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Gastrointestinal nematode parasites in farmed animals are of particular importance due to their effects on production. In Australia,
it is estimated that the direct and indirect effects of parasite infestation cost the animal production industries hundreds of millions
of dollars each year. The main factors considered by immunologists when studying gastrointestinal nematode infections are
the effects the host’s response has on the parasite, which immunological components are responsible for these effects, genetic
factors involved in controlling immunological responses, and the interactions between these forming an interconnecting multilevel
relationship. In this paper, we describe the roles of immunoglobulins, in particular IgA and IgE, and the major histocompatibility
complex in resistance to gastrointestinal parasites in sheep. We also draw evidence from other animal models to support the
involvement of these immune components. Finally, we examine how IgA and IgE exert their influence and how methods may be
developed to manage susceptible animals.

1. Introduction

Gastrointestinal worm infestation is one of the major causes
of reduced productivity in domestic sheep in tropical and
temperate regions of the world. In common with other
parasitic infections, there is a complex interaction between
the host’s innate and adaptive defence mechanisms and
consequent adaptations by the parasite. An understanding
of these interactions is essential for the development of
sustainable strategies to minimise the impact of the parasite
burden on the host. Analysis of the problem is made more
difficult by the diversity of nematode species and strains that
commonly infect sheep and the apparently variable manner
in which sheep respond to these organisms.

Inherited factors play an important role in determining
susceptibility to nematode infections. For example, over
the past two decades, the Rylington Merino Project has
selected sheep for resistance to nematodes on the basis of
annual worm egg counts [1, 2]. Relative to a control flock,
the selected flock now has sufficient inherited resistance to

nematodes that anthelminthic chemicals are not required
during the lambing season. Selective breeding has been
successful in other research flocks [1, 3, 4] and many
commercial farms. Resistant animals can be identified by
measuring faecal egg counts (FECs) over the first year of
life. Selection for nematode resistance is widely practised in
Australia and New Zealand but less common in the rest of
the world.

In Australia and New Zealand, the correlations between
FEC and growth rate have been weak [5–7]. In contrast,
in Europe, the correlations are strong [8–10] but have
been shown to change over time. The differences may
reflect the breed of sheep in the different regions, that is,
Australian Merino, New Zealand Romney, Scottish Blackface,
and Polish long wool sheep. Alternatively, the differences
may be a consequence of the nematode community. In the
two European FEC studies, egg counts were predominantly
Teladorsagia circumcincta but in the Australian and New
Zealand studies, Haemonchus contortus or Trichostrongylus
colubriformis made a much greater contribution to egg
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counts. Alternatively, the differences between Europe and
Australasia could reflect the different husbandry conditions;
European sheep generally reach sale weights at an earlier age.
IgA and IgE responses have been associated with reduced egg
counts, but IgE responses have been shown to develop more
slowly and are associated with pathology [11].

Many studies have implicated variation within the major
histocompatibility complex (MHC) as a determinant of host
resistance and/or sensitivity to gastrointestinal parasitism in
several species [12]. In addition, mucosal humoral responses
to parasites have been implicated in mechanisms that restrict
parasite growth and mediate the expulsion of worms [13]. In
this paper, the roles of the MHC and immunoglobulin syn-
thesis, especially IgA and IgE, are discussed with particular
emphasis on nematode infections in sheep.

2. Role of Adaptive Immunity in
Gastrointestinal Parasitic Infestation

Parasitic gastroenteritis is caused by nematodes that include
species from the genera Trichostrongylus, Teladorsagia,
Haemonchus, Nematodirusi, and Cooperia [14]. Infections
usually arise from ingestion of parasite larvae or eggs
from pasture, and it is well established that the presence
of parasite antigens in the host’s gastrointestinal system
triggers innate immune responses, in addition to humoral
and cell-mediated adaptive responses, with recruitment of
T cells along the gastrointestinal mucosa [15, 16]. During
an initial infection, dendritic cells take up and process
parasite molecules. The dendritic cells then migrate to
the draining lymph nodes and activate T cells, although
additional interactions between antigen presenting cells and
T cells may occur close to the site of uptake. In the small
intestine, soluble antigens (metabolic or excretory-secretory
components) are absorbed by specialised microfold cells
in the follicle-associated epithelium overlying the Peyer’s
patches either through phagocytosis or pinocytosis [17].
Antigens are transported from the intestinal lumen to
the subepithelial dome, where the antigen-presenting cells
interact with T cells.

The importance of T lymphocytes, which regulate the
host adaptive response against gastrointestinal parasites, has
been demonstrated in several laboratory animal models,
including Trichinella spiralis, Heligmosomoides bakeri, and
Strongyloides stercoralis [12, 37, 38] and also in sheep infected
with Haemonchus contortus [39]. However, it is also clear
that adaptive immune responses to nematode parasites do
not completely prevent subsequent infection, at least in most
animals within a flock.

The three major manifestations of resistance to nema-
todes are reduced numbers of adult nematodes, decreased
size of adult nematodes, and increased numbers of inhibited
larvae, compared to susceptible contemporaries. However,
not all resistant animals manifest all the three primary
indicators, and the three indicators do not develop at the
same rate [40, 41]. Large worms tend to lay more eggs
[42] and are generally more pathogenic [11]. Reduced egg
counts, increased expulsion of parasites, altered growth rates
in resistant hosts, increased numbers of eosinophils, mast

cells, plasma cells, and lymphocytes as well as increased con-
centrations of antibody are common secondary indicators in
most nematode infections of sheep.

Much of the current knowledge concerning the mam-
malian immune response to parasites comes from studies on
laboratory animals, particularly rodents. Experimental in-
fections in rodents have provided valuable information for
the analysis of immunological and genetic mechanisms that
determine resistance to gastrointestinal nematode parasites
[32, 43]. The demonstration that genetic factors influence
resistance and susceptibility in mice allows the identification
of genetic markers or genes that confer resistance [43].
Although the genes controlling resistance in different species
are unlikely to be identical, many of the pathways are likely
to be similar.

3. The Role of IgA in Nematode Resistance

In several host-parasite systems, parasite-specific IgA has
been associated with resistance [44–48]. However, careful
experimental design and interpretation are needed because
IgA responses to nematode infection are correlated with
IgE production, together with infiltration of eosinophils and
mast cells and the subsequent degranulation of mast cells
[49]. The mutual correlations could be a consequence of
cytokines from Th2 cells, which recruit the relevant cells.
Therefore, it is possible that increased IgA activity may be
a marker of an increased mucosal immune response. IgA is
not complement fixing and recently has been implicated in
anti-inflammatory mechanisms [50]. Evidence for an active
role is discussed below.

In mice, the humoral immune response has been
reported to exert a direct effector role against gastrointestinal
nematode parasites. Immunity against murine Trichuris
muris has been achieved through monoclonal IgA antibody
infusion that resulted in the expulsion of the parasites from
the gastrointestinal tract [51]. The immune mechanism was
thought to be through antibody binding directly to parasite
excretion/secretion antigens [51].

Smith et al. [52] were the first to report a relationship
between IgA response and reduced worm length following
infection with T. circumcincta. They examined the length of
all nematodes, including larval stages, to identify inhibited
larvae. They found an increase in lymphatic IgA and IgA-
positive cells in the gastric lymph. Pooling data across age
classes produced an extremely strong correlation between the
increased IgA response and increased numbers of inhibited
larvae. A large study in naturally infected sheep supported
this finding by showing that lambs with higher peripheral
IgA activity against fourth-stage larvae showed inhibition of
a higher proportion of larvae [53].

More recent data have cast doubt on the role of IgA in
nematode inhibition [54]. Sheep were trickle-infected, then,
challenged with 50,000 T. circumcincta. Parasite development
ceased approximately five days after challenge and preceded
the peak of IgA activity in the gastric lymph on day 9.
The IgA response was apparently too slow to play a direct
role in the inhibition of larval development. However, more
research is necessary before firm conclusions can be made.



Journal of Parasitology Research 3

The relationship between IgA levels in the gastric lymph and
IgA levels at the site of infection in the abomasal mucosa is
unknown. In addition, there is density-dependent inhibition
of larval development [55]. The mechanism of density-
dependent inhibition may differ from that of immune-
mediated inhibition, and the inhibition observed in this
experiment may not have been immune mediated.

In contrast to the uncertain relationship between IgA
level and numbers of inhibited larvae, the parasite-specific
IgA response is consistently correlated with a reduction
in adult worm length in infected animals. In Scottish
Blackface sheep matched for age, sex, breed, farm of origin,
and parasite exposure history, Stear et al. [49] observed
considerable variation in the number of IgA-positive plasma
cells and the activity of parasite-specific IgA in the abomasal
mucosa. There was a negative correlation between IgA and
worm length, which was stronger for mucosal IgA than for
serum IgA. The correlations observed were also stronger
against fourth-stage larvae (L4) than against third-stage
larvae (L3). Recently, Henderson and Stear [56] showed
a direct correlation between mucosal IgA and plasma IgA
levels of 0.66. The negative correlation observed between
parasite-specific IgA levels and worm length was likely to
have been a direct effect of IgA on the parasite, rather than
a change in the quantity of antibody produced in response
to changes in worm number [49]. Similar correlations have
been observed in Santa Ines, Suffolk, and Ile de France lambs
infected by H. contortus, Scottish Blackface lambs infected by
H. contortus, and Churra lambs infected with T. circumcincta
[57–59]. In addition, Scottish Blackface lambs that were
naturally infected with T. circumcincta have shown a similar
relationship [53, 60].

Stear et al. [49] estimated that approximately 38% of
nematode parasite worm length variation could be account-
ed for by mucosal IgA activity directed against L4 worms,
a value considerably less than the over 90% estimated by
Smith et al. [52]. However, the high value reported by Smith
et al. may have been an artefact created by pooling data from
sheep of different ages. The level of variation in nematode
parasite worm length due to L4 parasite-specific IgA activity
has been independently estimated as ∼38% in Churra sheep
[59], with similar estimates reported by Sinski et al. [61],
Strain and Stear [57], Strain et al. [60], Stear et al. [53],
Amarante et al. [58], and Henderson and Stear [56].

In addition to the effects of IgA, two other factors influ-
ence the size of adult nematodes: IgA specificity and worm
density dependence. Variance analysis in sheep intentionally
infected with T. circumcincta [53] indicated that these three
components accounted for most of the variation in adult
female worm length. This conclusion is consistent with the
hypothesis that, in this host-parasite system, IgA is the major
host mechanism influencing parasite growth and fecundity.
In Strongyloides ratti, the density-dependent response is
abolished in immunosuppressed rats [62], which suggests
that density dependence is mediated through the immune
system in at least some host-parasite systems.

There are several methods by which IgA could influence
nematode growth. Parasitic nematodes release a variety of
proteases that partially predigest proteins and may also break

down antibodies and other mediators of host resistance.
Antibodies against these enzymes or other molecules could
inhibit enzyme activity and feeding by the parasite [63–
67]. This appears to be a mechanism underlying the success
of vaccination against H-Gal-GP (a galactose-containing
glycoprotein complex purified from intestinal membranes
of adult H. contortus worms) from H. contortus [68, 69].
Alternatively, IgA could interact with eosinophils to control
nematode growth and fecundity (see below).

There does not appear to be a consistent association
between IgA activity and the number of adult T. circumcincta
[49]. There is also no consistent association with the
number of H. contortus [70–72]. The absence of a relation-
ship suggests that IgA activity does not determine worm
numbers.

Hertzberg et al. [73] trickle infected White Alpine lambs
with Ostertagia leptospicularis and showed that there was
a gradual increase in serum IgA levels during infection. As
expected from other species, IgA has a short half-life and
IgA activity declined rapidly after anthelminthic treatment.
When subsequently challenged with 100,000 infective L3
parasites, the serum IgA level rose rapidly but was observed
to decrease earlier than either IgG1 or IgG2.

4. IgA and Eosinophilia

Variation in the number of mast cells, globule leucocytes,
eosinophils, and IgA plasma cells has been observed in sheep
that were infected with nematodes [49, 58]. Globule leuco-
cytes are derived from subepithelial mast cells [74, 75]. Stear
et al. [49] found that sheep with more mast cells had higher
abomasal concentrations of globule leucocytes, eosinophils,
IgA plasma cells, and more larval antigen-specific IgA anti-
body. Henderson and Stear [56] measured the level of IgA
and eosinophil numbers in Scottish Blackface lambs over a
period of 60 days after challenge and observed that both vari-
ables had similar response kinetics. IgA and eosinophil activ-
ity peaked at 8–10 days after infection and declined subse-
quently. Stear et al. [49] measured eosinophil numbers at the
end of the experiment during necropsy of the animals while
Henderson and Stear [56] measured mucosal eosinophilia
over a 60-day period. A similar study using Caribbean hair
sheep and wool sheep [19] found that the hair breed had
higher serum levels of IgA and IgE in uninfected sheep, and
that there were significant differences in IgA, IgE, and tissue
eosinophils levels between the two sheep breeds which was
negatively correlated with worm counts. IgA levels accounted
for 38% and eosinophil numbers 40% of the variation in
worm length, respectively. In correlation studies that anal-
ysed the two variables together, the combination accounted
for 53% of worm length variation. Therefore, it appears that
IgA and eosinophilia have a combined or synergistic effect on
worm length [56]. Eosinophils have been shown to express
receptors for IgA [76, 77], which can be activated by binding
of parasite antigen/IgA to IgA cell surface receptors [78].
Therefore, IgA could help target eosinophils to nematodes.
Interestingly, eosinophils in mice lack receptors for IgA
[76], and this could explain the relative ineffectiveness of
eosinophils in some murine models [79, 80].
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5. The Role of IgE in Nematode Resistance

Increased numbers of mast cells is a hallmark of many
nematode infections, and they have been implicated in the
control of worm numbers in some but not all infections.
For example, mast cells appear crucial for the control
of Trichinella spiralis but not for Trichuris muris or Nip-
postrongylus brasiliensis [81]. Sheep that are resistant to T.
circumcincta have increased numbers of mast cells or globule
leucocytes compared to more susceptible contemporaries
[49]. Similarly, mast cells are important for resistance to H.
contortus [82, 83].

As binding of parasite molecules by cell-surface IgE is the
major trigger for mast cell degranulation, IgE is implicated by
default in resistance to nematode infection. An association
between high plasma IgE activity against a high-molecular-
weight allergen and low egg counts was reported in 20 lambs
selected from a group of 72 naturally infected crossbred
sheep [84]. A study using lymphatic cannulation to allow
continuous assessment of the migrating immune cells from
the intestinal mucosa and mesenteric lymph nodes showed
differential changes in the expression of IL-5 in the afferent
intestinal lymph in two lines of sheep selected for suscep-
tibility or resistance to T. colubriformis [85]. Furthermore,
in a parallel study by the same group, the resistant line had
higher IgE in lymph than the susceptible line [86]. Naturally
infected Texel lambs with high IgE activity against recombi-
nant tropomyosin from T. circumcincta also had lower egg
counts than lambs with lower IgE responses [87]. An inde-
pendent study from New Zealand also showed an association
between increased IgE activity against an aspartyl protease
inhibitor from T. colubriformis and reduced egg counts [88].

6. Genetic Factors in Gastrointestinal
Parasite Immunity

Quantitative genetic analysis in sheep and cattle has clearly
shown that resistance to nematode infection is under genetic
control [2, 89–93]. The heritability of a single egg count
varies among populations but is usually between 0.2 and 0.4
in animals that have been previously exposed to infection
[94]. This is similar to the heritability of milk production
in dairy cattle or growth rate in beef cattle and indicates the
feasibility of selective breeding [95]. Quantitative trait loci
(QTLs) for resistance to the intestinal nematode Heligmo-
somoides polygyrus were located on mouse chromosomes 1,
2, 8, 13, 17, and 19 by Iraqi et al. [32]. Interestingly, one
chromosomal region identified by these researchers was the
MHC located on mouse chromosome 17. Their observations
were confirmed independently by Behnke et al. [33] who
found associations between eight immunological traits (FEC
at weeks 2, 4, and 6, mucosal mast cell protease 1, granuloma
score, IgG1 against L5, and IgG1, and IgE to L4) and QTLs
on chromosome 1 and 17 associated with resistance to the
H. polygyrus infection. More specifically, the MHC genes,
most notably, the class II and TNF regions were significantly
associated with gastrointestinal parasite infection.

Davies et al. [29] provided evidence of QTLs located on
sheep chromosomes 2, 3, 14, and 20 conferring resistance

to infection with T. circumcincta in Scottish Blackface sheep.
Analysis of chromosome 20 showed that the MHC region
had a statistically significant association with gastrointestinal
nematode parasite resistance. QTLs associated with specific
IgA activity against nematode parasites were also located
on chromosomes 3 and 20. Alleles of the DRB1 in the
MHC class II region have been associated with nematode
resistance in several different breeds of sheep [23–25, 96]
and cattle [90, 97, 98]. However, in contrast, Beh et al. [99]
found no significant linkage of the MHC in sheep resistance
to Trichostrongylus colubriformis. Unfortunately, their study
used only a single marker to represent the MHC region
and chromosome 20 in their whole-genome linkage analysis.
Beh et al. [99] also applied an additional two markers to
a single-point ANOVA and confirmed no linkage to the
MHC region. In another linkage study, no significant QTL
was found on chromosome 20, for resistance to parasitic
nematode infection in sheep [100]. In this study, only four
markers were used to represent chromosome 20, of which
only two mapped to the MHC region [100]. Recently, a more
extensive whole-genome QTL analysis for resistance to H.
contortus showed, in one family, weak linkage between egg
counts and the Ovar-DYA region in the MHC class IIb region
[101], consistent with a previous report that associated this
region with resistance to T. circumcincta [26].

7. The Influence of the MHC on
Antibody Production

The role of MHC in controlling IgA concentrations is
supported by several human studies, especially on IgA
and combined variable immunodeficiency (CVID). One of
the first studies that identified an association between IgA
deficiency and the MHC region was by Wilton et al. [102],
who found an association between MHC class III genes and
IgA deficiency. An increase in frequency of certain HLA
haplotypes was observed in deficient patients [102, 103].
A number of studies have since focused on the HLA-A1-
B8-DR3 haplotype to locate the IgA deficiency locus [104,
105]. An investigation of the HLA-DR3-extended haplotype
showed that in the Sardinian population, where a lower
prevalence of IgA deficiency exists, the HLA-DR3-B18 haplo-
type is more common than the HLA-DR3-B8 haplotype, sug-
gesting that the IgA deficiency susceptibility gene is located in
the more common Northern European DR3-B8 haplotypes
[106]. The investigation of features common to the different
haplotypes was used to establish the region associated with
IgA deficiency, and thus far several different studies have
placed the susceptibility locus between the class III region
[103, 105, 107, 108] and the class II region [109–111].

Polymorphisms in MSH5 have also been shown to be
associated with CVID and IgA deficiency in a mouse model
and through statistical analysis of human populations [112].
This gene, located within the MHC class III region, is
involved in DNA mismatch repair as well as in resolving
Holliday junctions that form between homologous DNA
strands during meiosis [113, 114]. However, Guikema et al.
[115] observed a large variety of splice variants of MSH5
mRNA (all of which are unlikely to be stable) and suggested
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that MSH5 was nonfunctional and therefore probably does
not participate in Ig class switching. Recently, it has been
shown that haplotypes of MSH5 are associated with IgA
deficiency [116, 117] but are not likely to be the causative
mutations [117].

8. Mechanisms Underlying the MHC
Association with Nematode Resistance

Genetic variation in the mouse MHC has long been associ-
ated with resistance to nematode infection [118] and with the
specificity of antibody responses [119]. It has been reported
that the helminth Nippostrongylus brasiliensis may possibly
be able to suppress MHC class II molecule expression as an
evasive mechanism [120]. Likewise, for sheep, it has been
shown that the parasite T. colubriformis seems to be capable
of downregulating several immune genes, particularly DRB1
and DRA, in afferent lymph migratory cells [121]. In the
mouse model infected with Strongyloides venezuelensis, class
II −/− animals were more susceptible to infection (based on
increase in FEC and elimination of worms) than wild-type
and class I −/− mice [31]. In addition, parasite-specific IgM,
IgA, and IgG were also significantly reduced in class II −/−

mice. This study concluded that class II MHC expression was
essential to induce a Th2 response against S. venezuelensis
infection and class I expression was not [31]. Interestingly
and somewhat contradictory to the findings discussed above
[121], it has been shown that mice strains that lack I-E, a
homologue of DRB1, in their MHC class II region are more
resistant [122].

In a comparative study using bovine cDNA microarray
analysis of duodenum tissue from an outbred population of
resistant and susceptible lambs (which had been subjected
to two natural challenges with a range of gastrointestinal
parasites), increased expression was observed in a range of
genes [18]. Upregulated genes included DQB1, DRA, and
DQA1 from the MHC class II region [18]. This observation
highlights key differences between resistant and susceptible
animals in the early immune response to gastrointestinal
nematodes. In a separate microarray study, differences were
observed in gene expression profiles of hair and wool sheep
that had been infected with H. contortus [19]. Elevated
expression of the MHC class II DM β-chain precursor gene
was observed in lymph node tissue of the wool breed.
However, no significant change in the expression of this
or any other MHC-related gene was observed in abomasal
tissue [19]. In another study, using transcriptional profiling
of duodenum tissue samples from resistant and susceptible
sheep [20], up-regulation of MHC class II genes Ovar
DQA1, Ovar DQB1, and Ovar DRA was observed in resistant
animals. Subsequent RT-PCR analysis of Ovar DQA1 showed
an average 8.4-fold greater expression in resistant animals
than in susceptible animals. Further analysis using GO
terms highlighted the significant association between genes
highly expressed in resistant animals with terms such as
MHC class II activity and exogenous antigen processing and
presentation [20]. Furthermore, the frequency of Ovar DQA1
haplotypes differed between animals from the resistant

and susceptible selection lines, with an increase in Ovar
DQA1∗Null in susceptible animals from both Perendale and
Romney sheep lines. In Perendale sheep, the frequency of
Ovar DQA1∗0101 and DQA1∗0402 alleles was increased
in resistant animals and Ovar DQA1∗0103 increased in
the susceptible line. However, these observations seemingly
contradict earlier findings by the same group, in which no
increase was observed in the expression of either MHC class
II genes nor any association was found with antigen presenta-
tion or processing [123]. Interestingly, a significant increase
in expression of a MHC class I gene (HLA-A orthologue)
in resistant animals was also observed, indicating possible
crosstalk between the different responses. Recently, Forrest
and colleagues [21] conversely demonstrated no evidence of
an interbreed effect of the Ovar-DQA1∗Null allele on total
faecal egg counts. However, the Ovar-DQA1∗Null appeared
to have a significant effect when the analysis was performed
within breeds [21].

In a statistical examination of the relationship between
MHC polymorphism and parasitological traits in Scottish
Blackface sheep, the resistant allele G2 at the DRB1 locus
was significantly associated with decreased egg counts and
decreased numbers of adult T. circumcincta [96]. However,
no apparent correlation was observed with adult female
parasite length. Hence, the mechanism by which the MHC
influences egg counts may operate through the control of
worm number and not by controlling nematode fecundity.
There are several possible mechanisms but possibly specific
class II molecules direct responses to specific peptides, and
these responses may play a direct role in protection.

Another possibility is that the observed associations in
livestock are a consequence of heterozygote advantage [96].
Heterozygote advantage has complex effects on the power
of statistical analyses to detect specific allele effects [27].
As the frequency of an allele increases in a population, an
increasing proportion of homozygous sheep will be present
and thus the average effect of the specific allele will decline.
Also, an allele that is very rare in a population will be present
in too few animals to show a significant effect. Conversely,
when the allele is very common in the population, its average
effect is quite small making its contribution to reduced egg
counts difficult to detect. Consequently, only alleles within
a narrow frequency range will show effects on parasite
resistance. Interestingly, the allele most strongly associated
with resistance in Scottish Blackface sheep fell within the
narrow detection window, and the most common allele
was also associated with the most susceptible animals as
predicted by heterozygote advantage. There was also more
direct evidence: Heterozygous sheep had lower egg counts
following natural T. circumcincta infection [96].

Heterozygote advantage is a particularly appealing mech-
anism for explaining the IgE response to parasites. The
specificity of IgE responses is relatively unimportant for
mast cell degranulation if the target molecule is soluble
and large enough to promote cross-linking of IgE receptors.
Therefore, a heterozygote advantage that leads to increased
IgE concentrations is more supported than a model of
determinant selection (i.e., a direct role of the allele in
determining levels of IgE).
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Table 1: Summary of studies that have implicated the MHC in resistance to gastointestinal parasites.

Species Parasite species Method MHC association Reference

Sheep (Ovis aries) mixed Microarray DQB1, DRA, DQA1 [18]

H. contortus Microarray DMB [19]

mixed Microarray DQA1∗Null, DQB1, DRA [20]

mixed PCR analysis DQA1∗Null [21]

mixed PCR/sequencing DQA1∗0101, DQA1∗0402 [20]

mixed PCR/sequencing DRB1 [22, 23]

mixed PCR DRB microsatellite [23]

Teladorsagia
circumcincta

PCR/sequencing DRB1 [24–27]

H. contortus PCR/sequencing DRB1, OMHC1 [28]

Teladorsagia
circumcincta

Linkage Class IIb region [29]

Sheep (Ovis canadensis) n/a
Population analysis
PCR/sequencing

DRB1 [30]

Mouse (Mus musculus) S. venezuelensis Knock out Class II [31]

H. polygyrus Linkage Class II region [32, 33]

Striped mouse (Rhabdomys
pumilio)

mixed PCR/sequencing DRB [34]

Yellow necked mouse (Apodemus
flavicollis)

mixed PCR/sequencing DRB [35]

Gray mouse lemur
(Microcebusmurinus)

mixed PCR/sequencing DRB [36]

Charbonnel and Pemberton [124] examined both MHC
and neutral loci in free-living Soay sheep that were infected
by T. circumcincta in St Kilda (Scotland). Over eight years,
lower levels of temporal genetic differentiation were observed
at MHC loci compared with neutral loci, consistent with
balancing selection activity at the MHC loci [124]. These
observations confirmed earlier work by Paterson [125] but
have not been supported by subsequent research [126].
Significant studies showing positive associations between
genes within the MHC and gastrointestinal parasites are
summarised in Table 1.

9. Conclusions

There is no single mechanism of nematode resistance in
sheep. Resistance to gastrointestinal nematodes involves the
control of worm growth as well as worm numbers. The
negative correlation between parasite-specific IgA levels and
worm length has been well established by many research
groups in different breeds of sheep infected by different
gastrointestinal parasites. The control of worm numbers
involves mast cells in some but not all host-nematode sys-
tems. There is a genetic component to nematode resistance,
and the MHC is one of the most important components of
genetic resistance. QTL analyses have shown a link between
the MHC region and FEC in mouse models, as well as in

sheep and cattle. The influence of the class II region on
parasite resistance has been shown in experimental models
as well as by microarray analysis.

Despite the large number of studies that confirmed these
relationships, there are other studies in which contradictory
results reject these hypotheses. However, correlation studies
may generate a complex heterogeneity of results because of
the large variety of gastrointestinal nematode parasites and
differences in environmental conditions, nutritional status of
animals, and geographical locations. Another complication
is that the relationship between gene expression from the
MHC region, IgA activity, and their effects on parasites is
often considered individually rather than as interconnecting
multilevel interactions.
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