
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simulation of multiple ion channel block provides
improved early prediction of compounds’ clinical
torsadogenic risk
Gary R. Mirams1*, Yi Cui2, Anna Sher1, Martin Fink1, Jonathan Cooper3,
Bronagh M. Heath4, Nick C. McMahon2, David J. Gavaghan3, and Denis Noble1

1Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK; 2Safety Pharmacology, Safety Assessment,
GlaxoSmithKline, Ware SG12 0DP, UK; 3Computing Laboratory, University of Oxford, Parks Road, Oxford OX1 3QD, UK; and 4Global Clinical Safety and Pharmacovigilance,
GlaxoSmithKline, Uxbridge UB11 1BT, UK

Received 4 January 2011; revised 31 January 2011; accepted 3 February 2011; online publish-ahead-of-print 7 February 2011

Time for primary review: 19 days

Aims The level of inhibition of the human Ether-à-go-go-related gene (hERG) channel is one of the earliest preclinical
markers used to predict the risk of a compound causing Torsade-de-Pointes (TdP) arrhythmias. While avoiding
the use of drugs with maximum therapeutic concentrations within 30-fold of their hERG inhibitory concentration
50% (IC50) values has been suggested, there are drugs that are exceptions to this rule: hERG inhibitors that do
not cause TdP, and drugs that can cause TdP but are not strong hERG inhibitors. In this study, we investigate
whether a simulated evaluation of multi-channel effects could be used to improve this early prediction of TdP risk.

Methods
and results

We collected multiple ion channel data (hERG, Na, L-type Ca) on 31 drugs associated with varied risks of TdP. To
integrate the information on multi-channel block, we have performed simulations with a variety of mathematical
models of cardiac cells (for rabbit, dog, and human ventricular myocyte models). Drug action is modelled using
IC50 values, and therapeutic drug concentrations to calculate the proportion of blocked channels and the channel
conductances are modified accordingly. Various pacing protocols are simulated, and classification analysis is per-
formed to evaluate the predictive power of the models for TdP risk. We find that simulation of action potential dur-
ation prolongation, at therapeutic concentrations, provides improved prediction of the TdP risk associated with a
compound, above that provided by existing markers.

Conclusion The suggested calculations improve the reliability of early cardiac safety assessments, beyond those based solely on a
hERG block effect.
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1. Introduction
Many drug compounds have a tendency to associate with, and to
block, cardiac ion channels; this can lead to abnormal propagation
of electrical action potentials (APs) through the heart tissue. This
action is ‘designed in’ to anti-arrhythmic drugs, but is often an
unwanted side effect of non-cardiac drugs. In the complex geometry
of the heart, this change in electrical propagation can cause

degeneration of the normal heart rhythm into life-threatening
Torsade-de-Pointes (TdP) arrhythmia.

TdP can arise months into treatment,1 and only in a very small
subset of the patients receiving a drug2 (individuals are predisposed
to TdP dependent on a large number of factors, such as: the presence
of congenital long QT syndromes, heart failure, bradycardia, electro-
lyte imbalance, gender, hepatic or renal impairment, impaired metab-
olism, and co-administration of certain drugs3). It is therefore difficult
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to predict preclinically, or assess during clinical trials on healthy indi-
viduals, which drugs will have the potential to cause TdP and which
are safe. As such, a number of drugs have been withdrawn from the
market due to an unacceptable TdP risk (for example, astemizole,
cisapride, terfenadine, and thioridazine were withdrawn between
1997 and 2002).4– 7

The rapid delayed rectifying potassium channel [IKr, with a human
isoform known as Ether-à-go-go-related gene (hERG)] is both impor-
tant in controlling repolarization of the ventricular myocyte AP, and
particularly susceptible to block by many different compounds. IKr

blockade leads to a lengthening of the AP duration (APD) and has
long been associated with an increased TdP risk.8

Apart from the predisposing factors, we might suppose that the
level of TdP risk conferred by a particular drug will depend upon
the affinity of the drug compound for different ion channels, and its
concentration. The affinity of a compound for a channel is quantified
using its inhibitory concentration 50% (IC50) value: the concentration
of the drug that will cause the current flowing through an ion channel
to be reduced by 50%. The concentration of a compound to which
cardiac ion channels are exposed is assumed to be the effective
free therapeutic plasma concentration (EFTPC); that is, the concen-
tration of unbound/free compound in the blood plasma when the
drug is given at its therapeutic dose.

The earliest indicator used to assess torsadogenic risk in the
pharmaceutical compound development process is usually based on
the hERG IC50 value; compounds that block hERG too readily are dis-
carded. Channel interactions are detected in multi-target toxicity
screens, and hERG IC50 values are generally established from auto-
mated patch-clamp experiments on expression system cell lines.

However, there are many exceptions to this association between
hERG block and TdP: both hERG inhibitors that do not cause TdP
(e.g. verapamil and propafenone), and less commonly, drugs that
cause TdP that are weak hERG inhibitors (e.g. tedisamil).9 These
cases can arise when a drug blocks other ion channels: particularly
susceptible are INa (fast sodium channel) and ICaL (the L-type
calcium channel).10,11 Blockade of these channels will lead to a short-
ening of APD, countering some of the effects of a hERG block. It has
been suggested previously that multi-channel effects must be con-
sidered when evaluating the TdP risk.11,12

Safety tests undertaken later in the drug development process
attempt to address multi-channel effects, by taking into account the
action of a compound on the tissue as a whole. These tests are
usually based on the ECG: QTc interval prolongation from in vitro
animal models (such as wedge preparations and Langendorff-perfused
heart13), in vivo animal models, clinical trials, and eventually human
thorough QT trials, specified by the ICH E14 document.14 There
are concerns that thorough QT trials may be overly restrictive, as
some drugs registered pre-ICH E14 prolong QT but are not associ-
ated with high rates of TdP.15 Concerns over cardiovascular side
effects now account for an estimated 30% of potential compound dis-
continuations.16 It would be ideal to screen out troublesome com-
pounds at the earliest possible opportunity—saving money, time,
and lives.

In 2003, in an effort to provide such a screening process, Redfern
et al.17 evaluated the clinical TdP risk of many drugs, proposed that
a measure of [hERG IC50]/[EFTPCmax] be used as a TdP risk indicator,
and that a value of 30 or over is a provisional safety margin. This was
suggested as an improvement over simply [hERG IC50]; in the follow-
ing we shall quantify the improvement in predictive power that this

achieved. De Bruin et al.18 confirmed that the marker proposed by
Redfern et al. was an indicator of risk, by showing a statistically signifi-
cant correlation between [hERG IC50]/[EFTPCmax] and the number of
abnormal cardiac events occurring per patient.

We aim to quantify how much information the earliest stage of
safety screening can give on clinical TdP risk. By performing exper-
iments, and by mining the literature, we gather IC50 values for two
other channels in addition to hERG, namely INa and ICaL, for a total
of 31 drugs. We use mathematical cardiac electrophysiology models
of ventricular cells to incorporate the information on the degree of
drug block for each channel, and then predict the changes in cell be-
haviour that would result under different protocols. We then corre-
late these model predictions with the clinical risk of TdP as indicated
by the Redfern et al.17 risk classification, quantifying their predictive
power and identifying risk indicators.

2. Methods
In this section, we detail the following steps: classification of drugs into
TdP risk categories; measurement of IC50 values; simulation of possible
risk indicators; and prediction of risk categories according to the
indicators.

2.1 Clinical risk classification
We have taken the TdP risk classification system proposed by Redfern
et al.17 defining the following categories in terms of clinical human TdP
risk:

1. Class Ia and III anti-arrhythmics; generally associated with a large, but
acceptable, risk of TdP.

2. Drugs that have been withdrawn from the market (by at least one
major regulatory authority) due to unacceptable TdP risk.

3. Drugs with a measurable incidence of TdP, or for which numerous case
reports exist.

4. Drugs for which there have been isolated case reports of TdP.
5. Drugs for which there have been no published reports of TdP.

We refer to these categories as the ‘risk categories’. Lawrence et al.13

updated the list, adding further drugs and reclassifying others. Further
modifications have been made: thioridazine has been moved from risk cat-
egory 3 to 2, as it was withdrawn from general use in 2005, due to associ-
ation with excessive QT prolongation and cases of TdP.19 Quetiapine has
been reclassified from category 5 to 4, as it has recently been associated
with isolated TdP case reports.20 Risk categories for all the drugs in this
study can be seen in Table 1.

2.2 IC50 and EFTPC values
Redfern et al.17 performed a thorough literature search for hERG IC50

values and EFTPC data for over 90 drugs; these form the basis of our
data set. To investigate multi-channel effects, we performed experiments
on 15 compounds to measure INa and ICaL IC50 values directly. Concen-
tration–response curves for IKr were measured in HEK-293 cells stably
transfected with hERG cDNA (for amiodarone and prenylamine; IC50

values in the literature were highly variable and absent, respectively);
for INa in HEK-293 cells stably transfected with hNaV1.5 cDNA; and for
ICaL in isolated ventricular myocytes from guinea pig, killed by cervical dis-
location following stunning; using a conventional whole-cell patch-clamp
technique.21 Full details of our experimental protocols can be found in
Supplementary material online, S1. The investigation conforms with the
Guide for the Care and Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publication No. 85–23, revised
1996). All animals were treated in accordance with UK Home Office regu-
lations [Animals (Scientific Procedures) Act 1986: London: Her Majesty’s
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Stationery Office 1986], and the work was approved by GlaxoSmithKline
internal ethical review.

To expand our drug data set to include at least four drugs from each
category, we utilized the Aureus Pharma database (http://www.
aureus-pharma.com/Pages/Products/Aurquest.php) and a manual litera-
ture search to find INa and ICaL IC50 values for 16 further compounds.
Where more than one IC50 value was available in the literature, we
have followed Redfern et al. in utilizing the lower value in our analysis.
We were therefore able to establish IKr, INa, and ICaL IC50 values and
EFTPC data for 31 compounds; a full list is presented in Table 1.

The three IC50 values and maximum EFTPC values for these drugs are
plotted against the risk categories in Figure 1. The lack of association dis-
played in Figure 1 suggests that these ‘raw’ IC50 values will have little pre-
dictive power for the risk category, a concept we quantify in section 2.4.

2.3 Simulations
In addition to using the ‘raw’ IC50 and EFTPC values to associate a drug
with a risk category, we hypothesize that some function of these values
may provide a stronger association. We turn to mathematical cardiac

electrophysiology models of ventricular myocytes; these models integrate
information about individual channel currents to describe their collective
behaviour, and AP formation. We use these models to predict changes to
whole-cell behaviour under drug action, using the IC50 values and concen-
tration data as model inputs, dictating the degree of drug-induced channel
block. The aim is to find model outputs that correlate with the risk cat-
egories more strongly than the markers shown in Figure 1, and so
provide in silico TdP risk indicators.

Mathematical cardiac electrophysiology models are systems of (typi-
cally) tens of highly non-linear ordinary differential equations (ODEs), gov-
erning the evolution of model variables through time. These variables
represent ion channel gates/states, ion concentrations, and other quan-
tities such as membrane voltage. We have taken five of the recent ventri-
cular myocyte models for rabbit,22,23 dog,24 and human.25,26 Each of these
models has an ODE for the evolution of membrane voltage (V ) through
time (t), which takes the form

dV
dt

= − 1
Cm

∑
channels

Ij + Istim

( )
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Risk categories, IC50 values, EFTPCs and references for all of the drugs in this study. References for this table are given
in full in Supplementary material online, S6.

Generic drug name TdP risk Na IC50 (nM) CaL IC50 (nM) hERG IC50 (nM) EFTPCmax (nM)

Ajmaline 1 820034 71 00035 104036 300–150037

Amiodarone 1 480038 27039 30a 0.1–0.517

Amitriptyline 4 20 00040 11 60041 328042 11–4117

Bepridil 3 3700a 211a 3343 10–3317

Chlorpromazine 3 430044 n/a44 147045 3–3817

Cibenzoline 5 780047 30 00048 22 60049 502–97617

Cisapride 2 14 700a n/aa 6.550 2.6–4.917

Desipramine 4 1520a 1709a 139051 27–10817

Diltiazem 5 900052 45053, 54 17 30055 53–12217

Diphenhydramine 4 41 000a 228 000a 520049 22–3417

Dofetilide 1 300 00056, 57 60 00057 518 0.4–2.017

Fluvoxamine 4 39 400a 4900a 310017 15–37758

Haloperidol 3 700059 170059 2760 1.2–3.617

Imipramine 4 360044 830045 340017 35–10617

Mexiletine 4 43 00061 100 00062 50 000b63 1445–412917

Mibefradil 4 98064 15665 180049 6–1217

Nifedipine 4 37 00044 6066 275 00067 3.1–7.717

Nitrendipine 5 36 00044 0.3568 10 00017 0.11–3.0217

Phenytoin 5 49 000a 103 000a 100 00017 4000–450017

Pimozide 3 5469 16270 2017 0.1–1.017

Prenylamine 2 2520a 1240a 65a 9–1771

Propafenone 4 1190a 1800a 44072 26–24117

Propranolol 5 2100a 18 000a 282873 12–2674

Quetiapine 4 16 900a 10 400a 580075 10–3317

Quinidine 1 16 600a 15 600a 30076 924–323717

Risperidone 5 102 000a 73 000a 15017 0.61–1.8117

Sertindole 3 230077 890077 1417 0.02–1.5917

Tedisamil 1 20 00078 n/a79 250017 75–8517

Terfenadine 2 971a 375a 8.973 0.1–9.017

Thioridazine 2 1830a 1300a 3317 208–97917

Verapamil 5 41 500a 100a 14355 25–8117

aMeasured as part of this work as described in Section 2.2 and Supplementary material online, S1.
Reference 63 states a value of ‘≫10 000’ and so 50 000 was taken.
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where Cm is the membrane capacitance, Ij represent the currents due to
each species of ion channel ‘j’, and Istim is the stimulus current applied to
pace the cell. Channel currents take the form

Ij = gj O (V − Eion).

Here, gj is the maximal conductance of channel ‘ j’, O is its open probability,
and Eion is the reversal potential for the species of ion which flows
through channel j.

There are a number of ways to modify such models to incorporate the
effects of channel block by drug compounds. One of the simplest is a
‘conductance-block’ formulation; gj is reduced by a factor which is a

function of the IC50 value of a drug for this channel, and the concentration
of the drug [which we denote by [D]]. In general, for the conductance of a
channel of type j we have

gj = gcontrol,j 1 + [D]
[IC50] j

( )n[ ]−1

Here, gcontrol,j is the drug-free maximal conductance of the j channel. For
all drugs and channels in this study, we have assumed that the Hill coeffi-
cient n ¼ 1 (or equivalently, one molecule of drug is assumed to be suffi-
cient to block one ion channel—typical values of n for hERG block are
around 0.7–1.111). Where a drug effect on a channel has been tested

Figure 2 Simulation of steady-state 1 Hz pacing of the Grandi et al.26 model under verapamil application when considering (left) a solely hERG
block, and (right) a hERG, Na, and CaL block. Arrows indicate the effect on the AP of increasing drug concentration, displayed are: control
(0 nM, solid line), low EFTPC (25 nM, dashed line), medium EFTPC (53 nM, dash–dotted line), and high EFTPC (81 nM, dotted line).

Figure 1 Scatter plot of IC50 values for the drugs against the risk categories. For all three channels and the EFTPC, there is significant overlap
between categories. It is evident that no single channel’s IC50 value will allow accurate classification of a drug into its risk category.
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and no block was observed, the original conductance gcontrol was used.
We have applied this model for drug block to IKr, INa, and ICaL.

In general, drug effects at steady-state concentration can be well rep-
resented by a conductance-block model.27 This assumption seems to
hold even if the drug exhibits state- or voltage-dependent binding
(since, at physiological cardiac pacing rates, the timescale over which
binding and unbinding occur is much longer than the timescale over
which voltage changes or channel–state transitions occur). One case in
which a conductance block may not be an accurate model is that of an
allosteric drug block, in which a compound affects the ability of a
channel to transition between open, closed, or inactivated states. Since
the precise mechanism of channel block is usually not known or measured
at the early stages of compound development, we have modelled drug
action using the conductance-block formulation.

We performed steady 1 Hz pacing, S1–S2, and dynamic restitution pro-
tocols on the models, recording quantities such as APD50, APD90, tri-
angulation, and maximum restitution slopes. Full details of the
simulation protocols and the 15-recorded quantities can be found in Sup-
plementary material online, S2. The protocols were performed for each
model at four concentrations: low EFTPC and high EFTPC values are
the lowest and highest EFTPCmax values, respectively, as reported in the
literature, medium EFTPC was taken to be the mean of these, and the
overdose to be 10 × high EFTPCmax.

An example of the AP that the steady pacing protocol generates can be
seen in Figure 2 for the Grandi et al.26 model. We see the effect of adding
verapamil at low, medium, and high EFTPC; both for a case where we con-
sider only a hERG block, and for the multi-channel case. The importance
of multi-channel effects becomes clear: in the case of a solely hERG block,
the APD is prolonged, in the case of hERG, Na, and CaL blocks, the effect
is the opposite, with a marked reduction in APD.

2.3.1 A note on implementation
XML format representations of the models22– 26 were taken from the
CellML repository.28 PyCML29 was used to translate the CellML format
into C++ code. CVODE30 was then used to integrate the ODEs in a
custom-made program based on the open-source Chaste library.31 For
the interested reader, our full code is available to download from http://
www.comlab.ox.ac.uk/chaste.

2.4 Classification
For a previously unseen compound, we wish to take the continuous
measures produced by the simulation protocols above, and then categor-
ize the compound into a discrete risk category, based upon the measure’s
value and our prior knowledge of this measure for other compounds. This
type of problem is ubiquitous in statistics, and is known as a ‘classification
problem’.

We have used one of the simpler classification methods, known as
linear discriminant analysis (LDA), to place our compounds into the risk
categories. LDA uses maximum likelihood estimates to calculate the prob-
ability of each point in variable space being a member of each category. To
classify an unseen observation, we simply assign it to the category with the
highest probability at that point. Supplementary material online, S3 pro-
vides further details of this method.

The risk of adverse cardiac events associated with drugs in risk cat-
egories 1 and 2 is similar.18 Since our aim is to predict the clinical risk cat-
egory associated with an early compound, we would not know whether
the compound is being developed as an anti-arrhythmic or not. Since cat-
egories 1 and 2 exhibit indistinguishable TdP risks, we combine them for
the LDA and subsequent classification, labelling all these drugs as ‘cat-
egory 2’ to avoid the confusion that would arise in re-indexing the rest
of the risk categories.

To quantify the predictive power of the LDA, we perform
‘leave-one-out’ validation. One drug is removed from our data set,
leaving 30 out of the 31 drugs remaining to form the training data set.
An LDA is performed on the training data set, then the ‘left-out’ drug is
categorized accordingly. We assign an error score as follows

Error score = |predicted category − actual category|

which will be a positive integer; 0 if the predicted category is the same as
the actual category, 1 if the predicted category is +1 away from the
actual category, etc. We then repeat the analysis leaving out each of the
drugs in turn. It should be noted that this analysis immediately provides
a tool that can predict the torsadogenic risk of an unseen drug, according
to the risk categories it has ‘learnt’ from a database of, in this case, 30
other drugs.

Figure 3 (A) Current state-of-the-art measure: [hERG IC50]/[EFTPCmax] against TdP risk categories for the different drugs in this study, as suggested
and presented in Redfern et al.; the dotted line is their safety factor of 30. (B) Proposed in silico marker: simulated % change in 1 Hz steady-state APD90
relative to control for the Grandi et al.26 human ventricular cell model. The dotted line is the ‘control’ case—i.e. 100%. In both (A) and (B), the
measure is evaluated for low, middle, and high [EFTPCmax]; producing three points of increasing size, which we display joined with a line. This is
intended to show the sensitivity of the measure to variations in dose concentrations which may occur, for example, between individuals or
between drug applications. Drugs are presented in alphabetical order within their risk categories. From left to right: 1: ajmaline, amiodarone, dofetilide,
quinidine, tedisamil; 2: cisapride, prenylamine, terfenadine, thioridazine; 3: bepridil, chlorpromazine, haloperidol, pimozide, sertindole; 4: amitriptyline,
desipramine, diphenhydramine, fluvoxamine, imipramine, mexiletine, mibefradil, nifedipine, propafenone, quetiapine; 5: cibenzoline, diltiazem, nitren-
dipine, phenytoin, propranolol, risperidone, verapamil.
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3. Results
In Figure 3A, we plot [hERG IC50]/[EFTPCmax] against the risk cat-
egories for the drugs in this study, for the spread of EFTPCmax

values in the literature. The relationship appears to be of a similar
quality to that shown for [hERG IC50] in Figure 1. The difficulty in
associating a drug with a risk category is evident, as drugs across all
five risk categories exhibit overlapping values.

Simulation of the markers discussed in Section 2.3 was undertaken
for each of the models, with a hERG-only or multi-channel block, at
low, medium, high, and overdose EFTPCs. This resulted in 350 simu-
lated markers for both multi-channel and hERG-only cases.

The LDA described above was then performed for the raw IC50 values,
previously suggested risk indicators, and the simulated markers, a total of
761 possible markers. As a result of the ‘leave-one-out’ trial, we identified
the most predictive single marker as the maximum APD90 at low/
medium/high EFTPC under steady 1 Hz pacing as simulated by the
Grandi et al. model; we present this in Figure 3B.

By comparing Figure 3A and B, it is evident that this simulated
marker provides an improved association relative to that of the exist-
ing safety measure. In Figure 3B, there is one drug worthy of particular
note: thioridazine (category 2) appears to have both prolongation and
shortening, dependent on the EFTPC value. This situation arises
because the low EFTPC is higher than the hERG IC50 and therefore
significant prolongation occurs below (and at low) EFTPC values; as

the EFTPC increases, other channels also become significantly
blocked and shorten the AP.

We now consider the errors associated with categorization based
upon the different measures. Figure 4A provides a reference by dis-
playing the mean errors when allocation of each drug into a risk cat-
egory is performed at random (106 times). Figure 4B displays the error
if classification is performed with an LDA based on log10([hERG
IC50]); the mean error is 1.129. The metric of log10([hERG IC50]/
[High EFTPC]) results in the errors in classification shown in
Figure 4C; the mean error is reduced to 0.968 as there is a reduction
in the number of completely wrongly characterized drugs (category 2
as 5 or vice versa), relative to Figure 4B. This finding confirms that
the Redfern et al. safety factor was an improvement over the hERG
IC50.

Errors for the most predictive marker found in this study are shown
in Figure 4D, the mean error is reduced to 0.323, and no drugs are
characterized to the wrong end of the risk scale. In fact, no drugs in
categories 4 or 5 (‘safe’) are categorized as 2 or 3 (‘dangerous’); we
have no ‘false positives’; see Supplementary material online, S5 for
full results. Only one drug in category 2 or 3 is categorized as 4 or
5; this ‘false negative’ is amiodarone, categorized with an error of
2. Amiodarone is in classification risk category 2 (risk categories 1
and 2 being combined for classification as discussed earlier), but is
classified as 4. In Figure 3B, it is the drug in risk category 1 which is
very close to the control (100% line).

Figure 4 Histograms of classification errors for (A) allocation of categories at random; (B) log10([hERG IC50]); (C) log10([hERG IC50]/[high EFTPC]);
and (D) simulated marker: Grandi et al.26 1 Hz steady-state maximum APD90 at low/medium/high EFTPC.
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In a compound development setting, the results shown in Figure 3B
and Figure 4D suggest a strategy: a compound in which the simulated
APD90 at any realistic EFTPC is markedly prolonged will have a strong
TdP risk and should not be progressed to the market (unless the clini-
cal benefit outweighs the safety risk, e.g. it is intended to be used as an
anti-arrhythmic or an anti-cancer drug). Similarly, compounds whose
simulated APD90 is shortened will have a low risk of TdP and ought
to be progressed. Compounds whose APD90 is affected to a small
extent fall into two types: those for whom the channel IC50 values
are all much higher than their EFTPC and little block occurs, we
would suggest these should be rapidly progressed; and those for
whom channel block effects are important and to some extent may
be ‘cancelling each other out’, these compounds should be referred
for further cardiac safety testing.

The mean and standard deviation of the errors in categorization for
all markers are shown in Figure 5. The markers to the bottom left of
the solid lines are more predictive than random allocation, and
markers to the bottom left of the dashed lines are more predictive
than the Redfern et al. measure. We have estimated that the chance
of predicting these drug risk categories with this degree of accuracy
by guessing at random is ,1 in a million (see Supplementary material
online, Figure S2). We also confirmed that the choice of predictive
marker retained some independence from the drug data set by per-
forming cross-validation on stratified subsets of the drugs; for
details of these results, please refer to Supplementary material
online, S3.2. The 30 most predictive markers (shown in bold on
Figure 5) are all simulated markers for multi-channel effects and are
listed in full in Supplementary material online, S4. None of the
hERG-only block simulated markers achieved such a level of

predictive power, and the majority of the most predictive markers
are the result of protocols encapsulating prolongation of APD.

4. Discussion
We have developed a simulation tool that predicts a clinical torsado-
genic risk category associated with a compound, based on the earliest
preclinical data on its role in multiple-ion-channel blockade. Simulated
markers based on EFTPC and the hERG, sodium, and L-type calcium
channel IC50 values provide an improved prediction of a compound’s
torsadogenic risk, beyond that provided by the ratio of [hERG IC50]/
[EFTPCmax].

By including these multi-channel effects, severe mis-classifications
of other metrics can be correctly predicted: verapamil and propafe-
none, both potent hERG blockers, have their TdP risks predicted
accurately. Our work confirms that consideration of hERG block is
necessary, but not sufficient, to predict torsadogenic risk.11,12

Amiodarone was the only drug we could not characterize to within
one risk category. There are many possible reasons for this, as it has
intricate effects, being involved in membrane trafficking interference,
chronic changes to ion channel expression, late sodium block, and
has metabolites that are also active hERG inhibitors. Where com-
pounds affect currents other than IKr, INa, or ICaL (e.g. ranolazine
which also targets the late sodium channel), one would expect to
be less able to predict their risks correctly.

The mathematical models of ventricular myocytes we have used are
evidently capturing something of the channel interactions that are at
work in determining cell behaviour. These cell models have now
been developed for 50 years,32 and as the models advance, we

Figure 5 Scatter plot of classification error for all of the different markers. Simulated markers from a hERG-only block are denoted with stars while
multi-channel block markers are denoted by circles. Bold circles highlight the 30 ‘most-predictive’ markers. Solid lines indicate the expected values if
classification was performed at random, dashed lines are the values given by log10([hERG IC50]/[high EFTPC]), and dotted lines are the values given by
the longest APD90 at low/med/high EFTPC as shown in Figure 3B.
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hope this will refine the predictions provided by the techniques we
have proposed. Of our many simulated markers, it is those related
to an increase in APD which correlate best with the TdP risk; this
is in keeping with current thinking which links QT prolongation to
TdP initiation.

We did not find strong predictive power from the in silico markers
associated with steep restitution curves or APD triangulation (as
suggested by the TRIaD screen33), although this may be due to the
mathematical models replicating this behaviour less accurately than
the simpler changes to APD. However, it is important to note that
no assumptions about the accuracy of the models’ APD predictions,
or the mechanisms leading to TdP, are needed to show the predictive
power of this method.

Our study has limitations; to maximize the number of drugs, our
IC50 data were taken from a multitude of different sources, and as
such contain the associated variations inherent in such a data set.
There are insufficient numbers of drugs to evaluate the impact of
manual vs. high-throughput automated patch clamp; to ascertain this
the whole study should be repeated based solely on high-throughput
data. We included 31 drugs, for which we could ascertain the effects
on the three channels, EFTPC, and the clinical TdP risk; as the data set
expands, we expect to provide improved predictions. The mathemat-
ical model is not a perfect predictor: the model of a drug block is very
simplistic and could be improved by measurement of dose–response
curve hill coefficients. Kinetics of channel block have been ignored
(voltage-/state-dependence, and allosteric effects); however, it
would be difficult to include these effects: early safety testing does
not measure such intricate details of compound–channel interactions
as standard, and each compound would need associated channel
block models developing for each ion channel. Interestingly, and
perhaps surprisingly, despite these limitations, we have shown a
marked improvement in the early prediction of torsadogenic risk.

In further work, we hope to address some of the limitations, adding
more drugs to the data set, which is used as the basis of predictions.
Further currents such as late sodium and IKs are known to be targets
of many drugs, and inclusion of these into the study may also yield
improved results. Inclusion of longer-term drug-induced changes to
membrane protein trafficking and expression into the model may
also improve predictions. As the mechanisms behind the initiation
of Torsade-de-Pointes are elucidated, there is hope that simulation
of these mechanisms directly will provide improved prediction of risk.

This type of simulated test has the potential to complement and
extend existing safety tests; facilitating earlier detection of torsado-
genic compounds, and preventing potentially safe compounds being
discarded unnecessarily. Moreover, as the database of drugs
expands, and confidence grows in the accuracy of model predictions,
simulations may have the potential to replace some safety tests and
thereby have a beneficial impact on replacement and reduction of
animal models, cost, and time.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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