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Objective: To investigate the effect of omega-3 polyunsaturated fatty acids (ω-3 PUFAs)

on lipopolysaccharide (LPS)-induced inflammatory response and oxidative stress in

neonatal rat brain.

Methods: Ninety-six 3-day-old Sprague Dawley rats were divided into four groups:

control (saline/saline), LPS/ω-3, LPS/ω-6, and LPS/saline (n= 24/group). All rats, except

those in the control group, were intraperitoneally challenged once with LPS (0.6 mg/kg)

and were treated with ω-3 PUFAs, ω-6 PUFAs, or saline at 15 mL/kg for 1 or 5

consecutive days beginning on the day of LPS-challenge. Rats in the control group

underwent the same procedures and received saline (vehicle). After 1 or 5 days of

treatment, 12 rats from each group were sacrificed and their hippocampuses were

collected. The expression of inflammation-related genes as well as the levels of oxidative

stress markers in hippocampal tissues were determined.

Results: After 1 or 5 days of treatment, the expression of toll-like receptor 4 and multiple

proinflammatory cytokines were significantly decreased in the LPS/ω-3 group compared

with those in the LPS/saline group. The activities of superoxide dismutase and glutathione

(GSH) were significantly elevated, whereas amounts of malondialdehyde and oxidized

glutathione (GSSG) and the ratio of GSSG/GSH were remarkably lowered in the LPS/ω-3

group compared with those in the LPS/saline group after 1 day of treatment. Opposite

effects were observed in the LPS/ω-6 group.

Conclusion: ω-3 PUFAs may protect rat brain tissue against LPS-induced inflammatory

response and oxidative stress.

Keywords: omega-3 polyunsaturated fatty acids, lipopolysaccharide, proinflammatory cytokines, oxidative stress,

neonatal rat brain
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INTRODUCTION

Preterm birth, a leading cause of neonatal mortality, remains
an important public health challenge worldwide. Approximately
15 million infants are born preterm each year, accounting for
11% of all pregnancies (1, 2). It is estimated that one-third
of preterm birth survivors suffer from long-term neurological
disabilities (3), such as palsy, mental retardation, epilepsy, which
are majorly attributed to neonatal infection-induced cerebral
injury (4). The most common form of brain injury in premature
birth survivors is white matter injury (WMI), which is defined
by degeneration of preoligodendrocytes (5). It is well-established
that preoligodendrocytes are particularly vulnerable to oxidative
stress and inflammation, which are the two major mechanisms
underlying the injury and death of preoligodendrocytes (3, 6).
Thus, targeting oxidative stress and inflammation, in conjunction
with antimicrobial agents, is an important adjuvant strategy that
could be employed to prevent or ameliorate WMI in neonatal
infections (7–9).

Lipopolysaccharide (LPS), a major cell wall component of
Gram-negative bacteria, has been widely used to model various
brain diseases in rodents (10–13). As an inflammation inducer
(14), LPS initiates inflammation through binding to toll-like
receptor 4 (TLR4), which induces translocation of nuclear
factor kappa B (NF-κB) into nuclei, leading to the release of
various proinflammatory cytokines, including tumor necrosis
factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 (15–
17). In addition, LPS has been shown to induce oxidative
damage in various diseases (18, 19). In causing brain disorders,
LPS can stimulate reactive oxygen species (ROS) formation,
resulting in significant alteration in the levels of superoxide
dismutase (SOD), malondialdehyde (MDA), glutathione (GSH),
and oxidized glutathione (GSSG) in the brain (13, 19). Previous
studies have indicated that a single dose of systemic LPS is
adequate to induce the production of inflammatory cytokines
and alter the levels of oxidative stress markers in the prefrontal
cortex and hippocampus of murine models (20–22).

Unlike saturated and monounsaturated fatty acids that can
be synthesized in the liver, omega-3 (ω-3) and omega-6 (ω-
6) polyunsaturated fatty acids (PUFAs) are considered essential
FAs in the human diet derived, respectively, from alpha-linolenic
acid (ALA, 18:3 ω-3) and linoleic acid (LA, 18:2 ω-6) (23).
Both of them are routinely used as a part of intravenous
nutrition in preterm infants to meet their nutritional needs
(24). ω-3 PUFAs consisting of eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) are primarily derived from fish oil.
Dietary supplementation of ω-3 PUFAs has been found to exert
anti-inflammatory effects against a number of inflammatory
diseases, such as osteoarthritis and inflammatory bowel disease
(25, 26). A previous study showed that ω-3 PUFAs can reduce
the secretion of pulmonary inflammatory factors (TNF-α, IL-
1β, and IL-6) in rats with acute lung injury through suppressing
the TLR4/NF-κB signaling pathway. By contrast, ω-6 PUFAs,
richer in the Western diet, comprise (conjugated) LA, gamma-
linolenic acid, and arachidonic acid (ARA) (23). ARA is a
precursor to a number of potent pro-inflammatory mediators
including well described prostaglandins and leukotrienes (23).

It is generally believed that ω-3 PUFAs lead to the production
of anti-inflammatory eicosanoids, decosanoid neuroprotectins,
and resolvins while the longer ω-6 fatty acid ARA tends to
the generation of proinflammatory eicosanoids (leukotriene,
prostaglandin and thromboxane) (27).

However, little is known about the effect of ω-3 PUFAs in
infection-induced inflammation and oxidative stress in neonatal
brain (28–30). In the present study, we examined and compared
the effect of ω-3 PUFAs on LPS-induced inflammation and
oxidative stress in the hippocampal tissue of 3-day-old neonatal
rats (31). The expression of the TLR4/NF-κB signaling and
downstream proinflammatory cytokines as well as the amounts
of oxidative stress markers were measured in the hippocampal
tissue. Our findings provided new insights into the potential
benefit of ω-3 PUFAs in preventing and alleviating infection-
triggered brain injury in preterm infants.

MATERIALS AND METHODS

Animals
A total of 96 neonatal (3-day-old) Sprague Dawley (SD) rats
were provided by and reared in the Center of Laboratory
Animal Science at Xinxiang Medical university (Xinxiang,
Henan, China). Rats maintained at 25◦C under a 12-h
light/12-h dark cycle were randomly divided into four groups:
control (saline/saline), LPS/saline, LPS/ω-3, and LPS/ω-6 (n
= 24/group). All rats, except those in the control group,
were intraperitoneally (i.p.) injected with 0.6 mg/kg LPS
(Escherichia coli serotype O111:B4, Sigma-Aldrich, USA) to
induce inflammation and oxidative stress as previously described
(17). The rats were either treated with sterile saline, 10% ω-
3 PUFAs (100mL contains: highly refined fish oil 10.0 g, EPA
1.25–2.82 g, DHA 1.44–3.09 g, myristic acid 0.1–0.6 g, palmitic
acid 0.25–1.0 g, palmitoleic acid 0.3–0.9 g, stearic acid 0.05–0.2 g,
oleic acid 0.6–1.3 g, linoleic acid 0.1–0.7 g, linolenic acid ≤ 0.2 g,
octadecatetraenoic acid 0.05–0.4 g, eicosaenoic acid 0.05–0.3 g,
ARA 0.1–0.4 g, docosaenoic acid ≤0.15 g, docosapentaenoic acid
0.15–0.45 g, dl-α-Tocopherol 0.015–0.0296 g), or 20%ω-6 PUFAs
[Sigma-Aldrich, USA, 100mL contains: soy bean oil 10 g (content
of essential fatty acids: Linoleic acid 4.38–5.86 g; α-Linolenic acid
0.45–1.1 g); Glycerol 2.5 g; Phospholipids from egg 0.6 g] via i.p.
injection at 15 mL/kg/day for 1 or 5 consecutive days, beginning
on the day of LPS-challenge. Rats in the control group underwent
the same procedure and received the same volume of saline as
vehicle (29). Twelve rats in each group were chosen randomly
and sacrificed at 1 or 5 days after treatment, respectively. The
hippocampal tissues were immediately collected, weighed, and
stored at −80◦C until use. This study was approved by and
all animal procedures were conducted in accordance with the
Animal Care and Use Committee of Health Guide for the Care
and Use of Laboratory Animals.

Polymerase Chain Reaction (RT-PCR)
Total RNA was extracted from the hippocampal tissue using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. One µg of total RNA was converted
to cDNA using a reverse transcription kit (Promega, Madison,

Frontiers in Nutrition | www.frontiersin.org 2 November 2020 | Volume 7 | Article 572363

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Shi et al. Fish Oil Ameliorate Inflammatory Response

TABLE 1 | PCR primers used in the study.

Gene Primer sequences

TLR4 F:5′-ACAGGGCACAAGGAAGTAGC-3′

R:5’-GTTCTCACTGGGCCTTAGCC-3′

NF-κB F: ’-CATACGCTGACCCTAGCCTG-3’

R:5′-TTTCTTCAATCCGGTGGCGA-3′

TNF-α F:5′-CCAACAAGGAGGAGAAGT-3′

R:5′-GTATGAAGTGGCAAATCG-3′

IL-1β F: 5′-GCAACTGTCCCTGAACTCAACT-3′

R:5′-TTGTCGAGATGCTGCTGTGA-3′

IL-6 F: 5′- AACGATGATGCACTTGCAGA-3′

R:5′-GGAAATTGGGGTAGGAAGGA-3′

GAPDH F:5′-GGCACAGTCAAGGCTGAGAATG-3′

R:5′-ATGGTGGTGAAGACGCCAGTA-3′

WI, USA, No. A3500) following the manufacturer’s instructions.
PCR amplification was carried out using Taq DNA polymerase
(Takara, Tokyo, Japan) in a thermal cycler (580BR, Bio-Rad,
Hercules, CA, USA). The primers (Table 1) were designed and
synthesized by Sangon Biological Engineering Technology &
Services Co., Ltd. (Shanghai, China) based on sequences from
GenBank. Each reaction started at 95◦C for 5min, amplified
with 35 cycles of 30 s at 94◦C, 30 s at the annealing temperature,
and 60 s at 72◦C, and ended with 10min of extension at 72◦C.
The annealing temperatures for TLR4, NF-κB, TNF-α, IL-1β, IL-
6, and GAPDH (β-actin) were 55, 61, 60, 65.5, 60, and 51◦C,
respectively. Then, 7.5 µL of each PCR product was subject to
electrophoresis on a 1% agarose gel, and the density of each
band was in a double-blinded manner analyzed on a gel image
analysis system. The mRNA level of TLR4, NF-κB, TNF-α, IL-1β,
or IL-6 was respectively normalized and determined based on the
following density relative to the β-actin mRNA.

Western Blot Analysis
Protein lysates were obtained from hippocampal tissue using
a protein extract kit (Active Motif, Tokyo, Japan) according
to the manufacturer’s protocols. Thirty micrograms proteins
were separated on 7.5% SDS-PAGE gel, and then transferred
onto 0.45µm PVDF membranes (Bio-Rad). The membranes
were blocked with 5% nonfat milk in Tris-buffered saline
containing 0.1% Tween 20 (TBST) for 2 h and then incubated
overnight at 4◦C with rabbit polyclonal antibody against
mouse TLR4, NF-κB, TNF-α, IL-1β, or IL-6 (Cell Signaling
Technology, USA). After washing with TBST 3 times at room
temperature for 10min each, the membranes were incubated
with a horseradish peroxidase (HRP)-conjugated secondary
antibody (1:2,000, Cell Signaling Technology) for 1.5 h. After 3
washes with TBST, immunoreactive bands were visualized with
an electrochemiluminescence reagent (AmerControl, Uppsala,
Sweden). GAPDH (Cell Signaling Technology, USA) were used
as protein controls to normalize protein expression levels.
Densitometric quantification of the protein bands was performed
using Image Lab software (Bio-Rad).

Biochemical Measurements
The amounts/enzymatic activity of SOD, MDA, GSSG, and
GSH were determined using commercial kits (Jiancheng
Bioengineering Institute, Nanjing, China), respectively; GSH and
GSSG levels were also measured using additional kits from
Cayman Chemical, USA.

Statistical Analysis
Data were expressed as the mean ± standard deviation and
analyzed using SPSS 20.0 for Windows (IBM, Armonk, NY,
USA). Statistical analysis was carried out using one-way analysis
of variance for each time point. Comparisons among groups were
conducted using Tukey-Kramer, and verified by using Bonferroni
post-hoc test with P-values expressed in the following results. A
value of P < 0.05 was considered significant.

RESULTS

ω-3 PUFAs Downregulate the Expression of
Inflammation-Related Genes and Proteins
in Neonatal Rat Hippocampal Tissues
To determine whether ω-3 plays a role in the modulation of
inflammation induced by LPS, we determined the expression
of the TLR4/NF-κB signaling and downstream proinflammatory
cytokines in hippocampal tissues of rats. As shown in Figure 1,
LPS challenge unanimously and significantly increased the
mRNA levels of TLR4 (A), NF-κB (B), TNF-α (C), IL-1β (D),
and IL-6 (E) compared with the control group at both timepoints
(day 1 or day 5 after treatment). Importantly, the mRNA levels
of these inflammation-related genes were markedly decreased in
the LPS/ω-3 group when compared with the LPS/saline group.
By contrast, opposite effects were observed in the LPS/ω-6 group
(Figures 1A–E). Similar trends were found in the protein levels
of these genes (Figures 2A–G).

ω-3 PUFAs Reduce the Alterations of
Oxidative Stress Markers in Neonatal Rat
Hippocampal Tissues
To explore the effect of ω-3 PUFAs on LPS-induced oxidative
stress, we measured the levels of oxidative stress markers in
neonatal rat hippocampal tissues. As shown in Figure 3, ω-3
treatment significantly elevated the enzymatic activities of SOD
(A) and GSH (C) but remarkably reduced the amounts of MDA
(B) andGSSG (D) as well as the ratio of GSSG/GSH (E) compared
to the LPS/saline group after 1 day of treatment. Opposite
effects were observed in the LPS-ω-6 group at this timepoint
(Figures 3A–E). However, no significant change of oxidative
stress markers was found after 5 days of treatment.

DISCUSSION

The present study aimed to evaluate the neuroprotective effect of
ω-3 PUFAs on LPS-induced inflammation and oxidative damage
in the hippocampus of neonatal rats. We found that TLR4/NF-
κB-mediated expression of proinflammatory cytokines and the
level of oxidative damage in the hippocampus were significantly
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FIGURE 1 | mRNA expression of inflammation-related genes. PCR was performed to determine the mRNA expression of TLR4 (A), NF-κB (B), TNF-α (C), IL-1β (D),

and IL-6 (E) in the hippocampus of neonatal rats. Data are expressed as mean ± standard deviation (SD). aP < 0.05 vs. the control group, bP < 0.05 vs. the LPS

group, cP < 0.05 vs. the ω-6 group; n = 12. LPS, lipopolysaccharide; NF-κB, nuclear factor kappa B; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; IL-6,

interleukin-6.

enhanced in response to systemic LPS administration. Treatment
with ω-3 PUFAs improved all these parameters in the
hippocampus, suggesting that ω-3 PUFAs may protect neonatal
brain against infection-induced inflammation and oxidative
stress. Viewing that DHA and EPA have shown neuroprotection
against brain injury (32, 33), memory impairment (34, 35) and
motor malfunction (36) in ischemic rats and mice, our next goal
is to decipher the contribution of the major components of ω-3
PUFAs to neuroprotection in our LPS-challenge rat model.

In the present study, we used a single i.p. injection with LPS to
trigger activation of inflammatory signaling and oxidative stress
in the brain of neonatal rats. Our results showed that all the
expression of TLR-4, NF-κB, and downstream proinflammatory
factors, including TNF-α, IL-1β, and IL-6, was significantly
upregulated in the hippocampal tissues in the LPS/saline group
compared with the control group beginning on the day of
LPS-challenge and continuing for 5 days. On day 1 or day
5 after LPS application, the TLR4, NF-κB, TNF-α, IL-1β, and
IL-6 mRNA expression levels were significantly higher in the
LPS group, the ω-6 group and the ω-3 group than in the
control group (P < 0.05). The mRNA levels of TLR4, NF-
κB, TNF-α, IL-1β and IL-6 in the ω-3 group were lower than
those in the ω-6 group on days 1 and 5 (all P < 0.05). In
contrast, the TLR4, NF-κB, TNF-α, IL-1β, and IL-6 mRNA
expression levels in hippocampal tissues were higher in the
ω-6 group than in the LPS group on days 1 and 5 (P <

0.05). These data suggest that ω-3 PUFAs, but not ω-6 PUFAs,
may inhibit LPS-induced inflammatory response in neonatal
rat brain.

Similarly, the activities of SOD and GSH were significantly
decreased, whereas the amounts of MDA and GSSG were
noticeably elevated in the LPS/saline group compared with the
control group on the same day of LPS treatment. These results
suggest that single systemic LPS administration is adequate to
induce short-lasting inflammation response and oxidative stress
in the neonatal rat brain, which is consistent with previous
reports (20–22, 37–42). The activities of SOD and GSH in the
hippocampal tissues were significantly higher in the ω-3 group
than in theω-6 and LPS groups on day 1 (both P< 0.05). Further,
the amounts of MDA and GSSG in the hippocampus in the ω-
3 group were significantly lower than those in the ω-6 and LPS
groups on day 1 (both P < 0.05). In addition, the ratios of GSSG
to GSH in the hippocampal tissues were significantly lower in
the ω-3 group than in the ω-6 and LPS groups on day 1 (both
P < 0.05). However, on day 5, the activity of SOD and GSH
and the amounts of MDA and GSSG in the hippocampal tissues
from the four groups were not significantly different (P > 0.05).
These results suggest thatω-3 PUFAs may reduce oxidative stress
induced by LPS in neonatal rat brain.

Both ω-3 and ω-6 PUFAs are essential FAs in the
human diet (24). Accumulating evidence has demonstrated
that ω-3 PUFAs are beneficial in a multitude of diseases,
including autoimmune disorders, inflammatory diseases, and
heart disease (43–47). The anti-inflammatory properties of
ω-3 PUFAs are well-characterized in chronic inflammation-
associated disorders, such as obesity, rheumatoid arthritis,
coronary heart disease, and Crohn’s disease (48–50). A diet
rich in ω-6 PUFAs produce proinflammatory eicosanoids,
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FIGURE 2 | Protein expression of inflammation-related genes. (A) Western blot results showing the TLR4, NF-κB, TNF-α, IL-1β, and IL-6 proteins in the hippocampus

in neonatal rats from the four groups 1 day after the intraperitoneal injection of drugs. (B) Western blot results showing the TLR4, NF-κB, TNF-α, IL-1β, and IL-6

proteins in the hippocampus in neonatal rats from the four groups 5 days after the intraperitoneal injection of drugs. Western blot analysis was performed to determine

the protein expression of TLR4 (C), NF-κB (D), TNF-α (E), IL-1β (F), and IL-6 (G) protein expression in the hippocampus in neonatal rats from the different groups. The

data points represent the mean ± SD; n = 12 (aP < 0.05 compared with the control group; bP < 0.05 compared with the LPS group; cP < 0.05 compared with the

ω-6 group).

whereas ω-3 PUFAs are able to decrease the production of
proinflammatory cytokines and eicosanoids in various tissues
and cells (51). Consistently, in this study, we observed that
ω-6 PUFAs treatment further enhanced the expression of the
TLR4/NF-κB signaling and downstream inflammationmediators
induced by LPS. By contrast, ω-3 PUFAs exhibited anti-
inflammatory effects based on their ability to inhibit the
TLR4/NF-κB signaling, thereby decreasing the production of
proinflammatory cytokines. Because proinflammatory cytokines,
such as TNF-α and IL-1β, exert toxic effects on brain tissues
through activating microglia and astrocytes and promoting
accumulation of neutrophils, monocytes and lymphocytes (52,
53), our results suggest that ω-6 PUFAs may exacerbate,
whereas ω-3 PUFAs may improve LPS-induced neuronal
damage in newborn rats (31, 54, 55), However, we did not

directly show the pathological alterations occurred in the
rat brain (56) in this study, which should be addressed in
the future.

In addition, macrophages and other immune cells generate
excessive ROS upon exposure to LPS, resulting in decreased
antioxidant capacity, overactive lipid peroxidation, and a
disrupted redox balance (57). Premature brain is particularly
vulnerable to redox imbalance (58, 59). To evaluate the effect
of ω-3 PUFAs on LPS-induced oxidative damage in neonatal
rat brain, we determined the amount of multiple oxidative
stress markers in the hippocampus. The activities of SOD and
GSH, which are important compounds for free radical removal,
represent the state of the antioxidant system. On the other hand,
products of oxidation processes, such as MDA and GSSG, are
indirect indicators of the severity of oxidative damage (60). In
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FIGURE 3 | The amounts of SOD (A), MDA (B), GSH (C), GSSG (D), and GSSG/GSH (E) in the hippocampal tissues from the different groups. The data points

represent the mean ± SD; n = 12 (aP < 0.05 compared with the control group; bP < 0.05 compared with the LPS group; cP < 0.05 compared with the ω-6 group).

SOD, superoxide dismutase; MDA, malondialdehyde; GSH, glutathione; GSSG, oxidized glutathione.

this study, we observed that the SOD and GSH expression in
the hippocampus of newborn rats were significantly decreased,
whereas the amount of MDA and GSSG and the ratio of
GSSG/GSH were remarkably increased in the LPS/ω-3 group
compared with the LPS-saline group on the same day of LPS-
challenge, suggesting that ω-3 PUFAs may reduce the damage
caused by oxidative stress products in brain tissue. Opposite
effects were observed in the LPS/ω-6 group, suggesting that
ω-6 PUFAs may aggravate infection-induced neuronal injury.
Although significant changes in inflammation-related genes
lasted for at least 5 days after LPS-challenge, no significant
difference was observed in the oxidative markers on the fifth day
after LPS application. This finding suggest that inflammation and
oxidative damage are not entirely correlated in the context of LPS,
which requires further investigation.

Although the interaction between inflammation (their lipid
mediator derivatives) and PUFAs is complex and poorly
understood, EPA and DHA in ω-3 PUFAs are generally
regarded to be anti-inflammatory and neuroprotective, to
promote resolution of inflammation and to decrease pain in
inflammatory conditions (36). By contrast,ω-6 PUFAs, including
ARA, produce not only pro-inflammatory eicosanoids, but also
lipid mediators that play an important role in inflammation
resolution (61).

Hormesis, as elegantly explained in reviews (62), is featured
with a biphasic dose response pattern (i.e., low dose stimulation
and high dose inhibition). Although ω-3 PUFAs is extensively
studied (44) and some showed a dose-dependent effect (63), it
is so far not investigated in a specific hormetic approach as for
Ginkgo biloba extract components (64) and some polyphenols
(65, 66). Future study should be designed to explore its hermetic
potential. Although ω-3 PUFAs modulated the transcription and

translation of some vitagenes (67–69) in our animal model, such
as SOD and GSSG/GSH, its antioxidant role in humans remains
to be seriously tested.

Some of the drawbacks of the current study are that only
one dose of each PUFAs and one age group of rats were used,
one cannot possibly see any dosage effect required to observe
hormesis (62) and link age with LPS susceptibility and PUFAs
treatment, and only hippocampal tissues were collected, limiting
opportunity to observe the systemic effect of LPS and PUFAs.
Indeed, systemic LPS challenge could affect organs (kidney, lung,
liver, and brain) to a different degree via different molecular
mechanisms (70), and age is a critical factor to skew cytokine
production pattern upon LPS treatment (71). Future work
preferably should use a more elegant and sophisticated strategy
to expand the current study.

CONCLUSION

In conclusion, ω-3 PUFA supplementation may have
neuroprotective effects against LPS-induced inflammation
and oxidative damage in neonatal rats through downregulating
the expression of TLR4/NF-κB-mediated proinflammatory
cytokines and reducing oxidative stress, respectively. This
finding may provide ω-3 PUFAs as potential therapeutic agents
in protecting or alleviating infection-induced neonatal brain
injury in preterm infants.
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