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Osteosarcoma (OS), a primary malignant bone tumor, stems from bone marrow-derived
mesenchymal stem cells (BMSCs) and/or committed osteoblast precursors. Distant
metastases, in particular pulmonary and skeletal metastases, are common in patients
with OS. Moreover, extensive resection of the primary tumor and bone metastases
usually leads to bone defects in these patients. Bone morphogenic protein-2 (BMP-
2) has been widely applied in bone regeneration with the rationale that BMP-2 promotes
osteoblastic differentiation of BMSCs. Thus, BMP-2 might be useful after OS resection
to repair bone defects. However, the potential tumorigenicity of BMP-2 remains a
concern that has impeded the administration of BMP-2 in patients with OS and in
populations susceptible to OS with severe bone deficiency (e.g., in patients with genetic
mutation diseases and aberrant activities of bone metabolism). In fact, some studies
have drawn the opposite conclusion about the effect of BMP-2 on OS progression.
Given the roles of BMSCs in the origination of OS and osteogenesis, we hypothesized
that the responses of BMSCs to BMP-2 in the tumor milieu may be responsible for OS
development. This review focuses on the relationship among BMSCs, BMP-2, and OS
cells; a better understanding of this relationship may elucidate the accurate mechanisms
of actions of BMP-2 in osteosarcomagenesis and thereby pave the way for clinically
safer and broader administration of BMP-2 in the future. For example, a low dosage of
and a slow-release delivery strategy for BMP-2 are potential topics for exploration to
treat OS.

Keywords: osteosarcoma, bone morphogenetic protein-2, mesenchymal stem cells, osteogenic differentiation,
osteogenesis, tumor heterogeneity, bone-marrow-derived mesenchymal stem cell
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INTRODUCTION

Although osteosarcoma (OS), a primary bone neoplasm, is rare,
with an incidence of only one to three confirmed cases per 1
million people in the world each year, it comprises∼20% of newly
diagnosed bone tumors (Dorfman and Czerniak, 1995; Klein
and Siegal, 2006; Mirabello et al., 2009b). Epidemiologically,
OS presents in children, the youth, and the elderly with high
frequency (Kansara et al., 2014); the morbidity of OS increases
to 8–11 per million annually in 15–19-year-olds (Stiller et al.,
2006; Mirabello et al., 2009a; Anfinsen et al., 2011). OS most
often initiates in the metaphysis of long bones (Ritter and
Bielack, 2010), implying a correlation with impaired bone
growth. Currently, bone-marrow-derived mesenchymal stem
cells (BMSCs) and/or committed osteoblast precursors with
genomic mutations (e.g., TP53, RB1), chromosomal deletion,
and chromosomal rearrangements are recognized as the cellular
origins of OS (Chandar et al., 1992; Walkley et al., 2008; Mohseny
et al., 2009; Rubio et al., 2013; Chen et al., 2014; Deng et al., 2019;
Han et al., 2019). As an aggressive tumor, OS is insensitive to
some chemotherapy agents (Pavlou et al., 2019; Belisario et al.,
2020); MAP (methotrexate, doxorubicin, and cisplatin) is still the
first-line drug for OS chemotherapy (Marina et al., 2016). To
date, the OS has a 5-year survival rate of ∼50% (Smeland et al.,
2019); the leading cause of death in OS is pulmonary metastasis
(Bhattasali et al., 2015). Skeletal metastasis is also common in
patients with OS and precipitates severe bone erosions. Extensive
resection to remove OS is also responsible for voluminous bone
defects, which may induce dysfunction and disfiguration. The
rehabilitation of bone tissue is a huge challenge in clinical OS
therapy. Although bone morphogenic protein-2 (BMP-2) has
been widely used in bone repair and has shown promising results,
its application in OS has not been reported because of its potential
role in tumorigenesis.

BMP-2 was discovered by Urist (1965), and its cDNA was
first cloned by Wozney et al. (1988). This growth factor is
a member of bone morphogenic proteins (BMPs) belonging
to the transforming growth factor-beta (TGF-β) superfamily
that is important for diverse cellular processes (e.g., cell
proliferation, differentiation, apoptosis, angiogenesis, migration,
and extracellular matrix remodeling) (Bierie and Moses, 2006;
Massagué, 2008). More than 20 BMPs have been identified in
human tissues (Wozney and Rosen, 1998; Reddi, 2005). As
the most well-studied one, BMP-2 has been widely used in
bone formation because of its potent osteoinductivity and has
been approved by the U.S. Food and Drug Administration for
orthopedic and dental applications (Burkus et al., 2002; US
Food and Drug Administration, 2002; Alonso et al., 2014).
After continued clinical use, the adverse effects of BMP-2 (e.g.,
inflammatory, ectopic bone formation, infection, and potential
tumorigenicity) have come into focus; the high dose and off-label
application of BMP-2 have also aroused concern (Cahill et al.,
2009; Tian et al., 2017; Pardali et al., 2018; Hashimoto et al.,
2020; Hsu et al., 2020). Whether BMP-2 suppresses or stimulates
tumor development remains a contentious issue (Weiss, 2015),
and this controversy still challenges researchers (Kendal et al.,
2020; Table 1). Using an orthotopic mouse model, Xiong et al.
(2018) revealed that 2.5 µg of recombinant human BMP-2

(rhBMP-2) applied for 14 days not only induced bone formation
but also suppressed OS growth and pulmonary metastasis in OS-
bearing mice. Similar research also documented that rhBMP-2
constrained the tumorigenicity of cancer stem cells in human OS
cell lines in vitro and in vivo (Wang et al., 2011; Gill et al., 2017).
Conversely, opposite results from other studies have suggested
that BMP-2 promotes OS migration and epithelial–mesenchymal
transition (Sotobori et al., 2006; Tian et al., 2019). Because of this
discrepancy in results, the use of BMP-2 in those at high risk of OS
must be discreet and individualized based on the latest research.

Mesenchymal stem cells (MSCs) are identified as the origin of
OS and are capable of differentiating into osteoblasts, a process
that can be accelerated by BMP-2. However, BMP-2 is also
involved in the progression of OS, suggesting that complicated
crosstalk may exist among OS, BMP-2, and MSCs. As multipotent
mesenchymal stromal cells, MSCs are universally found in
almost all connective tissues (Horwitz et al., 2005; da Silva
Meirelles et al., 2006). They possess the ability to differentiate
into various mature somatic cells (e.g., osteoblasts, adipocytes,
and chondrocytes) with appropriate stimulation (Pittenger et al.,
1999) and the capacity to self-renew. BMSCs were first isolated
by Owen and Friedenstein (1988) from bone marrow. These
heterogeneous cells are involved in osteoblast differentiation
through the spatiotemporal expression of osteogenesis-related
genes (RUNX2, COL1A1, ALPL, SP7, BGLAP, etc.) (Ducy et al.,
1997; Nakashima et al., 2002; Twine et al., 2014). A few signal
pathways have proven to have pivotal roles in BMSC-induced
osteogenesis; the canonical BMP-2 pathway (Figure 1) is a well-
known example. A great body of research has focused on the
effect of MSCs on or toward osteoblastic differentiation and OS
progression; to date, though, the effect of BMP-2 on normal
BMSCs and on mutated BMSC–induced osteosarcomagenesis
is still elusive.

MSCs play contradictory roles in copious cancer types
(Devarasetty et al., 2017; Gyukity-Sebestyén et al., 2019; Xu et al.,
2019; Zhang et al., 2020; Jia et al., 2021). In OS, MSCs are
reportedly involved in not only chemoresistance, proliferation,
and pulmonary metastases but also OS recession (Cortini et al.,
2017). Thus, the effect of MSCs on OS might be converted
according to the relevant OS niche. Herein, we summarize
the literature and present the potential mechanism of the
contradictory effects of MSCs on OS to provide direction for
additional studies.

BONE MORPHOGENIC PROTEIN-2
INHIBITS OSTEOSARCOMA
PROGRESSION VIA MESENCHYMAL
STEM CELLS

MSCs can suppress sarcoma progression. Gauthaman et al.
(2012) found that umbilical cord-derived MSCs from Wharton’s
jelly suppressed the proliferation and migration of MG-63 cells
(a human OS cell line) in vitro; in a Kaposi sarcoma model,
MSCs also inhibited tumor progression (Khakoo et al., 2006).
BMP-2 also has inhibited OS progression, although the potential
mechanism was not discussed (Xiong et al., 2018). Given the close
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TABLE 1 | Studies of bone morphogenic protein 2 on tumor progression.

References Animal model Cell lines

Xiong et al. (2018) Mice 143B Lung metastasis↓, Ki-67 ↓, ALDHbr
↓

Rampazzo et al. (2017) NA GBM- derived cells Ki67↓, drug susceptibility↑, differentiation of GSCs↑

Wang et al. (2012) Mice ACHN, Caki-2 Tumor proliferation↓, Runx2↑, tumor volume↓, bone formation↑

Nishimori et al. (2012) NA LNCaP, MC3T3-E1 FGF-2↑, EGF↑ LNCaP cells proliferation↑

Kang et al. (2011) NA AGS, SNU-638 Cell migration and invasion↑, NF-κB activity↑, MMP-9↑

Wu J. B. et al. (2011) NA SMMC7721 Cell invasion↑, MMP-2 and MMP-9↑, p-ERK↑

ALDHbr , aldehyde dehydrogenase bright; EGF, epidermal growth factor; FGF-2, fibroblast growth factor (FGF)-2; GBM, glioblastoma; GSCs, glioblastoma stem cells; NA,
not available.

link between MSCs and BMP-2 in osteoblastic differentiation
and OS etiology, BMP-2 might suppress OS through BMSCs.
We reviewed the literature to explore the ability of BMP-2
to inhibit OS through BMSCs and present three assumptions
(Figure 2): (1) BMP-2 induces proliferation of BMSCs with the
capacity to suppress OS; (2) BMP-2 induces differentiation of
mutated BMSCs and/or OS cells to normal osteoblasts; (3) BMSC
polarization shifts.

Proliferation of Specific Mesenchymal
Stem Cells
BMSCs are heterogeneous populations comprising various
subpopulations with diverse properties (Horwitz et al., 2005).
Except for Wharton’s jelly MSCs, BMSCs from rats and mice
have demonstrated dose-dependent cytotoxicity to tumor cells
(Otsu et al., 2009). Thus, specific BMSCs with anticancer
capacity exist and may function according to the altered
expression of some cytomembrane receptors (Ridge et al., 2017).
It would make sense that BMP-2 could suppress OS through
the proliferation of these specific BMSCs and that a BMP-2
and Wnt pathway autocrine loop (Figure 3) may be capable
of explaining this process. The Wnt pathway is involved in
diverse cellular events, including mitogenic stimulation, cell fate
determination, differentiation, and proliferation (Huang and
Niehrs, 2014; Yao et al., 2016; Steinhart and Angers, 2018). It is
not surprising that the Wnt pathway, in particular the canonical
Wnt pathway (i.e., the beta-catenin–dependent pathway), plays
crucial roles in osteoblastic differentiation and osteogenesis
(Liu et al., 2008; Wang et al., 2014b; Lerner and Ohlsson,
2015). Although the Wnt pathway is thought to inhibit MSC
proliferation (Moon et al., 2018), an activated Wnt pathway
facilitating BMSC proliferation has also been reported (Zhu
et al., 2014). After the canonical Wnt pathway is activated, beta-
catenin translocates from the cytoplasm into nuclei. In the nuclei,
a complex consisting of beta-catenin and some transcription
factors—for example, lymphoid enhancer-binding factor 1/T
cell-specific transcription factor (LEF/TCF)—modulates the
expression of target genes, including BMP2, RUNX2, and
proliferation-related genes (Zhang R. et al., 2013). Conversely,
BMP-2 can stimulate the accumulation of beta-catenin in
nuclei (Yang et al., 2006; Hiyama et al., 2011), thereby
activating the canonical Wnt pathway in turn. BMP-2–induced
cell proliferation has been reported in murine preosteoblasts,
rat BMSCs, and human pulmonary artery epithelial cells

(de Jesus Perez et al., 2009; Rosen, 2009; An et al., 2017). The
OS suppression properties of BMP-2 might result from the
positive feedback of this loop via expansion of the specific
BMSCs in the OS niche. In addition, aberrant activation of
Wnt/beta-catenin signaling in OS cells has been detected (Chen
et al., 2015). The identification of specific BMSCs in the OS
niche is a precondition for OS suppression. Unfortunately, few
studies about these specific BMSCs have been conducted in
OS settings, so detailed information about their characteristics
is still lacking.

Induced Osteoblastic Differentiation
Cancer is a disease arising from failed cell differentiation
(Honma and Akimoto, 2007). Thus, differentiation-inducing
treatments have been proposed. With this strategy, tumor cells
differentiate back into normal cells instead of being eliminated
by chemotherapeutics and/or radiation. One well-known
differentiation-inducing treatment is all-trans-retinoic acid in
acute promyelocytic leukemia (Huang et al., 1988). Notably,
OS is recognized as an osteoblast differentiation disruption
disease (Tang et al., 2008). OS cells have characteristic properties
that resemble undifferentiated osteoblasts (Carpio et al., 2001;
Postiglione et al., 2003; Haydon et al., 2007), and activating
RB1 transcription has reversed the disrupted osteoblastic
differentiation (Thomas et al., 2001). In addition, BMP-2
has been tested for its efficacy as a differentiation-inducing
treatment. Rampazzo et al. (2017) successfully induced astroglial
differentiation of glioblastoma stem cells using a BMP-2
mimicking peptide. Moreover, BMP-2 has suppressed tumors
and promoted bone formation simultaneously: Wang et al.
(2012) indicated that renal cell cancer was inhibited and
bone formation was induced with the application of BMP-2.
Furthermore, BMP-2 has reduced tumor volume, attenuated OS-
induced pulmonary metastases, and stimulated bone formation
(Xiong et al., 2018). Applying 30 µg of BMP-2 to OS-bearing
mice also increased the transcription of osteogenic genes and
promoted osteogenesis (Wang et al., 2013). Taken together,
these data suggest that BMP-2 may play a therapeutic role in
OS by inducing osteogenic differentiation of mutated BMSCs
and/or OS cells.

Mesenchymal Stem Cell Polarization
The polarization of macrophages in inflammatory conditions
suggests that the effect of BMSCs on OS may also transform
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FIGURE 1 | Canonical bone morphogenic protein-2 (BMP-2) signaling pathway. After BMP-2 binds to its transmembrane receptors [bone morphogenic protein
receptor (BMPR)I and BMPRII], these phosphorylated receptors facilitate the phosphorylation of mothers against decapentaplegic and the Caenorhabditis elegans
protein 1/5/8 (Smad1/5/8) in the cytoplasm. Then, the complex of pSmad1/5/8 and Smad 4 translocates to the nucleus, where phosphorylated Smad1/5/8
(pSmad1/5/8) and Smad 4 function as transcription factors, enhancing the transcription of osteoblastic genes, including COL1A1, RUNX2, ALPL, SP7, and BGLAP.
As negative feedback, Smad7 inhibits the phosphorylation of Smad1/5/8, and Smad6 prevents the nucleus translocation of the complex of pSmad1/5/8 and Smad4.

mutually between tumor promotion and tumor suppression
(Ridge et al., 2017). This hypothesis has been verified by
Waterman et al. (2012) in a study that activated different
cytomembrane receptors. The researchers claimed that activation
of toll-like receptor-4 (TLR-4) conferred an antitumor effect on
human BMSCs, which were named MSC1; after TLR-3 activation,
however, the human BMSCs were converted to MSC2, which

promoted tumor growth and metastasis (Waterman et al., 2012).
Although myriad studies have indicated that TLR-2 and TLR-4
can enhance the expression of BMP-2 in BMSCs and accelerate
bone formation (Yang et al., 2009; Su et al., 2011; Oliveira et al.,
2017; Zhou et al., 2019), the effect of BMP-2 on the expression
of TLRs is still equivocal. The dosage of BMP-2 and the state of
BMSCs in the tumor niche may draw contrasting conclusions.
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FIGURE 2 | Potential mechanism of bone morphogenic protein-2 (BMP-2) induced tumor suppression via bone marrow-derived mesenchymal stem cells (BMSCs).
BMP-2 may induce mutated BMSC differentiation into normal osteoblasts. Conversely, BMP-2 may promote the proliferation of specific BMSCs with anticancer
capacity and the shift of BMSC polarization from MSC2 (tumor promotion) to MSC1 (tumor inhibition). OS: osteosarcoma.

Thus, the hypothesis that BMP-2 suppresses OS by affecting TLRs
must be explored in more detail.

BONE MORPHOGENIC PROTEIN-2
PROMOTES OSTEOSARCOMA
PROGRESSION VIA MESENCHYMAL
STEM CELLS
Aberrant Activation of RUNX2 and SP7
More research has reported that BMPs, especially a supra-
physiological dose of BMP-2, induces tumorigenesis, not tumor
suppression (Figure 4; Jin et al., 2001; Kang et al., 2011; Wu J. B.
et al., 2011; Nishimori et al., 2012; Tian et al., 2017; Zhang
et al., 2018). The physiological concentration of BMP is ∼2 ng/g
of bone. In most clinical trials, supra-physiological doses (mg
concentrations) of BMP-2 have been applied, and these doses
may disturb the normal BMP-2 signal pathway (Arrabal et al.,
2013; Oryan et al., 2014). After BMP-2 binds to its receptors
on the cell surface, the BMP-2 signaling pathway is activated.
In the canonical BMP-2 pathway, transcription of osteogenic
genes, including RUNX2, and SP7 (OSTERIX), is upregulated.
Although these two genes are vital for bone formation, an

increasing body of evidence implies that they are also engaged
in tumorigenesis. Normally, RUNX2 expresses during the cell
cycle in healthy osteoblasts to disturb cell growth and induce
osteoblast maturation (Pratap et al., 2003). Overexpression of
RUNX2 has been found in patients with OS and is correlated
to poor prognosis (Pereira et al., 2009; Sadikovic et al., 2010;
Gupta et al., 2019). van der Deen et al. (2012) used chromatin
immunoprecipitations to detect RUNX2 target genes in U2OS
cells; results indicated that some motility-related genes were
downstream of RUNX2 and that cell motility decreased after
RUNX2 depletion. Furthermore, an elevated RUNX2 protein
level may also be responsible for pulmonary metastasis. After
RUNX2 activates SPP1 (OPN), the RUNX2 target gene encodes
a secreted matricellular protein, thereby remodeling the bone
matrix, which leads to tumor metastasis (Villanueva et al.,
2019). RUNX2 may also account for the chemotherapeutic
resistance of OS. When RUNX2 was silenced by si/shRNA, OS
cells were more sensitive to doxorubicin (Roos et al., 2015).
Another osteogenic gene, SP7, has not been associated with
osteosarcomagenesis, but it has been described as a stimulus in
other tumors (Dai et al., 2015; Yao et al., 2019; Ricci et al., 2020).
This finding suggests that sustained activation of the BMP-2
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FIGURE 3 | Reciprocal activation between canonical bone morphogenic protein-2 (BMP-2) and canonical Wnt signaling pathway. After BMP-2 binds to its receptors
on the cell surface, phosphorylated Smad1/5/8 and Smad4 translocate into nuclei, where this complex modulates the transcription of some target genes, including
WNT3A (coding the Wnt3a protein) and some osteoblastic differentiation genes. However, with the autocrine signaling, Wnt3a binds to its receptors (i.e., LRP5/6 and
Frizzled) on the membrane, so β-catenin accumulates in the nuclei and incorporates with T cell-specific transcription factor (TCF) to upregulate the transcription of
target genes, including BMP2, RUNX-2, and proliferation-related genes. APC: adenomatous polyposis coli, CK1: casein kinase 1, Dvl: Disheveled, GSK3β: glycogen
synthase kinase3β, LRP5/6: low-density lipoprotein receptor-related protein 5.

pathway causing increased SP7 transcription may also precipitate
OS in bone tissues.

Modulation of the Tumor
Microenvironment
BMP-2 may promote OS progression through modulation of the
tumor microenvironment (TME), which plays an indispensable

role in tumor progression (Hui and Chen, 2015; Yang et al., 2020).
The bone microenvironment where OS grows is composed of
hematopoietic stem cells, lymphoid progenitors, mature immune
cells, bone cells, MSCs, mineralized extracellular matrix, and
more (Tsukasaki and Takayanagi, 2019; Corre et al., 2020).
The crosstalk in these items modulates the OS TME, which
affects OS progression. Cancers are identified as “wounds that
never heal” (Dvorak, 1986), so it is not surprising that MSCs
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FIGURE 4 | Potential mechanism of bone morphogenic protein-2 (BMP-2)–induced tumor progression via bone marrow-derived mesenchymal stem cells (BMSCs).
(A) After the canonical BMP-2 pathway is activated, RUNX2 and SP7 transcription initiate. The overexpression of RUNX2 and SP7, as a result of continuous
activation of the canonical BMP-2 pathway, may promote osteosarcoma (OS) progression. (B) BMSCs are recruited to OS by BMP-2. Then, BMSCs adapt to OS via
OS-related cytokines and exosomes; in turn, the tumor-centered BMSCs will secrete growth factors and cytokines, such as vascular endothelial growth factor
(VEGF) and CXC chemokine receptor 4 (CXCR4), to promote OS development.

are involved in tumor development, given the central role of
MSCs in repairing wounds by altering the local inflammatory
environment and secreting growth factors, immunoregulatory
factors, and chemokines (Caplan and Correa, 2011; Wang et al.,
2014a; Shi et al., 2017) after the tumor-specific tropism of MSCs
(Kidd et al., 2009). However, MSCs are not always beneficial
for healing; the fluctuation of their function depends on the
milieu where they reside (Wang et al., 2014a). In the TME, MSCs
can be converted into tumor-associated MSCs that have vast
differences from normal MSCs (Le Nail et al., 2018) and that can
promote tumor proliferation, migration, immunosuppression,
and angiogenesis through extracellular vesicles (Quante et al.,
2011; Baglio et al., 2017; Shi et al., 2017; Whiteside, 2018).
In the OS niche, interleukin-6 (IL-6) and vascular endothelial
growth factor (VEGF) secreted from BMSCs have been involved

in OS progression (Tu et al., 2012; Zhang P. et al., 2013);
BMSCs promoted pulmonary metastasis of OS by increasing the
expression of CXC chemokine receptor 4 (CXCR4) and VEGF
(Fontanella et al., 2016). Furthermore, extracellular vesicles, such
as exosomes from BMSCs, are loaded with certain miRNAs
involved in OS aggression and development (Xie et al., 2018).
BMP-2, as a member of the TGF-β superfamily with the ability
to recruit MSCs to inflammatory surroundings and the TME
(Spaeth et al., 2008), may recruit BMSCs to OS, and BMP-
2-induced chemotaxis has been reported in other conditions
(Hiepen et al., 2014; Simões Sato et al., 2014; Pardali et al.,
2018). BMP-2, particularly at high doses, induces inflammation
(James et al., 2016), which may cause MSC homing as a
result of inflammatory cytokines; in addition, MSCs have
been recruited by BMP-2 through CXCR4, accelerating bone
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formation (Zwingenberger et al., 2014). Thus, BMP-2 might
recruit BMSCs toward the OS phenotype. Together, these results
suggest a tentative hypothesis. After BMSCs are recruited by
BMP-2 to the OS niche, they will be educated directly or indirectly
by OS cells. Afterward, the emergence of the educated BMSCs
that can secrete some cytokines and growth factors will promote
OS proliferation, migration, angiogenesis, and more.

REASONS FOR CONTRADICTORY
CONCLUSION

The debate about BMP-2 is an obstacle to its clinical application,
despite the potential value for those at high risk of OS and for
patients with OS and bone defects. Illustrating the reasons for
these controversies can deepen our understanding of the function
of BMP-2 in OS and guide its clinical administration.

Differences in Osteosarcoma Cell Lines
Diverse OS cell lines applied in the research contribute to the
confusion about results. Histologically, several OS subtypes with
distinct characteristics have been confirmed. At the cellular
level, various in vitro OS cell lines have been used in research;
great differences in these cell lines have been verified. Saos2
cells appear more identical to normal osteoblasts than other
OS cell lines, as osteoblastic markers can be detected in these
cells. Conversely, osteocalcin, an important marker in bone
mature, was hardly expressed in MG-63 and U2OS cells.
However, matrix metalloproteinase-9 (MMP-9), a well-known
cytokine for tumor migration and metastasis (Deryugina and
Quigley, 2006), was positive in most MG-63 cells (Pautke
et al., 2004). In other research, researchers (Mohseny et al., 2011)
compared differences in differentiation, tumorigenesis, and
protein expressions among 19 OS cell lines. Only OSA, IOR/OS9,
and IOR/OS18 could differentiate into osteoblasts, chondrocytes,
and adipocytes; 13 of the 19 cell lines could differentiate toward
osteoblasts. This finding may explain why some researchers
claimed that OS cell lines could not be induced into osteoblasts by
BMP-2, whereas other studies reported opposite results (Haydon
et al., 2007). Moreover, in these 19 OS cell lines, HOS-14B cells
had the greatest capacities of tumorigenesis and metastasis. These
inherent disparities between various OS cell lines, to some extent,
account for the conflicting conclusions about the role of BMP-2
in OS progression.

Heterogeneity of Mesenchymal Stem
Cells
Variations in MSCs are also ubiquitous. MSCs are heterogeneous
populations consisting of a few subtypes with diverse
characteristics; the differences may come from individual
differences and species differences (Peister et al., 2004). The
proposed definition of MSCs suggests that they must (1) adhere
to plastic, (2) express special surface markers, and (3) differentiate
along the osteogenic, chondrogenic, and adipogenic lineages
(Dominici et al., 2006; Lindsay and Barnett, 2017). Commonly,
CD34, CD31, and CD45 are negative on both human and mouse
MSCs (Dominici et al., 2006); some markers, such as STRO-1

and CD271, are only detected on human MSCs (Lv et al., 2014);
these are specific and can be found on other cell types (Kuhn and
Tuan, 2010). CD29, CD51, CD73, CD90, CD105, and CD146
are universal in human and mouse MSCs (Sacchetti et al., 2007;
Zhang et al., 2019). BMSCs are the most used MSCs in research;
they are heterogeneous as well, which complicates the research
and weakens the conclusions. Although some specific isolation
kits based on the cell surface markers have been applied to clarify
results, it remains hard to purify the homogeneous BMSCs, as
MSCs share cell-surface markers and localization with pericytes
(Crisan et al., 2008). With the development of biotechnology,
the function and characteristic identification of a single cell
are practicable. Single-cell RNA sequencing has been used to
detect immune cell heterogeneity (Papalexi and Satija, 2018);
Zhou et al. (2020) assayed the intratumoral heterogeneity and
immunosuppressive microenvironment in advanced OS and
demonstrated the complex variations in OS.

Different Doses and Delivery Strategies
of Bone Morphogenic Protein-2
Furthermore, the dose and the delivery strategy of BMP-2
affect the research conclusions (Wu G. et al., 2011). Most of
the reported disadvantages of BMP-2 result from overdosage.
The effective dose of BMP-2 in osteoblastic differentiation of
MSCs, which is dose-dependent, is just 25–100 ng/mL in vitro
(Rickard et al., 1994; Lecanda et al., 1997). However, the working
concentration of BMP-2 for in vitro or in vivo research is not
distinguished, and most doses are supra-physiological, which
may confound the results and cause adverse effects. The delivery
pattern of BMP-2 is also crucial. A continuous and slow release,
rather than a burst stimulation, is more bionic and more closely
resembles physiological conditions. Most recent research has
administered rhBMP-2 protein directly into the culture medium
or intravenously, which may cause stress conditions for cells
and tissues. The advantages of a sustained, low-dose release
of BMP-2, including less inflammation and ectopic ossification,
have been verified (Wildemann et al., 2004; Ji et al., 2010;
Seo et al., 2017; Berkmann et al., 2020; Xin et al., 2020). The
mitigatory inflammatory surroundings can reduce the risk of
tumorigenesis as well, which makes low-dose BMP-2 application
more reasonable.

LIMITATIONS IN PRESENT STUDIES

Deficiency of in vitro Research
Currently, most in vitro studies are carried out on traditional
two-dimensional (2D) culture models (i.e., flask- and petri-
dish-based cultures). However, these 2D models hardly mimic
tumor cell biology because of tumor heterogeneity and
different responses to secreted cytokines, growth factors, and
methylation states of the cells. Moreover, the 2D cell culture
systems cannot sufficiently simulate a three-dimensional (3D)
physiological microenvironment, so they fail to provide
physiologically relevant information regarding cell–cell
interactions, cell–extracellular matrix interactions, growth
factor synthesis, or physical and chemical cues to oncogenesis
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(Hickman et al., 2014; Berkmann et al., 2020). Furthermore,
the results obtained from gene expression analysis and
drug resistance also differ substantially between 2D and 3D
cell culture models (Zhao et al., 2014; Costa et al., 2016;
Henriksson et al., 2017; Zhou et al., 2017; Fontoura et al.,
2020; Mao et al., 2020; Sun et al., 2020; Xie et al., 2021). The
disadvantages of the 2D culture reduce attempts to understand
the authentic role of BMP-2 that may play in the formation and
pathology of OS.

Inappropriate Animal Models
In most OS studies, rodents, such as mice or rats, have been used
as experimental animal models in addition to the patient-derived
xenograft or cell line-derived xenograft models. Normally, OS
is rare in mice and rats, and these models may present limited
information or misinformation. The OS incidence in dogs is∼27-
fold higher than in humans, which makes the canine model a
more useful model to the human OS for research (Simpson et al.,
2017). To date, preclinical research using dogs as animal models
has suggested that a combination of canine BMSCs together with
rhBMP-2 treatment suppressed OS by increasing p53 and some
other pro-apoptotic proteins (Rici et al., 2012, 2018). However,
using dogs as animal models to study the effects of BMP-2 on OS
development is not well accepted in Western countries because of
social and cultural reasons.

Lack of High-Quality Evidence
Large-scale and multicenter cohort studies for evaluating BMP-
2 treatment effects on OS progression remain unavailable.
Although some clinical retrospective studies have suggested
that BMP-2 used in spine fusion surgery was not involved
in tumorigenesis (Fahim et al., 2010; Cooper and Kou, 2013;
Lad et al., 2013), these studies were performed with small
sample sizes and had insufficient follow-up times. Large-scale
and multicenter cohort studies are needed to draw a scientific
conclusion and establish the effects of the BMP-2 on patients
living with cancer.

SUMMARY

To date, the exact role of BMP-2 in osteosarcomagenesis is
still equivocal, although abundant studies have been carried
out. This uncertainty is attributed to the intricacy of the OS
genome, differences between OS subtypes, the complex TME,
and the multifunctionality of BMP-2 activation of several signal
transduction pathways. The response of MSCs, which have a
pivotal effect on osteogenesis and osteosarcomagenesis, to BMP-
2 remains a key to understanding this mystery. This review
represents research focused on the BMP-2 effect on OS cell lines
and OS animal models and the relevant potential mechanisms
involved, and it provides some clues for additional research about
OS biology and safe application of BMP-2 in clinical settings.
For current clinical application, we recognize that a low-dose
and slow-release strategy of BMP-2 applied in bone regeneration
is acceptable, even in the tumor-caused bone defects, while in
the OS treatment, we still maintain a prudent stand to the
employment of BMP-2.

As a growth factor, BMP-2 plays a crucial role in various
cell biology activities. BMP-2 use in populations with genetic
mutation diseases may promote OS progression; mutations of
some genes, particularly TP53 and RB1, and genomic alterations
have been associated with osteosarcomagenesis. Likewise, using
BMP-2 in patients with some bone metabolic diseases might
increase the occurrence of OS, because aberrant activities of
osteogenesis-related signaling pathways in these patients are very
common; these pathologic activities may enhance the expression
ofRUNX2 and SP7, the latter of which is overexpressed in patients
with OS and is correlated with poor prognosis.

However, BMP-2 is highly likely to be used in OS treatments
because of the BMP-2-induced proliferation of specific BMSCs
with anticancer capacity. This strategy is based on the isolation
and identification of these specific BMSCs. However, to our
knowledge, no research on the isolation and identification of
characteristics of these specific BMSCs has been carried out.
Moreover, BMP-2 may inhibit OS through the osteoblastic
differentiation of OS cells and/or mutated BMSCs. In addition, in
line with the current consensus, although an overdose of BMP-
2 could lead to over-proliferation of cells, which may increase
the risk of neoplasm formation and tumorigenesis, using a low
dose and a slow-release delivery pattern of BMP-2 appears safe
for oncogenesis-related research.

For additional investigations, researchers should pay attention
to the differences between various OS cell lines and the diverse OS
subtypes. These differences are responsible for the contradictory
roles of BMP-2 in OS development. Caution is needed to interpret
data about the function of BMP-2 in OS progression when only
one subtype of OS cell line is investigated. Because of the various
limitations and factors involved, the relationship between BMP-
2—in particular, the supra-physiological concentration of BMP-
2—and OS has not been determined thoroughly; more research
in this field is necessary.
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