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ABSTRACT

Serious adverse drug reactions (SADRs) are caused
by unexpected drug–human protein interactions,
and some polymorphisms within binding pockets
make the population carrying these polymorphisms
susceptible to SADR. Predicting which populations
are likely to be susceptible to SADR will not
only strengthen drug safety, but will also assist
enterprises to adjust R&D and marketing strategies.
Making such predictions has recently been facili-
tated by the introduction of a web server named
SePreSA. The server has a comprehensive collec-
tion of the structural models of nearly all the
well known SADR targets. Once a drug molecule is
submitted, the scale of its potential interaction with
multi-SADR targets is calculated using the DOCK
program. The server utilizes a 2-directional Z-trans-
formation scoring algorithm, which computes the
relative drug–protein interaction strength based on
the docking-score matrix of a chemical–protein
interactome, thus achieve greater accuracy in prior-
itizing SADR targets than simply using dock scoring
functions. The server also suggests the binding pat-
tern of the lowest docking score through 3D visua-
lization, by highlighting and visualizing amino acid
residues involved in the binding on the customer’s
browser. Polymorphism information for different
populations for each of the interactive residues will
be displayed, helping users to deduce the popula-
tion-specific susceptibility of their drug molecule.

The server is freely available at http://SePreSA.
Bio-X.cn/.

INTRODUCTION

Drug effect varies among populations. The Japanese
population, for instance, exhibit a more rapid response
to the lung cancer therapy gefitinib (1), since polymorph-
isms within the binding pocket of the drug target increase
sensitivity to inhibition by the drug (2–4), and these poly-
morphisms occur more frequently in Asian populations.
Serious adverse drug reaction (SADR), an unwanted drug
effect, has been an urgent world-wide problem, particu-
larly as tragedies triggered by Vioxx� (5) and Avandia�

(6) these years. SADRs, especially type B adverse drug
reactions (ADRs) (7), are mainly caused by unexpected
interactions of the drug with the SADR targets (8,9),
and some polymorphisms within the binding pocket
make the population carrying these polymorphisms
more susceptible to harmful effects. If drug companies
had been able to identify the sensitive population earlier,
they should have altered their R&D and marketing strat-
egy beforehand to lower the rate of SADR and to avoid
lawsuits. Furthermore, such prediction would suggest
candidate polymorphisms for SADR association studies
(10), provide hints for interpreting genome-wide associa-
tion results for SADR and provide primers for functional
studies of the SADR mechanism.

Three steps could lead to the prediction of susceptible
populations. First, SADR targets which tend to be bound
by the compound in question should be prioritized.
Second, the conformation of chemical–protein bindings
and the interactive residues should be identified. Third,
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polymorphisms altering drug binding and their minor
allele frequency among different populations could
then be characterized. Docking programs could be applied
to perform the above steps, as the program can not
only measure the binding strength of a ligand to a
set of SADR targets (11), but can also deliver the bind-
ing conformation. Consequently, residues involved in the
interaction together with information on their polymorph-
isms in different populations can be identified. For the first
time, these three steps have been integrated into a server
named SePreSA. The server computes a relative drug–
protein interaction score from a scoring matrix of a
chemical–protein interactome (CPI) to prioritize SADR
targets which might be affinitive with the user’s compound.
Considerable specificity and sensitivity in predicting che-
mical–protein bindings have been achieved by the use of
this scoring algorithm. The 3D visualization of the binding
pattern is provided, with interactive residues highlighted
and the population information presented to the client.

METHODS

Target set for the web server

To make a comprehensive collection of the structural
models of the well known SADR targets, we chose
all the available structures from PDB which are known
to mediate ADRs. The target set includes major phases
I and II drug-metabolite enzymes, several types of
human MHC I proteins mediating drug hypersensitivity
and the pharmacodynamic proteins chosen from DITOP
(12) and DART (13) database. All structure models chosen
should accord with the following criteria: (i) the species of
the proteins is limited to Homo Sapiens; (ii) the protein
must contain at least one ligand embedded in it to define
the functional site; (iii) no missing residues should be found
around this site; and (iv) ligands at the surface of the pro-
tein are not acceptable. Now, it contains 91 proteins with
115 ligand-binding site defined. For each ADR target, resi-
dues within a 10 Å distance from the ligand were defined as
the bioactive pocket of the protein, and balls with a radius
ranging from 1.1 to 1.4 Å were generated to fill in the
pocket. A grid box was made at 3–5 Å distant from the
‘cloud’ of the balls. Certain water molecules or metal
ions play important roles to the protein function, so we
used the scientific judgment to decide whether to keep
them. The key residue ionization state has been assigned
considering the most probable one at the physiological pH,
i.e. carboxyl is usually ionized; lysine and arginine residues
are protonated; aspartate and glutamate residues are
deprotonated; histidine residues are half protonated. We
controlled these ionization state using Chimera (14) when
preparing the targets. The polymorphism information for
each ADR targets is derived from Uniprot (15). We will
continue to update ADR targets in SePreSA, and users can
subscribe to our updates through RSS feeds.

Dataset for the prediction evaluation

We singled out all co-crystallized ligands embedded in all
structures of SePreSA. The antagonists taking up the
functional site of the protein were chosen as the probe

molecule. Pockets without co-crystallized ligands were
excluded, leaving 79 proteins for the construction
of the CPI. The molecular probes were submitted
through the SePreSA interface to perform an in silico
hybridization, generating an interactome of 86 ligands
towards 79 protein pockets in the form of a docking-
score matrix of 79� 86 elements. Docking scores � 0
were treated as missing values.

The prediction evaluation

An algorithm named 2-directional Z-transformation
(2DIZ) was applied to process the original docking-score
matrix. Here, Xij represents the docking scores of ligand
j to protein i. The Z-score was calculated as:

Zij ¼
Xij � Xj

SDXj

,

where

Xj ¼

P
i¼1,Nj

Xij

Nj
,

SDXj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼1,Nj

ðXij � XjÞ
2

Nj � 1

s
:

Here, Nj equaled 86 minus the number of missing values of
ligand j. Thus, a Z-score matrix of 79� 86 elements was
generated. The vector for each protein was then normal-
ized to a mean of zero and a standard deviation of one,
generating a 79� 86 Z0-score matrix. These three matrixes
allowed us to investigate the distributions of docking
scores, Z-scores and Z0-scores on true ligand–protein
bindings and the unidentified bindings. Here, we defined
the original bindings in PDB structures as the gold stan-
dard, and the ability of these three scoring matrixes to
predict ligand–protein bindings were presented in ROC
curves.

INPUT AND OUTPUT

Users need to upload a drug molecule in mol2 format. A
manual at http://sepresa.bio-x.cn/?page=generatemol2file
will instruct users in preparing their mol2 files. The server
cannot accept molecules in SMILES and mol format,
since the ionization state of the drugs have to be specified
by users but these two formats cannot include the ioniza-
tion information of the molecules. The format suitability
is checked and its interactome towards all SADR targets
was calculated using DOCK (16). The task usually takes
up to about 6 h for a molecule, and an email will be sent
on completion. The outputs comprise the following three
elements.

(a) SADR targets that tend to interact with your mole-
cule will be prioritized.

(b) For each SADR target, binding patterns of the
lowest docking score and amino acid residues that
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interact with your molecule will be highlighted in
Jmol (17) applet.

(c) Polymorphism information such as minor allele
frequencies among different populations for each of
the interactive residues will be displayed.

RESULTS

Prediction of the true and unidentified bindings

We compared the prediction power using different CPI
scoring matrixes (Figure 1). The docking-score matrix
performed poorest among the three, the area under the
curve (AUC) being only 0.62 (Supplementary Table S1),
and the lower bound of 95% confidence interval (95% CI)
0.56, which was close to that for a random selection. With
the 2DIZ algorithm, however, the AUC reached 0.82
(95%CI: 0.78–0.87). Though performing slightly worse
than the Z0-score matrix, the Z-transformation achieved

a better performance than simply using the docking-score
matrix.

The distribution of Z0-scores between true and uniden-
tified bindings are compared in Supplementary
Figure S1a. Z0-score for �80% of the true bindings,
compared with only 30% of the unidentified bindings,
were <–0.5 (Supplementary Table S2). Hence, we set a
Z0-score threshold of –0.5 to highlight the putative bind-
ings of users’ drugs towards SADR targets, and the
sensitivity, specificity and the overall accuracy were 0.80,
0.71 and 0.71, respectively. Docking-score distributions of
the true bindings did not seem to be significantly different
from those of the unidentified bindings (Supplementary
Figure S1b).

The sensitivity of the Z0-score-based prediction was
diminished by the high Z0-score of several true bindings.
In most circumstances, these false negatives were due to
the large size of the probe. Glutathione, a relatively large

Figure 1. The ROC curves of different CPI-scoring matrixes in predicting true and unidentified.
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molecule, could not be docked into 20% of the pockets,
resulting in a number of missing values. Consequently, its
Z-score vector did not fully reflect its binding profile
for all pockets, causing a potential bias in Z0-score of
for its co-crystallized enzyme (PDB ID: 11GS). Another
reason for the false negative lay in the poor selectivity
of the probe. Ethyl dihydrogen phosphate, a small mole-
cule which could possibly crawl into the pocket of all the
proteins, did not appear to be selectively affinitive to its
co-crystallized protein (1XLV), and thus its Z0-score
for 1XLV was not noticeably low.

The specificity of the Z0-score-based prediction might
also be much higher than current results, because
some of the unidentified bindings, whose Z0-scores were
significantly <–0.5, might occur per se, but were regarded
as false positives. For example, the Z0-score between cate-
chol O-methyltransferase (3BWY) and S-adenosyl-L-
homocysteine (SAH) was –3.1. SAH was structurally sim-
ilar to S-adenosylmethionine (SAM), which was the orig-
inal ligand embedded in 3BWY. On the other hand, SAH
was originally embedded in nicotinamide N-methyltrans-
ferase (2IIP), which belongs to the family of 3BWY.
Hence, SAH is very likely to bind to 3BWY i. If this is
true, the strong signal indicated by the low Z0-score of the
SAH–3BWY interaction could indicate that the 2DIZ
scoring algorithm is capable of prioritizing unexpected
bindings.

Applying 2DIZ algorithm to the web server

The SePreSA server uses 2DIZ algorithm to prioritize
SADR targets of the user’s molecule. The prediction
mechanism is based on a user-oriented interactome,
which calculates the Z0-score of the current molecule
from the interactome formed by all molecules submitted
by this user, no matter when and where these previous
molecules are submitted. Hence, the more molecule a
user submits, the more comprehensive CPI profile for
each ADR targets he will retrieve.

Case study 1

Serious cutaneous reaction (SCR) triggered by sulfa-
methoxazole (SMX) might be mediated by the MHC I
family members (18). After submitting SMX to
SePreSA, we found unexpectedly that the HLA class I
histocompatibility antigen, Cw-4 alpha chain (MHC I
Cw�4) ranked in the fourth among the total 70 SADR
target pockets. By visualizing the binding conformation
of the SMX molecule to MHC I Cw�4 in the binding-
information page (http://sepresa.bio-x.cn/?reaction
id=5069), we found that it tended to ‘root’ at the Y bed
of the antigen presentation groove. The identification of
HLA-C gene (Cw�4 allele) as the mediator of SCR had
been validated in several former studies, from which it was
confirmed that the SCR could only be triggered by SMX
in presence of MHC I (Cw�4) (19,20).

To our knowledge, no other research has ever disclosed
such direct binding model before the results given by
SePreSA. Although the identification of this risk allele
needs further validation, several ‘wet’ observations sup-
port this model. For example, the presentation of SMX

parent drug displayed a direct, non-covalent binding fash-
ion to the ‘empty’ presentation groove of MHC I (21).
Von Greyerz et al. (19) discovered that most T cell
clones exhibited the ‘MHC-allele restricted drug-specific
recognition’ stimulated by SMX parent drug. Nassif (20)
also uncovered that blister fluid T lymphocytes, which
were derived from a patient suffering SMX-induced
SCR, could be cytotoxic only when SMX is present in
the cells with Cw�4 allele.

Case study 2

The incidence of neuropsychiatric disorder triggered
by oseltamivir (Tamiflu�) varies among populations.
The Japanese population demonstrates a higher SADR
rate than predominantly European-derived populations
for this drug (http://www.fda.gov/ohrms/dockets/AC/05/
briefing/2005-4180b_06_01_Tamiflu%20AE_reviewed.
pdf). The SADR target of oseltamivir (HsNEU2) (8) was
also included in our pocket set. We, therefore, submit the
active form of the drug, oseltamivir carboxylate, to ascer-
tain whether the HsNEU2 and the susceptible population
could be prioritized. The molecule achieved a Z-score of
–1.72 with HsNEU2, the second lowest Z-score for 70
pockets, and a Z0-score of –0.92 temporarily, which was
much lower than the true binding threshold of –0.5. By
then clicking on the ‘Result’ button, the binding confor-
mation and the interactive residues within 6.4 Å of the
drug were presented (Figure 2), together with a poly-
morphism (rs2233385) highlighted among these residues.
By clicking on the ‘Show Report’ button, we found that
this polymorphism only occurred in Asian population but
not in European and African–American populations
(Supplementary Table S3). These results suggested that
Asian population might be more sensitive to oseltamivir-
induced SADR, for which rs2233385 might be responsible.
Such prediction potential will assist further mechanism

studies and genetic association studies on HsNEU2-
mediated SADR. If all these facts are approved, the man-
ufacturer of oseltamivir, for example, could improve drug
safety through changing the marketing strategy or utiliz-
ing pharmacogenomic tests. With the benefit of SePreSA
predictions during the early development phase, manufac-
turers would have the opportunity to redesign or modify
the drug in order to weaken such unexpected binding,
or they might even give up the Asian market to avoid
unexpected lawsuits.

DISCUSSION

Though a lot of downstream events occur when a drug is
added to the cell culture, it is undisputed that direct che-
mical–protein interaction is the primary and the vital
factor in drug effects. So, identifying the true bindings of
unexpected drug–protein interactions is fundamental in
pharmacodynamic research and in the prediction of effects
including SADR. Several techniques such as BIACORE�

biosensors (22) and drug affinity pull-down (23) can be
used to assess such interactions. However, these techniques
do not match the dramatic progress achieved by transcrip-
tomics, metabolomics and proteomics. The concept of
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docking a small molecule into a multi-protein set to prior-
itize unexpected bindings was first put forward by Chen et
al. (11). Several follow-up studies have pursued this logic
in prioritizing true targets (24,25), namely that the lower
the docking score achieved, the more this binding tends
to happen. But this approach does not offer a systematic
evaluation of relevant specificity and sensitivity. The dock-
ing score might not be sufficient to evaluate the binding
strength, e.g. if the docking score of drug A to protein P1 is
much lower than A to P2, there is no certainty that P1 is
more affinitive to A than P2. However, by considering the
mean and the standard deviation of the score vectors upon
the two proteins towards multiligands, a more informed
judgment can be made.
SePreSA, is the first system to utilize the drug–protein

interaction landscape at an interactome level to help users
make sound decisions. Although the docking-score matrix
of the test CPI now contained 79� 86 elements, from

which the magnitude at either rows or columns did not
seem to be very impressive, it already had a total of
about 79� 86=6794 ligand–protein pairs to be identified.
So, we believe that the classification performances gener-
ated at such amount of data can reflect the true perfor-
mance of Z0-scores to some extent. To our knowledge,
this is not only the first, but also the largest evaluation in
the target ‘fishing’ methodology using molecular docking
in company with clear reported sensitivity, specificity and
accuracy data. The experience gathered from using this
system also suggests that the use of relative scores from
the ‘-omics’ viewpoint can achieve much greater accuracy
than simply comparing the docking scores of the two
independent interactions. Our algorithm might also inspire
the existing virtual screening methodologies. If the
interactome profiles of the library molecules towards
multiproteins are considered, more accurate results can
be achieved.

Figure 2. Binding conformation of oseltamivir to HsNEU2 and the interactive residues within 6.4 Å of the drug. Among all these residues, the R41Q
polymorphism (rs2233385) was highlighted.
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In this research, our underlying logic was that drug
effects would necessarily change when the binding of a
drug to its target is altered, and polymorphisms involved
in this direct interaction would necessarily change the
binding. We have seen that, although drug response is a
complex trait (26) mediated by multiple genes, some single
polymorphism can also have pronounced effects on drug
response. To our knowledge, they all alter the binding
conformations of direct drug–protein interactions.
Examples include the T790M in the gefitinib binding
pocket of EGFR (4); the T164I within the epinephrine
binding pocket of b2-adrenergic receptor (27); and the
polymorphism within the binding pocket of STI-571 to
c-Abl (28). The empirical threshold of 6.4 Å was set to
highlight the putative interactive sites according to the
distance distribution of drugs to the polymorphism sites
that alter drug binding. So SePreSA cannot predict every
polymorphism that alters drug binding, but it can predict
the interactive residues within the 6.4 Å ‘cloud’, whose
polymorphism information are available. Both the prem-
ise and the empirical threshold will be more thoroughly
evaluated in follow-up research.

CONCLUSION

(a) The core of the SePreSA server is the 2DIZ scoring
algorithm. It can accurately predict bindings of a
chemical towards multiproteins, and hence could be
applied in prioritizing SADR targets.

(b) By using SePreSA, drug enterprises can identify the
putative populations that appear sensitive to their
drugs, hence early decision during the R&D stage
can be made and safety can be promoted in the
marketed products.

(c) SADR genetic researchers could find candidate poly-
morphisms from SePreSA for their SADR associa-
tion studies. The server could also help to interpret
genome-wide association results for SADR and
enhance functional studies of the SADR mechanism.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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