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Abstract

During High Dose Rate Brachytherapy (HDR-BT) the spatial position of the radiation source

inside catheters implanted into a female breast is determined via electromagnetic tracking

(EMT). Dwell positions and dwell times of the radiation source are established, relative to

the patient’s anatomy, from an initial X-ray-CT-image. During the irradiation treatment, cath-

eter displacements can occur due to patient movements. The current study develops an

automatic analysis tool of EMT data sets recorded with a solenoid sensor to assure concor-

dance of the source movement with the treatment plan. The tool combines machine learning

techniques such as multi-dimensional scaling (MDS), ensemble empirical mode decomposi-

tion (EEMD), singular spectrum analysis (SSA) and particle filter (PF) to precisely detect

and quantify any mismatch between the treatment plan and actual EMT measurements. We

demonstrate that movement artifacts as well as technical signal distortions can be removed

automatically and reliably, resulting in artifact-free reconstructed signals. This is a prerequi-

site for a highly accurate determination of any deviations of dwell positions from the treat-

ment plan.

Introduction

High dose rate brachytherapy (HDR-BT) recently became an alternative to whole breast irradi-

ation of tumors in female breasts during radiation therapy [1, 2]. Thereby roughly 14 − 25

catheters are inserted into the female breast by a surgical intervention [3]. During radiation

treatment, then a radioactive source, 192Ir for example, is moved inside the catheters following

a treatment plan [4, 5] which fixes dwell positions and dwell times. The latter are designed to

assure an optimal and intense irradiation of the tumor bed while, at the same time, keeping

side effects, i. e. irradiating healthy tissue, at a minimum. This strategy follows from the obser-

vation that tumor recurrences most frequently happen at the tumor bed. HDR brachytherapy

commonly utilizes a remote afterloader unit to deliver high activity 192Ir radioactive source,

radiating 380 [keV] γ-photons directly into the tumor treatment volume. Application of such
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high radiation doses (5 − 35 [Gy]) affords ensuring accurate radiation dose delivery in accord

with the treatment plan. Such high positioning accuracy requires keeping the catheters in the

same position during all subsequent fractions, so as to precisely deliver the planned radiation

dose. Given these constraints, it is mandatory to assure the highest precision in source posi-

tioning according to the treatment plan. The latter is deduced from X-ray computed tomogra-

phy (CT) images which are taken after the cancerous tissue has been removed by a surgical

intervention (Lumpectomy). Quality assurance thus affords that the exact spatial localization

of the radiation source relative to the anatomy of the patient, and its concordance with the

treatment plan, needs to be determined before the treatment starts.

Implant geometry, hence indirectly radiation source localization, can be determined with

an electromagnetic tracking (EMT) device. Thereby a field generator (FG) produces a mag-

netic field extending across the female breast. The EMT system used in this study applies a

three-pole transmitter to generate an electromagnetic field. Inside the catheters then a five

degrees of freedom (5DoF) solenoid sensor is moved in accord with a pre-defined treatment

plan. The sensor induces a distance—dependent induction voltage which allows to determine

its spatial position (dwell position) and mean residence time (dwell time).

The precision of the EMT system itself, and the accuracy of the registration between the

field generator (FG) (EMT data set) and the CT imaging (Digital Imaging and COmunications

in Medicine (DICOM) data set) coordinate systems, have a strong impact on the performance

of an EMT system in HDR-BT catheter reconstruction. Performance assessments of EMT sys-

tems are mostly done with ideal, undistorted laboratory settings intended to mimic a clinical

BT treatment environment. Corresponding data from a clinical environment are almost non-

existent. Recent reviews by [6, 1, 2] discuss quality assurance aspects, catheter reconstruction

accuracy and catheter technology in HDR-BT. Especially [1] reports a typical accuracy of

0.9 ± 0.2 [mm] which could be obtained for dynamic tracking in HDR-BT when using an opti-

mal, distortionless, i. e. phantom-based, configuration and a pulsed DC EMT system. With an

AC EMT system, ideally an accuracy of 0.26 ± 0.16 [mm] was achieved [7]. The error increased

to more than 2 [mm] when magnetic field distorting equipment (a 20 inch Liquid Crystal Dis-

play (LCD) monitor) was approaching 30 [cm] of the center of the magnetic field generator

(FG). A recent study by [8] used EMT, in combination with a rigid coherent point drift (CPD)

algorithm [9], to estimate relative positions of a five Degrees-of-Freedom (5DoF)—sensor

which was manually inserted into the catheters. Additionally, in combination with fiducial

6DoF—sensors placed onto the surface of the breast, the influence of the breathing motion has

been compensated. However, objections concerning the reliability of such corrections within a

long term treatment have been raised in [2]. Nevertheless, the authors claim an achieved aver-

age deviation of 1.3 [mm] on the registered implant geometry on the CT—couch. The corre-

sponding accuracy of the EMT—based dwell position determination resulted in a mean

deviation of 2.4 [mm] relative to the treatment plan. A further recent report using EMT for

catheter reconstruction in HDR-BT achieved 0.7 [mm] in positioning and 0.2deg in orienta-

tion [5]. This study also avoided external registration by using an iterative closest point algo-

rithm employing a finite difference method to compare reconstruction results from both

conventional CT and EMT.

Data from an EMT system is based on the coordinates of the field generator, i. e. on CFG.

This data has to be transformed to the treatment planning coordinate system CTPS. Note that

in general this transformation is highly anisotropic. A rigid-body, point-based registration is

often conducted based on three or more fiducial points with positions known in both coordi-

nate systems through optical measurements [10], [11]. Thus the system yields the coordinates

of the fiducial points which are either exported from the treatment planning system or are

received as electromagnetic FG coordinates. This combination of EMT and imaging system
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adds up uncertainties from both modalities, thus yields errors in catheter reconstruction much

larger than corresponding intrinsic EMT tracking errors [1]. By registering EMT and CT

dwell positions, the residual mean error per catheter was found to be 0.6 ± 0.2 [mm], with a

maximum catheter error of 0.9 ± 0.4 [mm] and a maximal dwell position error of 1.3 ± 0.7

[mm]. Also catheter swaps and catheter tip shifts could be detected with high sensitivity and

specificity [12]. Field distortions based on nearby metal parts can only be corrected by calibra-

tion procedures which imply a fixed environment and preparatory measurements [13]. Again,

error measures are based on a phantom study, while real clinical applications are very scarce

[14]. Commonly the radiation treatment encompasses several sessions which extend over a

whole week, roughly. Between the sessions, the patients move around which caries the risk for

any spatial displacement of the catheters away from their positions deduced from the CT—

image and prescribed in the treatment plan. To quantify such displacements only from EMT

measurements, we recently [15] proposed a method based on multi-dimensional scaling

(MDS) techniques [16], [17], [18].

An additional complication arises as patients are breathing during the EMT measurement,

and if they are also speaking, the resulting breathing signal can become highly complex and

erratic. To aid removing such motion artifacts from the EMT recordings, in this proof-of-prin-

ciple study additional fiducial sensors are fixed on the chest of the patient. Their spatial posi-

tions are also determined via an EMT measurement. Last but not least, occasional device

malfunctions add further artifact signals to the EMT recordings. In a recent study [19] we pro-

posed a new way to get rid of such movement artifacts suggesting to employ an ensemble

empirical mode decomposition (EEMD) of both the fiducial sensor and solenoid sensor signals

combined with particle filtering techniques. Particle filters [20], [21] represent sequential

Monte Carlo techniques and are well known from applications to system identification prob-

lems. They are employed here to precisely track the trajectory of the solenoid sensor inside the

catheters without any noise contributions. The measured spatial dwell positions inside the

catheters provide source trajectories which, ideally, should be in perfect agreement with the

treatment plan. However, patient movements between the treatment sessions and breathing

motions during the EMT measurements cause signal distortions which result in deviations

from the dwell positions defined in the treatment plan. As we will show, such deviations can

be precisely quantified after the measured EMT signals have been tracked with a particle filter

and superimposed breathing mode artifacts have been removed with the help of an EEMD

analysis.

System identification techniques have hardly been applied to HDR-BT data since. A recent

study [22] considered sensor tracking with an extended Kalman filter. It was mainly devoted

to achieve a dynamic field distortion compensation within an EMT measurement. The authors

used additional redundant sensors and a realistic state evolution model. They applied the

SLAM algorithm [23], [24] and combined it with an extended Kalman filter to be used in pre-

calibration procedures for system identification.

The currently proposed protocol combines particle filter tracking methods with multi-

dimensional scaling thus enabling the exclusive use of intrinsic EMT measurements of spatial

positions of the solenoid sensors for catheter reconstruction. In addition, it relies on empirical

mode decomposition techniques to decompose the recorded non-stationary time series and

remove breathing artifacts in real clinical applications with patients. The newly proposed

method robustly and almost perfectly reconstructs the shape of various catheters involved in

any HDR-BT treatment, quantifies any deviations from the treatment plan and conveniently

visualizes the dwell position tracks of both, the CT data set and the various EMT data sets.

The manuscript is organized as follows: Section 1 provides an Introduction and a discussion

of related work. In Section 2, entitled Materials and Methods we discuss details of the Data
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Acquisition process and proposes a new Data Analysis Methodology based on a singular spec-

trum analysis (SSA) for denoising and high amplitude measurement artifact removal followed

by an EEMD to isolate and identify the breathing mode contribution and remove it from the

signal. We also provide details of the application of the various data analysis techniques pro-

posed in this proof-of-principle study. Section 3 presents the Results and offers a Discussion of

those findings. Finally, Section 4 draws some Conclusions. Most of the more technical material

is, however, put into Appendices for the convenience of the reader.

Material and methods

Patient cohort

This investigation is intended to serve as proof-of-principle of the proposed automatized data

processing chain. Hence it relies on data that was collected in a recent study from four female

patients with an age of 49 − 68 years. All women have been thoroughly informed and have

given their written consent to the treatment which, furthermore, has been approved by the

institutional review board of the Friedrich-Alexander-University Erlangen-Nürnberg

(Nr. 355 − 14B, 2014). The study comprised 4 patients between 49 − 68 years of age. The

women underwent a high dose rate brachytherapy treatment of a breast cancer that was

excised in a surgical intervention (Lumpectomy) before the radiation treatment. For the

HDR-Brachytherapy radiation treatment, catheters were implanted in the breast of the patients

following a pre-defined geometry designed by a experienced radiologist. The number of cathe-

ters varied from case to case with a mean number of implanted catheters of 18.25. Based on an

initial X-ray computed tomography (CT), a treatment plan was created with an Oncentra pro-

gram (Oncentra1 Brachy v4.3, Elekta, Veenendaal, The Netherlands) which stores all data in

the Digital Imaging and Communications in Medicine (DICOM) format. The contours for the

treatment plan were defined by a medical expert according to a prescription given in [25]. For

each catheter, a different number of dwell positions was defined in the treatment plan. The

mean number of dwell-positions per patient was 633.5. Altogether, for each patient, only the

first session of EMT data collection was recorded on the CT bench. This imaging data was

used for treatment planning and formed the reference data set to which all EMT-based data

sets had to be compared. All subsequent EMT measurements then have been performed in an

HDR Brachytherapy treatment room on a specifically prepared patient bench.

Image acquisition and treatment planning

Computed tomography X-ray images (CT image) have been acquired either with breathing

command, where an X-ray image is recorded while patients stopped breathing. For the treat-

ment plan, the catheters were reconstructed from CT image slices by a medical physicist.

Hence, the reconstruction of the catheters depends on experience and attention of the medical

physicist. This data set is designated as CT data set.

The catheters were implanted on the first day of the treatment period. Before the CT is

acquired, the catheters are cut to a length of 287.5 [mm]. During treatment, the sensor is

inserted into the catheter to its very end. From the very end of the catheter, a default margin of

l0 = 5 [mm] is left. There the first dwell-position is set, and all subsequent dwell positions are

chosen in steps of 2.5 [mm]. Not all these dwell positions are set active in the treatment plan,

however. Each dwell position is numbered as well as each catheter. From the EMT measure-

ments, the dwell-positions are calculated with the raw EMT data according to a method pro-

posed in [26].
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EMT recordings

The dwell positions of a 5—DoF sensor, introduced into each catheter consecutively, were

determined by a Flexitron1 (Electa AB, Stockholm, Sweden) afterloader with electromagnetic

tracking capabilities and relied on a measurement software based on the rigid coherent point

drift (CPD) algorithm as detailed in [26]. The Flexitron system comprises a treatment delivery

unit (TDU), treatment control panel (TCP) and a treatment communication console (TCC).

The system control (SCU), field generator (FG) and the sensor interface units (SIU) jointly

constitute a prototype of an NDI Aurora1 (Northern Digital Inc., Canada) EM tracking sys-

tem. The measurement data is collected by a computer. The catheters are connected with the

afterloader via transfer tubes of total length 1000 [mm]. The length inside each catheter for

the source applicator is 400 [mm]. The speed of the sensor can be varied between 2.5 [cm/s]
− 50 [cm/s] [27]. The smallest step size between two dwell positions amounts to Δs = 1 [mm].

For an EMT measurement, a field generator (FG) is connected with a tracking system and

placed above the chest of the patient. During the automatic movement of the EM sensor along

the inside of the catheter within the field of view of the field generator, the spatial coordinates

of the sensor can be derived via induction voltage signals generated in the solenoid sensors.

The distance between FG and the sensor critically influences the signal sensitivity. Addition-

ally, three 6 DoF fiducial sensors are placed on the thorax of the patient to measure the breath-

ing motion. All data are made available at https://osf.io/kd6ta, DOI: 10.17605/OSF.IO/KD6TA

for the convenience of the reader.

Phantom data. The catheters implanted into the phantom were connected to the afterloa-

der via transfer cables. The treatment plan defined for the phantom was up-loaded to the soft-

ware of the Flexitron1 afterloader prototype (Electa AB, Stockholm, Sweden). The sensor was

moved to each dwell position inside the catheters according to the treatment plan and

remained at the dwell positions for the defined dwell time.

To investigate the possibility of a breathing compensation, preparative measurements with

a phantom have been performed. 12 catheter tubes were implanted into a breast prosthesis by

a surgeon (see Fig 1). The template and needles from the radiation surgery were used for

implantation. The tubes were cut to a length of 287.5 [mm]. A computer tomography (CT) X-

ray image of the breast phantom was acquired. Also a treatment plan was created based on the

catheters’ shapes in the CT image. In a subsequent experiment, the breast phantom was care-

fully fixed to the chest of a male test person. With this design, some very small catheter dis-

placements could arise from occasional spatial displacements of the prosthesis. However, they

were smaller than the precision of EMT measurement. The phantom was measured three

times according to the following protocol: the person was either

• breathing calmly in the chest, or

• breathing calmly in the belly, or

• breathing while speaking.

The measured sensor movement then consisted of a superposition of the chest motion and

the sensor motion. Thereby, the chest motion was in a direction roughly perpendicular to the

sensor motion inside the catheters.

Patient data. After the preparatory phantom measurements, data measured from four

patients was analyzed. Depending on the location of the tumor, in each of the patients, the

catheters were implanted in different anatomical planes. A patient specific treatment plan was

defined for each of the four patients by an experienced medical physicist. For each of the
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patients, EMT data was recorded in an HDR Brachytherapy treatment room on a specifically

prepared patient table. The movement of the solenoid sensor according to the treatment plan

was tracked with the NDI Aurora1 (Northern Digital Inc., Canada) EM tracking system in

combination with the Flexitron1 (Electa AB, Stockholm, Sweden) afterloader system. The

measurements were performed in analogy with the phantom case. The first measurement took

place one day after the surgical implantation of the catheters. Though the field generator axes

remained always the same, the implant plane influences the spatial direction of the highest

breathing amplitude. Two of the patients were speaking during the measurement while the

other two were breathing calmly. The success of the reconstruction of the catheters’ shapes

without the breathing mode contribution strongly depends on the amplitude of the breast

movement during breathing and/or speaking. The women analyzed in this study differed in

the number of implanted, and finally used, catheters, their breast volumes and their ages. In

Table 1, all relevant information about the patients and their treatment plans is collected [26].

Fig 1. Breast prosthesis with 12 implanted catheters fixed to the chest of a male test person. To monitor the breathing motion, three fiducial

sensors are fixed to the breast.

https://doi.org/10.1371/journal.pone.0183608.g001
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Data analysis methodology

Following we describe a data analysis methodology to automatically analyze the electromag-

netic tracking (EMT) measurements obtained during a HDR-BT treatment. The induction

voltage signals are obtained from a solenoid sensor moving inside various catheters implanted

into the breast of female patients, and three fiducial sensors fixed to the chest of the patient,

respectively. The movement of the 5 DoF solenoid sensor in the inhomogeneous magnetic

field of a field generator is characterized by the sensor’s dwell positions. An independent mea-

sure of the breathing mode is obtained with EMT measurements of signals from the fiducial

sensors.

Such measurements contain a number of artifacts, mainly those from the breathing motion

of the patients during the measurement. The proposed data processing chain encompasses the

following steps:

• Sensor tracking: A particle filter (PF) technique is employed to track the dwell positions of a

solenoid sensor inside various catheters implanted in a female breast for a radiotherapy

treatment.

• Artifact removal: Next, singular spectrum analysis (SSA) and ensemble empirical mode decom-
position (EEMD) are applied to remove artifacts from the recorded signals.

• Dwell position deviations: Finally, a multi-dimensional scaling technique is employed to quan-

titatively compare sensor dwell position measurements recorded with respect to different

coordinate systems.

Goal of the study. Up till now, all these signal pre-processing techniques are done interac-

tively and need the intervention of the user. This is a tedious procedure. Hence the goal of the

present study is to automatize this data analysis and to establish a data analysis protocol with-

out recourse to any external registration of the breathing motion by other methods than EMT.

Static and dynamic experiments on a Phantom serve to establish the methodology and to

prove the robustness and reliability of our data analysis methodology. Additionally a human

medical expert is asked to check all results and approve their correctness. Thus we want to pro-

vide an objective and reliable data analysis tool to automatically, efficiently, precisely and reli-

ably evaluate EMT measurements recorded during a HDR-BT

The application of PF [19] and MDS [15] has been described recently, hence only a short

account will be provided here. The current study rather focuses on automatic artifact removal

techniques based on SSA and EEMD. We will show that a combination of both methods is

able to remove noise and breathing mode contributions superimposed onto the EMT sensor

signals.

Generally, the EMT sensor signal is ballasted with measurement noise. To estimate the true

sensor state during the sensor’s motion inside a catheter, we recently proposed to employ a

Table 1. Summary of all patient data and treatment plan variables for all measurements conducted in this study.

Patient age impl. cath. used cath. dwell pos. implantation plane

phantom – 12 8 367 transversal

01 49 14 12 505 sagittal

02 51 17 11 547 sagittal

03 68 19 15 540 transversal

04 62 23 20 942 sagittal and transveral

https://doi.org/10.1371/journal.pone.0183608.t001

Automatic analysis of EMT—HDR-BT of breast cancer patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0183608 September 21, 2017 7 / 31

https://doi.org/10.1371/journal.pone.0183608.t001
https://doi.org/10.1371/journal.pone.0183608


particle filter to estimate the underlying but unobservable sensor state from the noise contami-

nated observation of the dwell positions provided by the EMT system.

However, particle filtering cannot remove large amplitude artifacts occasionally observed

on bothe the solenoid sensor and the fiducial sensor signals. Here we suggest to apply SSA to

remove such artifacts.

Because patients breath during the EMT measurements, the recorded EMT signal is cor-

rupted by the superimposed breathing mode contribution and eventually occurring additional

motions of the patients lying on the treatment table. In case, patients are speaking during the

measurements, these breathing motions can become highly irregular. To automatically remove

such breathing artifacts from the EMT solenoid sensor signals, we propose to decompose both

the fiducial and the solenoid sensor signals with an EEMD, identify those intrinsic modes

which are dominated by the breathing modes, and reconstruct the sensor signal neglecting

such contaminating modes.

The automatic identification of intrinsic modes underlying the measured solenoid sensor

signal via a comparison with the intrinsic modes of the fiducial sensor signal is achieved with a

proper similarity measure. Several such measures have been tested with rather similar results.

Finally, EMT dwell position measurements from subsequent treatment sessions of the sen-

sor inside the catheters refer to different coordinate systems. Hence, results are not comparable

straighforwardly. Recently we proposed a multi-dimensional scaling scheme to rectify this

mismatch, thus rendering different dwell position measurements quantitatively comparable.

Thus an MDS is finally applied to the artifact-free dwell position tracks resulting from particle

filtering.

We demonstrated the principle usefulness of this data analysis strategy which does not need

any additional external registration. We also corroborated a robust and reliable identification

of all sensor dwell positions, and their deviations from the treatment plan, during an EMT

measurement to identify and characterize the shape, i. e. the spatial location and orientation,

of all implanted catheters used during the radiation treatment.

In Fig 2, the structure of the data processing chain is illustrated in a flowchart. The goal of

this data analysis methodology is to obtain the shape of the catheters and the spatial

Fig 2. Flowchart of the algorithm employed in the artifact removal step of the data processing chain.

https://doi.org/10.1371/journal.pone.0183608.g002
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coordinates of the dwell positions, where the sensor stays a defined dwell time. In addition,

three fiducial sensors are placed on the patient’s chest to measure the breathing signal. The

sensor, inserted into the implanted catheters, instead measures a superposition of the breath-

ing motion and its movement along the catheter.

Measurement protocol. Sensor tracking with sequential Monte Carlo techniques: In sys-

tem identification problems, state space models with latent state variables are used to estimate

underlying dynamic systems states from noise-corrupted measurements. Bayesian state esti-

mation is achieved by combining such observations with prior knowledge of the physical sys-

tem to sequentially estimate the underlying unobservable system states in a statistically

optimal way. Referring to EMT measurements in HDR-BT, the observations correspond to

sensor dwell positions zðp;rÞm ; p ¼ 1; . . . ; P; r ¼ 1; . . . ;R measured at discrete times tm inside

catheter p during treatment session r. The latent states correspond to the underlying exact spa-

tial positions xðp;rÞm , given some physical model of the sensor motion. To simplify the treatment,

several Markovian approximations are generally applied neglecting any memory effects as well

as cross-dependencies of the variables [21]. The underlying theory of particle filters is shortly

summarized in Appendix 1.

Artifact removal with singular spectrum analysis: To achieve this goal, first of all, the noise

contribution to the fiducial signal and the measurement artifacts in the sensor signals due to

technical malfunction have to be removed. Here we propose to employ Singular Spectrum
Analysis (SSA) [28], [29] to achieve denoising and artifact removal [30], [31] either from the

fiducial or the sensor signals. For the convenience of the reader, a short account of SSA is pre-

sented in Appendix 2.

• Fiducial signal

First of all, an average breathing signal was calculated by averaging over the three fiducial

signals. This signal was not tracked by a particle filter. Consequently, it was very noisy. To

get rid of the noise on this signal, an SSA was applied to the latter. For further computations,

only the first SSA component was considered [32]. In Fig 3, the original mean breathing sig-

nal and the first component of an SSA decomposition is compared.

Fig 3. The measured raw breathing signal is colored in black, and in grey the first component of the

SSA is depickted.

https://doi.org/10.1371/journal.pone.0183608.g003

Automatic analysis of EMT—HDR-BT of breast cancer patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0183608 September 21, 2017 9 / 31

https://doi.org/10.1371/journal.pone.0183608.g003
https://doi.org/10.1371/journal.pone.0183608


• Outlier detection

Despite a particle filter tracking of the sensor signal, the data still contained outliers due to

technical malfunctioning of the EMT measurement apparatus. If, for technical reasons, a

measured value is missing, the software puts zeros as entries of the data records. Employing

particle filter tracking, such anomalous measurements will then lie closer to the regularly

measured points but still will not lie on a smooth line. Therefore, data needs to be prepro-

cessed to remove such outliers. To identify any measurement point as outlier, the following

condition had to be fulfilled: Let x be the signal measured in one spatial direction, then

jx � medianðxÞj > 2 � stdðxÞ

Afterwards, an SSA can be applied to the sensor signal. Instead of taking only the first com-

ponent for further calculation, as in the case of fiducial signals, only the outliers and their

neighboring data entries were replaced by the corresponding entries from the first SSA com-

ponent. In this way information about the stop positions could be preserved. An illustrative

example of an outlier removal is shown in Fig 4.

Artifact removal with an ensemble empirical mode decomposition: After the signal is cor-

rected from noise and outliers, there is still the breathing signal superimposed onto the EMT

sensor signal reflecting its movement inside the catheter. The primary goal of this study is to

automatically remove this movement artifact with the help of an empirical mode decomposition
(EMD) [33], [34] and reconstruct the precise shape of the catheter. An EMD [35] can be

applied to any non-stationary and non-linear time series to extract intrinsic modes which

locally represent pure oscillations with varying amplitude and local frequency. Its noise-assis-

ted ensemble variant EEMD [34] avoids mode mixing and boundary artifacts.

To get rid of the breathing artifact, in the current study, an EEMD is applied to the solenoid

sensor signal to extract its underlying intrinsic modes (IMFs). The EEMD is also applied to the

principal component of the average signal deduced from the fiducial sensors. As EEMD is

known to obey the full reconstruction property, the idea obviously is to reconstruct the signal

Fig 4. The measured raw sensor signal is drawn in black, and a grey line illustrates the signal

resulting after outlier removal.

https://doi.org/10.1371/journal.pone.0183608.g004
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from its components while neglecting the component representing the breathing mode. The

decomposition of the EMT sensor signal was done within an ensemble E where each time a

different noise contribution is added during the sifting process. In this study, the size of the

ensembles was set to E = 10. The results did not change if a larger size was chosen. Note that

the IMFs are sorted naturally by their dominant frequency. Consequently, the highest fre-

quency is in the first IMF, and the last IMF only represents a non-oscillating trend in the time

dependence of the sensor signal. In Fig 5, the original sensor signal and all IMFs resulting

from an EEMD are shown.

As a next step, the IMFs which contain the breathing signal had to be identified. To achieve

this, the EEMD also has been applied to the principal component of the breathing signal mea-

sured with the fiducial sensors. The resulting IMFs are illustrated in Fig 6. If the IMFs from the

two signals are compared with each other visually, one recognizes that IMF c(3) from the

breathing signal looks very similar in frequency content and spatial shape to IMF c(5) from the

sensor signal, as well as IMF c(4) (breathing) and IMF c(6) (sensor). To achieve an automatic

assignment of corresponding intrinsic modes from both signals, in this study the identification

of the IMF which is similar to the breathing signal is performed employing different similarity

measures. Afterwards, the sensor signal was reconstructed while neglecting the contaminating

IMFs. In Fig 7 one catheter is shown, where the breathing motion was removed along each

spatial direction separately.

A crucial point during reconstruction, however, is not to loose components containing

information about the sensor dwell positions. Thus, a Fast Fourier Transformation (FFT) is

applied to each IMF from the sensor signal to identify the IMFs containing information about

the dwell positions. These IMFs cannot be neglected during reconstruction. Having achieved

this, the sensor signal is reconstructed ignoring those IMFs identified to contain contamina-

tions from artifact signals. This procedure can be repeated several times. Clearly, the methods

work very efficiently, and the breathing signal could be suppressed completely. Appendix 3

summarizes the theory of EEMD for the convenience of the reader.

Similarity measures: In the course of this study, sensor signals, measured with an EMT

device to follow their path inside any of the catheters implanted in the female breast, are

Fig 5. Shown is the spatial sensor position along one coordinate axis versus discrete time n � Ts with

Ts the sampling interval and n = 1, . . ., T. In the left corner of the top row, the original signal is exposed. The

other boxes show the IMFs resulting from an EEMD. On the x-axis of each graph, the number of samples, and

on the y-axis, the signal amplitude is plotted. The first IMF comes aside of the original signal, and subsequent

IMFs follow in each row from left two right.

https://doi.org/10.1371/journal.pone.0183608.g005
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decomposed employing an EEMD (see [19] for details). Much the same happens to the signals

collected from fiducial sensors which mainly monitor any breathing motion of the patients

during the EMT measurements. The goal of this procedure is to identify those intrinsic modes

of the sensor signals which most closely resemble the breathing mode artifact. During signal

reconstruction, these artifacts then will be removed from the superposition of the intrinsic

modes to reconstruct an artifact-free sensor signal. To achieve this goal, proper similarity mea-

sures [36], [37] between time series need to be explored. Hence in Appendix 4 we will discuss

Fig 6. Shown is the spatial fiducial sensor position along one coordinate axis versus discrete time. In the left corner of the top

row, the original signal is exposed. The other boxes show the IMFs resulting from an EEMD. On the x-axis of each graph, the number of

samples, and on the y-axis, the signal amplitude is plotted. The first IMF comes aside of the original signal, and subsequent IMFs follow

in each row from left two right.

https://doi.org/10.1371/journal.pone.0183608.g006

Fig 7. The originally measured EMT signal from one catheter (black), and its reconstructed

counterpart (grey) are shown to illustrate the efficiency of the removal of the breathing mode

contamination.

https://doi.org/10.1371/journal.pone.0183608.g007
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several alternative measures of similarity that have been applied to the decomposed sensor

signals.

Multi-dimensional scaling: In this study, MDS finally serves to jointly map positional infor-

mation contained in the CT—image as well as in the EMT measurements, after these data is

pre-processed in the way sketched above. First, an X-ray CT—image is taken after surgical

implantation of the catheters into the female breast, from which a treatment plan is established

and dwell positions and dwell times are defined. Subsequently, sensor dwell position measure-

ments are performed during the EMT sessions, which extend over a whole week mostly.

Because of changing relative positions of the female patient in the magnetic field of the field

generator of the EMT system, each sensor tracking measurement refers to a different coordi-

nate system. MDS is a shift-invariant technique which only relies on distance information. It

estimates a common principal coordinate system which best explains all observed distances.

Given such a reference coordinate system, any observed deviations from the treatment plan of

the various sensor dwell positions in the different catheters can be identified, quantified and

conveniently visualized. The basic theory behind MDS is summarized in Appendix 5 (see [15]

for further details).

Accuracy: After the breathing compensation, the spatial distribution of the measured dwell

points reflects the shape of the catheters. If the sensor stopped at a dwell position for a pre-

scribed dwell time, several sampled sensor positions happen to occur at the same spatial loca-

tion. For further computations it is sufficient keeping only one value per stop position. For

each measured point, the related command from the afterloader, if the sensor either stopped

or moved in or out, is known by the recording system as well as the number of the dwell posi-

tion. Consequently, the stop positions can be calculated by averaging over the corresponding

point clouds belonging to each stop-command. Assume that Ns times a dwell position was

measured by the EMT system at a stop position. For each dwell position, its three-dimensional

coordinates, referred to the EMT-coordinate system, were collected as components of a col-

umn vector xn = (x1n, . . ., xNn)T, where N = 3, n = 1, . . ., Ns. The dwell positions from the treat-

ment plan, according to the CT-coordinate system, can also be summarized in corresponding

column vectors. To compare the two data sets, referred to different coordinate systems, a

multi-dimensional scaling (MDS) approach was used as is explained in detail in [15]. The MDS

maps the two data sets onto a common principal component system, where one can calculate

the relative deviations from the same dwell point in the two data sets. The values of these devia-

tions were used to characterize the precision of the breathing mode compensation. Especially,

the values calculated from the phantom data were important for the evaluation, because there

no change of catheter shape due to tissue swelling or patient movement could occur.

Results and discussion

Phantom data

The preparatory measurements collected EMT sensor data recorded in a phantom fixed to a

male chest. The sensors measured a superposition of the movement along the catheter and the

breathing motion. EMT measurements were performed according to the following protocol:

• In the first measurement, the male proband tried to achieve a high breathing amplitude by

chest breathing.

• In the second experiment, he was breathing calmly via its belly.

• In the last experiment, he was breathing while constantly speaking.
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The sensor was moved according to the treatment plan, which was defined based on the X-

ray CT images acquired while the phantom was fixed on the CT-table. Between the CT and the

EMT-measurements, the phantom was removed from the CT-table and placed on the chest of

the male proband. Therefore, some displacements could have been arisen, because of the soft

material of the prosthesis. However, we carefully avoided exerting any strain onto the phan-

tom, hence we never could observe any displacement during the EMT measurements.

The aim of this work was to remove patient movement-related signal components while

precisely reconstructing the shape of the catheters from EMT measurements alone. The sensor

signal as well as the breathing signal, which was measured separately on the patient’s chest via

fiducials, could be decomposed by applying an EEMD. Afterwards the signal has been recon-

structed by adding up all IMFs which did not contain information about the breathing signal.

The human eye is very well suited to grasp similarities between two signals. Therefore, as an

additional cross-check, the algorithm was applied again to all datasets, but, instead of taking a

similarity measure, an experienced data analyst decided which IMF should be deleted. The

goal of this visual inspection was to not delete any ‘stop’-information and to get rid of breath-

ing artifacts. This kind of analysis created kind of a ground truth against which the perfor-

mance of the fully automatic algorithm has to be tested.

To have an accuracy measure, the resulting dwell positions were compared with the dwell

positions defined in the treatment plan. This could be achieved by an algorithm based on

MDS (see Appendix 5 and references given therein). Thus, for each pair of dwell positions, a

deviation value could be assigned, and, subsequently, an average over all deviations has been

calculated. In Fig 8, a reconstructed dataset is illustrated including the corresponding colorbar.

The breathing mode was removed automatically from all three data sets obtained with the

phantom. Next, a graph showing the relation between the absolute deviations and the related

dwell positions has been constructed and is presented in Fig 9, displaying the results obtained

for three different measurements. The vertical lines mark separate catheters, hence show

which dwell positions belong to each catheter. The graph corroborates that only small differ-

ences between the three reconstructed data have been observed. The dissimilarities are in the

range of the measurement uncertainty from the measurement system. The displacements

between the CT and the EMT-measurements, on average, amounted to no more than 2.3 mm.

The fact that the mean displacement values from the phantom differed from zero is because,

• on the one hand, measurement uncertainties and a high variance in the catheter reconstruc-

tion in the treatment plan exist, and,

• on the other hand, the flexible phantom was removed from the CT-table and mounted onto

the male chest and fixed there, to be able to include a realistic breathing motion artifact in

the EMT measurements.

Both facts contributed to a systematic but very small finite mean displacement in case of the

phantom data.

The reconstructed results from all three different measurements are very similar corrobo-

rating that the algorithm works well, and also that deviations between both data sets can be

quantify consistently.

Patient data

Apart from the preparatory measurements with the breast phantom, EMT sensor data was

recorded inside the catheters which were implanted into the breast of female patients.
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To remove the breathing motion artifacts contaminating the patient data, much as before

the phantom data, the previously described algorithm was applied to the data, and different

similarity measures were applied to identify breathing mode contaminations in the IMFs

deduced from the EMT sensor signal. First, the well-known Pearson correlation coefficient

(PCC) was used to point-wise measure linear similarities. Next, the density—based Kullback-

Leibler divergence (KLD) was employed to account for higher order correlations as well. As a

third similarity measure representing a real metric, the Jensen-Shannon divergence (JSD) as a

smoothed and symmetrized version of the KLD was used. Finally, the data was reconstructed

also while data similarity was judged by a human expert.

Fig 8. Three dimensional dwell positions from the treatment plan (crosses) and the reconstructed

EMT measured dwell positions, colored according to the absolute deviation as given in the colorbar.

https://doi.org/10.1371/journal.pone.0183608.g008

Fig 9. Absolute deviation for each pair of dwell positions (CT-EMT), for four different reconstructed

measurements. The black vertical lines mark the separation between the different catheters.

https://doi.org/10.1371/journal.pone.0183608.g009
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After reconstructing the data in four different ways, the dwell positions were compared

with the dataset provided by the treatment plan. Applying the MDS-method, any mismatch of

each pair of dwell positions could be quantified resulting in a sensitive detection of catheter

displacements and bendings. A nice example is given in Fig 10 which shows EMT measure-

ments of a female patient immediately after the X-ray CT has been taken (left graph) and

hours later when the patient has been moved meanwhile to the EMT treatment room (right

graph). The EMT measurements performed on the CT bench still do nor show any catheter

deviations from the treatment plan. However, the second EMT measurement shows a clear

catheter shift of one of the catheters, while for all others CT and EMT data coincide almost

perfectly. The color coding indicates an average shift of 1.4 [mm] roughly. To summarize, in

Fig 10. Top: Illustration of a perfect reconstruction of the catheter shapes from EMT measurements of a

patient immediately after the CT: 3D dwell positions from the treatment plan (crosses), 3D reconstructed EMT

dwell positions, colored according to their absolute deviations from the treatment plan. Middle: Illustration of a

clear catheter shift revealed by EMT data reconstructed according to the signal processing chain proposed in

this work. The data stem from the same patient after it has been moved to the EMT treatment room. Crosses

signify 3D dwell positions from the treatment plan, while 3D reconstructed EMT dwell positions are drawn as

squares colored according to the absolute deviations of the dwell positions from the treatment plan. Bottom:

Colorbar.

https://doi.org/10.1371/journal.pone.0183608.g010
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Fig 11, absolute dwell position deviations, resulting from four different similarity measures

applied to remove breathing mode artifacts, are plotted against the number of dwell positions.

Again, the vertical lines separate the different catheters. It is gratifying to see that all measured

deviations are almost identical, hence results agree very well between the different methods.

The data reconstructed by the human expert is very similar to the one deduced from the PCC.

All in all, the observed differences between the three automatic methods are smaller than the

measurement uncertainty. In case of the JSD, the results occasionally show strong fluctuations

(for example see catheters number 12 or 13). A closer inspection of these data reveals that the

breathing mode from this patient had a small amplitude, resulting in a low signal-to-noise

ratio (SNR). Consequently, this breathing mode contamination could not be removed suffi-

ciently well and introduced some noise in the reconstructed sensor signals. An example can be

seen in Fig 12, where the same data as shown in Fig 8 was reconstructed with the aid of the

JSD. In the catheters with number 3 or 2 breathing artifacts are still visible.

Fig 11. Absolute deviations for each pair of dwell positions (CT-EMT), are shown for four different

reconstructed measurements. The black vertical lines mark the catheters.

https://doi.org/10.1371/journal.pone.0183608.g011

Fig 12. Three dimensional dwell positions from the treatment plan (crosses) and the reconstructed

EMT measured dwell positions (colored according to the absolute deviation—See Fig 8 for the color

bar). Reconstructed with the Jensen-Shannon divergence.

https://doi.org/10.1371/journal.pone.0183608.g012
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Next, an average over all deviations was determined. All the values are summarized in

Table 2. Only small differences between the three different ways of reconstruction are

observed. The mean deviations for the three phantom measurements are almost identical.

Consequently, between the acquisition of the CT and the measurement on the male chest, a

displacement of roughly 2.3 mm occurred. It is especially noteworthy that values resulting

from the Jensen-Shannon divergence do not deviate much from the results of other similarity

measures, although by employing the JSD, the breathing mode artifact could not always be

removed completely. This is because the breathing mode amplitude is in most patients small

compared to the dissimilarities which happen. Only for patient 1, the mean deviation is larger

when determined using the JSD than when using other similarity measures.

In summary, the automatic removal of breathing artifacts worked very well for each dataset.

Most importantly, it did not matter whether the patient was breathing while speaking or

breathing calmly. The only disadvantage, data with breathing mode artifacts from speaking

patients carry with them, is a loss of ‘stop’-information.

Conclusion

High Dose Rate Brachytherapy (HDR-BT) encompasses the irradiation of a tumor bed after

the cancerous tissue has been removed during a surgical intervention (Lumpectomy). During

radiation therapy, a high activity radiation source will be positioned in close proximity to the

tumor bed via catheters which are implanted surgically into the female breast. The spatial posi-

tion of the radiation source inside these catheters is determined via an electromagnetic track-

ing (EMT) device. During radiation treatment, the source is moved inside the catheters while

stopping at pre-defined dwell positions for predefined dwell times. The latter data are estab-

lished, relative to the patient’s anatomy, from an initial X-ray computed tomography (CT)

image by a medical physicist. During the radiation treatment sessions, which are scheduled

during one week roughly, catheter displacements occur due to patient movements, breathing

etc.. Assuring a proper radiation treatment in accord with the treatment plan, source positions

need to be ascertained each time, a treatment session is scheduled. Such control measurements

are performed using solenoid sensors instead of radiation sources whose movement inside the

catheters follows the treatment plan and whose spatial positions are determined with an elec-

tromagnetic tracking (EMT) device. The current study develops an automatic analysis tool of

such EMT data sets, recorded with a solenoid sensor, to either corroborate concordance of the

source movement with the treatment plan or precisely quantify a spatial displacement that

might have been occurred. The tool combines machine learning techniques such as

• a particle filter (PF) to precisely track the dwell positions of the solenoid sensor inside the

catheters implanted in a female breast,

• a singular spectrum analysis (SSA) as a proper technique for removing high amplitude arti-

facts such as resulting from measurement device malfunctioning,

Table 2. Collection of all mean deviations, measured in mm, for all datasets as obtained with four different similarity measures.

pha 1 pha 2 pha 3 pat 1 pat 2 pat 3 pat 4

Human 2.44 2.31 2.01 7.30 4.31 10.74 12.32

PCC 2.51 2.26 1.91 7.17 4.41 10.73 11.98

KLD 2.56 2.33 1.96 7.21 4.33 10.60 12.03

JSD 2.45 2.27 2.01 7.57 4.41 10.80 11.87

https://doi.org/10.1371/journal.pone.0183608.t002
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• an ensemble empirical mode decomposition (EEMD) to identify EMT signal components

related to movement artifacts, especially breathing mode contributions even if the latter are

highly erratic due to constantly speaking probands,

• linear and non-linear similarity measures such as Pearson correlation, Kullback—Leibler

divergence and Jensen Shannon divergence to identify breathing mode contributions within

EMT sensor signal recordings,

• a multi-dimensional scaling (MDS) to match positional measurements referring to different

coordinate systems.

We convincingly demonstrate that the presented analysis tool allows to precisely detect and

quantify any mismatch between the treatment plan and actual EMT measurements. We dem-

onstrate that movement artifacts as well as technical signal distortions can be removed auto-

matically and reliably, resulting in artifact-free reconstructed signals. This is a prerequisite for

a highly accurate determination of any deviations of dwell positions from the treatment plan.

Thus the tool offers a reliable control of the treatment plan and precisely quantifies any devia-

tions from the latter before any treatment session is started.

Appendix

Appendix 1—Particle filter

The Particle Filter [38], [39] approximates the posterior probability density function

p(x0:m+1|z1:m) by a set of random samples, called particles, with associated weights according to

pðx0:mþ1jz1:mÞ �
XN

n¼1

wn
mþ1

dðx0:mþ1 � xn
0:mþ1
Þ ð1Þ

where wn
mþ1

represents the weight of particle n having performed the particle trajectory xn
0:mþ1

.

Often only the marginal posterior density, called filtering density, is of interest and is given by

pðxmþ1jzmÞ �
XN

n¼1

wn
mþ1

dðxmþ1 � xn
mþ1
Þ ð2Þ

The application of a particle filter thus needs as input a state evolution model
xmþ1 ¼ fðxm; �

ðxÞ
m Þ and an observation model zmþ1 ¼ hðxmþ1; �

ðzÞ
mþ1Þ. Here �ðxÞm and �

ðzÞ
mþ1 denote

the state noise and the observation, i. e. measurement, noise, respectively. The model functions

are given by (see [19] for details)

fðl; tÞ ¼ RALþ sþ
a
2
þ
X7

i¼1

bi cos oi � tð Þ þ ci sin oi � tð Þð Þ þ �ðxÞ ð3Þ

hðl; x; y; z; tÞ ¼ θ þ �ðzÞθ ¼ ðlm; xm; ym; zm; tmÞ
T

ð4Þ

Employing a sampling-importance-resampling scheme and sampling from the state transi-

tion probability density results in

• a particle update scheme, where the particles are drawn from the state transition probability

density according to

pðxn
mþ1
jzmÞ ¼ wn

mpðx
n
mþ1
jxn

mÞ ð5Þ

xn � pðxmþ1jxn
mÞ ð6Þ
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• a weight update, where the weights are taken from the observation data likelihood according

to

wn
mþ1
¼ wn

mpðzmþ1jxn
mþ1
Þ ð7Þ

wn
mþ1
/ pðzmþ1jxn

mþ1
Þ ð8Þ

and the weight are finally normalized to sum to one.

Sampling from the data likelihood needs to be stabilized by resampling where particles with

vanishing weights are replaced by copies of particles with finite weight. The new set of particles

finally yields weights N−1 for each particle which results in the approximate posterior distribu-

tion

p x0:m; z1:mð Þ ¼
XN

n¼1

cn
N

d x0:m � xn
0:m

� �
ð9Þ

Further details are given in [19].

Appendix 2—Singular spectrum analysis

Singular spectrum analysis (SSA) is a well-known signal analysis technique to solve such

diverse problems as, for example, smoothing, detrending and extracting structures in short,

noisy (chaotic) time series. It first appeared in [40], [41], became known more widespread

through the work of [42], [43], but received public interest only after the seminal work of Ghil

[28]. A thorough account of SSA was also provided by [29], while [31] discussed a linear

invariant systems perspective of SSA. A decomposition of the original time series into a sum of

orthogonal components is the aim of SSA. Thus second order correlations of the time series

become decorrelated. Most of these components can be interpreted as trends, structureless

white noise or oscillatory components. Furthermore, any parametric model of the considered

time series has not to be known.

Let x(t) = (x(t1)� � �x(tT))T� xT = (x1� � �xT)T be a real-valued, zero mean time series with

total length T. After selecting an embedding dimension K and a proper segment length L� T
such that T = K + L − 1, we have xk = (xk, . . ., xk+(L−1))

T. Any analysis of such a time series with

SSA requires two steps [44], [31]:

• a decomposition step, which encompasses embedding of the time series into K delayed coor-

dinates combined with an eigendecomposition of a correlation matrix, and

• a reconstruction step, which encompasses anti-diagonal averaging and reverting the

embedding.

Decomposition.

• Embedding

In general, time series represent uni-variate signals, while any decomposition technique

requires multi-variate signals. Hence, a standard procedure in time series analysis is embed-

ding the latter in its delayed coordinates. For that purpose, the uni-variate and zero mean

time series segment xL = (x1� � �xL)T is transformed into a multi-variate set of delayed time

series x1� � �xK with column vectors xk ¼ ðxk � � � xkþL� 1Þ
T
; k ¼ 1; � � � ;K 2 RL. The transfor-

mation, thus, is effected by an embedding of the original time series into delayed coordi-

nates. Note that each time series has L entries, but the embedding space has dimension
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K< L� T, and it is this latter space on which all the discussion to follow will concentrate.

The result of this embedding step is an (L × K)—dimensional trajectory matrix given by [44]

X ¼ ½x1 � � � xK � ¼

x1 x2 x3 � � � xK

x2 x3 x4 � � � xKþ1

x3 x4 x5 � � � xKþ2

..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
.

xL xLþ1 xLþ2 � � � xLþK� 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð10Þ

where the time series segment of length L� T and its delayed versions form the columns of

this trajectory matrix. These column vectors xk are sometimes called L—lagged vectors. Note

that by shifting the time series components xl+k, k = 1, . . ., K, the elements of this trajectory

matrix along the anti-diagonals are equal, consequently X represents a Hankel matrix. For

an alternative representation, where the time series segment of length L and its K delayed

versions form the rows of the corresponding trajectory matrix, the diagonal elements

become equal, thus yielding a Toeplitz matrix instead [31]. Note also that generally the seg-

ment length is larger than the embedding dimension, i. e. L> K holds in most SSA applica-

tions—a setting that we will assume to apply throughout this study.

• Eigendecomposition

Considering the matrix dot product XT X, we obtain a K × K—dimensional, symmetric and

real-valued correlation matrix R which possesses an eigendecomposition according to

ðXTXÞvk ¼ Rvk ¼ lkvk

where λ1� . . .� λK denote the non-zero, ordered eigenvalues and vk the corresponding

eigenvectors. These eigenvectors (v1� � �vK) are orthogonal, i. e. vTk vk0 ¼ 0 for k 6¼ k0 and nor-

malized to unity ||vk|| = 1, where ||.|| denotes the L2—norm. Note that this ordered set of

eigenvalues {λk, k = 1, . . ., K} represents the eigenspectrum of the trajectory matrix X.

Note that two possible representations of the matrix XT X exist. One possible representation

puts emphasis onto correlations along the time series segment with sample size L. We have

XTX ¼

ðxðLÞÞ
T
1

..

.

ðxðLÞÞ
T
K

2

6
6
6
4

3

7
7
7
5
� ½x

ðLÞ
1 � � �x

ðLÞ
K � ¼ ½ðx

ðLÞ
k Þ

T
x
ðLÞ
k0 �

K
k;k0¼1

ð11Þ
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In detail, this reads

XTX ¼

x1 x2 x3 � � � � � � xL

x2 x3 x4 � � � � � � xLþ1

x3 x4 x5 � � � � � � xLþ2

..

. ..
. ..

. ..
.

xK xKþ1 xKþ2 � � � � � � xLþK� 1

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

�

x1 x2 x3 � � � xK

x2 x3 x4 � � � xKþ1

x3 x4 x5 � � � xKþ2

..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
.

xL xLþ1 xLþ2 � � � xLþK� 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Hence, the resulting matrix measures correlations along the L—dimensional time series. To

see this consider the auto-correlations of the time series segment of length L, providing an esti-

mate of the auto-correlation function Rkk0 with a segment of size L< T, (k, k0 = 1, . . ., K)

RðLÞkk0 ¼ ðx
ðLÞ
k Þ

TxðLÞk0 ¼ ðx
ðLÞ
k � � � � � � x

ðLÞ
kþL� 1Þ

xðLÞk0

..

.

..

.

xðLÞk0þL� 1

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

¼
XL

l¼1

xl� 1þkxl� 1þk0

Here the upper index (L) indicates the segment size.

An alternative representation of the matrix XT X, formed with the trajectory matrix X given

above, is the following

XTX ¼ ½x
ðKÞ
1 � � �x

ðKÞ
L � �

ðxðKÞÞ
T
1

..

.

ðxðKÞÞ
T
L

2

6
6
6
4

3

7
7
7
5
¼
XL

l¼1

½x
ðKÞ
l ðx

ðKÞ
l Þ

T
� ð12Þ

where the upper index (K) again denotes the segment size. Each segment now represents an

element of the original time series and its K delayed versions. In detail, this representation

reads

XTX ¼

x1

x2

x3

..

.

xK

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

� x1 x2 x3 � � � xKð Þ þ � � � þ

xL

xLþ1

xLþ2

..

.

xLþK� 1

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

� xL xLþ1 xLþ2 � � � xLþK� 1ð Þ

Thus the matrix XT X is written as a sum of rank 1 outer product matrices generated by data

vectors living in the embedding space with dimension K. As we have seen above, it is in this

space where we have to consider the eigenvalue decomposition of the matrix XT X.
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Having obtained the eigenvectors V, we can consider the projections of the data onto them

yielding

zk ¼ Xvk

Reconstruction. Next we can reconstruct the data by forming the outer product compo-

nent matrices

Xk ¼ zkvTk

• Dimension reduction

If dimension reduction is intended, the best approximation to the trajectory matrix X is pro-

vided by the matrix
PR

k¼1 Xk with R< K. The minimum is represented by ||X − X(R)||,

where jjXk jj
2
¼ XT

k Xk ¼ lk and jjXjj2 ¼
PK

k¼1 lk for k = 1, . . ., K.

Often the number of relevant eigenvalues λ1, . . ., λR and related component matrices Xk can

be estimated from a scree—plot. There, a knee or bend in a graph λk vs k indicates the num-

ber of intrinsic harmonics versus noise or aperiodic signal components [45]. Signal recon-

struction can then be pursued neglecting noise contributions and even trends and other

aperiodic signal components. The eigenvalue ratio
PR

k¼1 lk=
PK

k¼1 lk quantifies the approx-

imation of the trajectory matrix by the matrices of rank R.

• Anti-diagonal averaging

Note that after neglecting non-harmonic signal components, the resulting matrix X(R) does

not correspond to a trajectory matrix anymore. To reconstitute a trajectory matrix, anti-

diagonal averaging is invoked. This can be achieved simply by averaging over all elements

along every anti-diagonal of the component matrices ½Xk �
R
k¼1. Replacing each element of

every anti-diagonal by just its average renders the reconstructed matrix X̂ðRÞ a Hankel matrix

again.

After having reconstituted a Hankel matrix, an approximation to the original time series can

be obtained by concatenating from the reconstructed trajectory matrix its first row and its

last column.

SSA will be used in this study to remove large amplitude artifacts from sensor signals,

both fiducial and solenoid, measured with EMT. Typically, such artifacts dominate the

signal decomposition and correspond to the principal mode related with the largest

eigenvalue.

Appendix 3—Ensemble empirical mode decomposition and Fourier

spectrum

Ensemble empirical mode decomposition. Natural time series often happen to be non-

stationary and non-linear. Exploratory data analysis techniques like principal (PCA) or inde-

pendent component analysis (ICA), non-negative matrix (NMF) or tensor factorization (NTF)

have limitations to analyze such data as they assume at least wide-sense stationarity. However,

in 1998 N. E. Huang et al. [33] invented an empirical mode decomposition (EMD) which rep-

resents any time series as a superposition of components with well defined instantaneous fre-

quencies. They adaptively and locally decompose any non-stationary signal in a sum of

intrinsic modes (IMFs), which represent zero-mean, amplitude- and frequency-modulated
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components, plus a non-oscillating trend according to

rðp;rÞ
�
ðtÞ ¼ rðp;rÞðtÞ þ �nðtÞ ¼

XJ

j¼1

cðjÞn ðtÞ; n 2 IN ð13Þ

cðjÞðtÞ ¼ Re ajðtÞ exp i
Z t

� 1

ojðt
0Þdt0

� �� �

ð14Þ

Here r(p, r)(t) represents one component of the tracked sensor signal, �(t) denotes the random

noise deliberately added to the signal at any iteration, c(j)(t) represents the ensemble-averaged

j-th intrinsic component, c(J)(t) the non-oscillating trend, aj(t) the time-varying amplitude and

ωj(t) the instantaneous frequency. Note that EMD is not based on any a priori defined basis

system and that it obeys the perfect reconstruction property. Thus EMD lacks the scaling and

permutation indeterminacy familiar from exploratory matrix decomposition techniques. An

informative illustration of the main steps of an EEMD algorithm can be found in [46], and

[47] provides a toolbox for a convenient application of various EEMD variants to time series

analysis problems.

Fourier Transformation (FT) and Fourier spectrum (FS). The spatial position of the

EMT sensor is measured while it is moved according to a treatment plan. Consequently, the

sensor stopped at all dwell positions and remained there in accord with the dwell time defini-

tions. The latter lasted from 0.1 s to 5 s. These dwell positions and dwell times form a very

important information which cannot be lost during the reconstruction of the catheter track.

To ensure this, a Fast Fourier Transformation (FFT) is applied to each IMF

cðjÞðn � TsÞ ¼ ðcðjÞð0Þ; . . . ; cðjÞððT � 1Þ � TsÞÞ

where T � 1
s Hz = 40 Hz denotes the sampling rate and n = 0, . . ., T − 1 denotes the number of

samples in each segment. This yields

CðjÞðr � osÞ ¼
XT� 1

n¼0

cðjÞðnÞ exp � iros
nTs

T

� �

where ωs = 2π/Ts is the sampling frequency which, according to the Nyquist theorem has to

obey the relation ωs� 2ωmax. The absolute values |C(j)(r)| of the Fourier spectral amplitudes of

the high and low frequency modes extracted from the EMT sensor signal (see Fig 5) are illus-

trated in Fig A in S1 File. The Fourier spectra of the intrinsic modes c(1) and c(2) resemble

broadband signals with a peak at rather high frequencies, whereas the Fourier spectra of the

low frequency IMFs resemble narrow-band signals whose bandwidth shrinks with decreasing

dominant mode frequency. Note that the stop-and-go mode of movement of the sensor inside

a catheter results in abrupt displacements which entails high frequency modes in each fre-

quency resolved decomposition. Consequently, the highest frequency IMFs contain informa-

tion about the dwell positions. Hence, they should not be neglected during the reconstruction

of the signal. Digging out, which IMF provides information about the dwell times and dwell

positions, the area under a Fourier spectrum is calculated in the following way:

A jCðjÞk j
� �

¼
XT� 1

r¼0

jCðjÞðr � osÞj

T � Ts
ð15Þ

If the area is larger than A> Ath = 0.04, where the threshold Ath has been determined

empirically, then IMF c(j) is included in the reconstruction of the sensor signal. Fig 7 clearly

demonstrates that information about dwell positions is contained in the resulting signal. In Fig
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B in S1 File, two reconstructed catheters and the measured EMT-signal (blue stars) can be

seen. The reconstructed trace illustrated with black stars allows the stop positions to be identi-

fied, whereas the reconstructed trace symbolized by the green dots lacks information about the

stop positions, and a continuous line through the measurements is seen.

Appendix 4—Similarity measures

Linear correlations. An often used similarity measure between two data sets considers a

pointwise, linear correlation between the variables. The underlying statistic of the stochastic

variables follow a normal distribution. Though not always encountered in practice, it is often a

reasonable first order approximation to estimate the similarity between the two stochastic

processes.

Pearson correlation: One of the most popular measures of correlation between variables is

the Pearson correlation coefficient. It was first described by Karl Pearson in [48]. Let

x = (x1� � �xL)T and y = (y1� � �yL)T be two time series segments with size L� T, represented as

vectors in an L-dimensional space. The definition of the Pearson correlation coefficient c is as

follows:

PCCðx;yÞ ¼
L
XL

l¼1
xlyl �

XL

l¼1
xl

� � XL

l¼1
yl

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L
XL

l¼1
x2
l �

XL

l¼1
xl

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L
XL

l¼1
y2
l �

XL

l¼1
yl

� �2
r ð16Þ

The Pearson correlation coefficient can vary between −1 and 1 [49], [50] and helps to identify

the latent intrinsic mode of the sensor signals most similar to the breathing mode artifact.

Non-linear correlations. If linear correlations do not apply, similarity between two sto-

chastic processes should be based on metrics defined by distributions of the variables in the

data sets. The basis of such metrics is laied by the information-theoretic entropy, also known

as Shannon entropy [51], [52]. A related measure based on it is the mutual information and

several divergences [53], which are shortly summarized next.

• Shannon entropy and Mutual information

In information theory, entropy measures the average surprise that comes along with an

event xl with occurrence probability p(xl). The expected information, the event carries with

it, is known as Shannon entropy and is given by

HðXÞ ¼ HðpðxlÞÞ ¼
X

l

pðxlÞ log
1

pðxlÞ

� �

¼ �
X

l
pðxlÞ log ðpðxlÞÞ

where X represents a stochastic variable whose realizations are denoted by xT = (x1, x2, . . .,

xL). Information entropy, thus, can be interpreted as a measure of uncertainty, i. e. the

amount of information an event carries with when taking place, and the dispersion of the

probabilities with which the events take place.

Related to Shannon entropy is mutual information (MI) between two signals, say X * p(x)

and Y * p(y), and is defined as

IðY;XÞ ¼ IðpðyÞ; pðxÞÞ ¼ HðYÞ � HðYjXÞ ¼ HðXÞ � HðXjYÞ ¼ IðX;YÞ

where X and Y denote multi-variate stochastic variables with related joint probability densi-

ties p(x) and q(y), respectively. For example, X denotes an intrinsic mode of an EMT sensor

signal and Y denotes an intrinsic mode of a fiducial sensor signal. MI measures the amount

of information, an EMT sensor mode carries about a fiducial sensor mode [54, 55]. In multi-

channel biomedical systems, MI is most frequently used to measure the amount of
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independence between both modes. Hence, the most convenient property of mutual infor-

mation is its disappearance if and only if X and Y are statistically independent. Or, vice versa

and relevant for our considerations, the larger I(X, Y) is, the more similar both signals are, i.

e. the less uncertain we are about one signal knowing the other. Contrary to Pearson correla-

tion (PC), Shannon entropy and MI both rely on distributions rather than pointwise com-

parisons, where non-linear correlations are contained in the distributions. Note that in case

of signals having Gaussian distributions, both similarity measures, i. e. PC and MI, become

equivalent. However, as MI has a lower bound only, corresponding to statistical indepen-

dence of both signals, it is less well suited to directly measure similarity between signals.

• Kullback—Leibler divergence

The Kullback—Leibler divergence (KLD) [56], also called relative Entropy, is a non-symmet-

ric measure of similarity between two distributions P and Q

DKLðX k YÞ � DKLðpðxÞ k qðyÞÞ ¼
XL

l¼1

pðx̂ lÞ ln
pðx̂ lÞ
qðŷ lÞ

� �

where the stochastic variables need to be normalized according to

ŷ l ¼
yl

PL
l¼1
yl

and x̂ l ¼
xl

PL
l¼1
xl

Occasionally it is said to measure the distance between two distributions but this is unfortu-

nate as KLD does not fulfill the triangle inequality. However, it can be understood as the loss

of information if p(x) is modeled by means of q(y). If both are equal, there is no loss and the

KLD becomes zero. Thus it offers a very convenient measure of similarity, though not really

corresponding to a valid distance metric, and we have

DKLðP k QÞ � 0 and DKLðP k QÞ ¼ 0 iff pðxÞ ¼ qðyÞ ð17Þ

Alternatively, the KLD tells one the amount of information obtained per observation of X
that allows one to discriminate between the two distributions p(x) and q(y). In this study,

p(x) might represent an intrinsic mode from the EMT sensor signal, and q(y) might repre-

sent an intrinsic mode from the fiducial sensor signal. The goal is to identify the intrinsic

mode from the EMT sensor signal which most closely resembles the breathing mode from

the fiducial sensor signal. Hence, in practice, p(x) and q(y) are derived from observations

and sample counting. That is, p(x) and q(y) are probability distributions derived from fre-

quency distributions. The derivation of a probability distribution from an observed fre-

quency distribution is called smoothing. If one of the binned distributions contains zeros as

entries, one can replace them by a small quantity �� 10−3. Related with this, an important

assumption is that p(xl) = 0, q(yl) = 0 which furthermore implies that in this case

pðxlÞ ln pðxlÞ
qðylÞ

� �
¼ 0. A general convention is that 0ln(0/q(y)) = 0 for any q(y), and p(x)ln(p(x)/

0 =1 if p(x)>0.

Considering the relation of relative entropy DKL to mutual information I(X, Y), we have for

two stochastic variables X and Y

IðpðxÞ; pðyÞÞ ¼ DKLðpðx; yÞ k pðxÞpðyÞÞ

¼
XL

l;l0¼1

pðxl; yl0 Þ ln
pðxl; yl0 Þ
pðxlÞpðyl0 Þ

� �
ð18Þ
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• Jensen—Shannon divergence

The JensenShannon divergence (JSD) [57], [58] is another similarity measure between two

probability distributions. It is based on the KullbackLeibler divergence (KLD) but it is sym-

metric and its value is always finite. Indeed, the JSD is a symmetrized and smoothed version

of the KLD. Furthermore, the square root of the JensenShannon divergence is a metric often

referred to as Jensen-Shannon distance dJS ¼
ffiffiffiffiffiffiffiffi
JSD
p

.

Given two realizations p(x), q(y) of discrete probability distributions P, Q, the JSD(P k Q) is

defined as

JSDðP k QÞ ¼
1

2
DKL P k

P þ Q
2

� �

þ
1

2
DKL Q k

P þ Q
2

� �

ð19Þ

¼ H
XN

n¼1

wnPn

 !

�
XN

n¼1

wnHðPnÞ ð20Þ

where, for the second equality, N = 2, P� P1, Q� P2 is used and w1 = w2 = 1/2. This latter

relation, obviously, can be trivially generalized to more than two distributions. This defini-

tion shows that the JSD is a symmetrized version of two KLDs measuring the similarity of

each of the two considered distributions with their corresponding mixture distribution. The

JSD obeys the following bounds:

0 � JSDðP;QÞ � ln ð2Þ if log e is used

0 � JSDðP;QÞ � 1 if log 2 is used

The Jensen—Shannon divergence is intimately related to mutual information. To see that

consider a superposition of the two distributions X = (P + Q)/2, where p(x) represents the

distribution related with an intrinsic mode of the EMT sensor signal and q(y) represents a

distribution related with an intrinsic mode of the fiducial sensor signal. Consider next an

indicator variable Z|z 2 (0, 1). Let the indicator variable Z be used to switch between the two

distributions, i. e. choose p(x) if z = 0 and q(x) if z = 1. Then we obtain for the mutual infor-

mation I(X, Z) the following relation

0 � IðX;ZÞ ¼ HðXÞ � HðXjZÞ ¼ JSDðP;QÞ � 1 ð21Þ

Hence, if both distributions become identical, P = Q, then the conditional information

entropy H(X|Z) becomes independent of the indicator variable Z and the mutual informa-

tion I(X, Z) becomes zero. This implies that also the JSD and its related JS distance become

zero.

Appendix 5—Multi-dimensional scaling

In HDR-BT dwell positions of a radiation source inside catheters implanted into a female

breast are defined by a treatment plan which is deduced from an initial X-ray CT image. As a

radiation treatment is repeated during a couple of subsequent days, dwell positions need to be

checked by a EMT measurement inserting a solenoid sensor into the catheters before the radi-

ation treatment. The spatial coordinates of the sensor at the various dwell positions in the mag-

netic field of a field generator are recorded. However, such coordinates refer to a different

coordinate system in each session. As we proposed recently, such difficulties can be alleviated

by recourse to multi-dimensional scaling techniques which only rely on distances (see [15] for

details).
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Denote by XEMT
p;r the set of dwell position coordinates registered in catheter p during session

r and by XCT
0

the related set of coordinates of the original treatment plan. Define a matrix of

dissimilarities according to

ðDÞmm0 ¼ �
1

2
d2ðxm;xm0 Þ ¼ �

1

2
ðxm � xm0 Þ

T
ðxm � xm0 Þ

¼ �
1

2
ðkmm þ km0m0 � 2kmm0 Þ

ð22Þ

Double-centering matrix D(c) renders it identical to a centered kernel matrix K(c), whose

eigendecomposition provides an eigenvector system V, which allows for a spectral representa-

tion of the dwell positions in an axis system spanned by the eigenvectors of the related centered

covariance matrix according to X̂ ¼ Λ1=2VT . The technique allows to precisely quantify any

deviations of a dwell position of the sensor in any of the catheters during the session under

consideration.
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Data curation: Th. I. Götz, V. Strnad, Ch. Bert.

Formal analysis: Th. I. Götz, A. M. Tomé, E. W. Lang.
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Writing – original draft: Th. I. Götz.
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