ATP-binding cassette transporter A1 (ABCA1) and plays
an important role in the various beneficial anti-atherogenic functions of HDL. Apo A-1 injured by
oxidative procedures is strongly related to the induction of dysfunctional HDL with pro-atherosclerotic
and pro-inflammatory properties [53]. The cross-linking of apoA-I has been reported to be a key feature
of HDL oxidation [54,55]. The present results showed that oxidized HDL increased the formation
of multimeric apoA-I (Figure 4A). However, apoA-I aggregation in oxidized HDL was significantly
reduced HDL by the treatment of (3R)-5-hydroxymellein (Figure 4A). In particular, HDL treated
with (3R)-5-hydroxymellein, even at low concentrations, showed an apoA-1 band similar to that of
native HDL (Figure 4A). These results suggest that (3R)-5-hydroxymellein can reduce the formation of
dysfunctional HDL through the significant inhibition of aggregation of apoA-I. Furthermore, a cell-free
assay was also conducted to evaluate anti-LDL oxidation of HDL [39,40], which is the most important
role of the anti-atherogenic function of HDL. The native HDL significantly reduced the fluorescent
signal, suggesting that the native HDL strongly inhibited the LDL oxidation (Figure 4B). Interestingly,
HDL treated with 40 µM of (3R)-5-hydroxymellein significantly decreased the fluorescent signal
more than the control (HDL alone) (Figure 4B). These results indicated that (3R)-5-hydroxymellein
contributes to the improvement of the anti-LDL oxidation function of HDL.

OxLDL is known to stimulate macrophages to transform into foam cells [56]. Thereby, the
transformation of macrophage into foam cells is the important hallmark of the early stage in
atherosclerotic plaque development. To measure foam cell formation from oxLDL, we used the
Oil red O staining for lipid-laden macrophages. Lipid droplet formation by oxLDL has been reported
to increase in RAW 264.7 macrophages. In our current results, the treatment of oxLDL significantly
increased lipid droplets in RAW 264.7 cells (Figure 5A,C), which is in good agreement with the
previously published data [56]. On the contrary, the co-treatment of (3R)-5-hydroxymellein and
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oxLDL markedly reduced the lipid accumulation up to 53%, compared with the control (oxLDL alone)
group (Figure 5A,C). Besides, quercetin, a positive control, also showed a similar reduction of lipid
accumulation to that of (3R)-5-hydroxymellein. The inhibitory effect of quercetin on foam cell formation
induced by oxLDL has been reported [57]. Therefore, these results indicate the inhibitory effects of
3-(R)-hydroxymellein on foam cell formation via lipid accumulation.

5. Conclusions

To the best of our knowledge, this is the first study on the anti-atherosclerotic effects of
(3R)-5-hydroxymellein. Our findings suggested that (3R)-5-hydroxymellein could be a good supplement
to reduce the risk of atherosclerosis via inhibition of LDL and HDL oxidation and macrophage foam
cell formation. Further studies will be required to deal with other possible anti-atherosclerosis-related
mechanisms and in vivo efficacies for (3R)-5-hydroxymellein.
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