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Acute lymphoblastic leukemia (ALL) is a constellation of diseases driven by
genetic alterations commonly derived from structural chromosome rearrange-
ments, aneuploidy and co-operating mutations in genes that encode for tran-

scription factors regulating lymphoid development, tumor suppressors, proteins reg-
ulating cell cycle progression, and epigenetic modifiers.1

Recent years have witnessed dramatic progress in ALL classification. Subtypes of
ALL can be defined according to the nature of specific sentinel genetic aberrations
that confer distinct biological and clinical characteristics. Some of them represent a
therapeutic target for specific treatments, which may contribute to a further increase
in cure rates, to reduce the intensity of conventional chemotherapy and/or the need
for hematopoietic stem cell transplantation (HSCT).
One of the first genetic aberrations identified was the Philadelphia chromosome

(Ph), characterized by the t(9;22)(q34;q11) translocation that produces the BCR-ABL1
gene, and, in turn, a constitutively active tyrosine kinase. BCR-ABL1 fusion is present
in 3-5% of pediatric ALL and in 25% of adult ALL patients. The evidence of this
genetic aberration allowed the introduction of targeted therapy with tyrosine kinase
inhibitors (TKI), which has dramatically improved the outcome of this subset of
ALL.2-10 The pediatric COG AALL1131 and AALL0622 studies, and the contemporary
EsPhALL2004 and subsequent EsPhALL2010 trials, in fact, showed a clear advantage
in Ph positive (Ph+) ALL from early, continuous and protracted exposure to TKI com-
bined with chemotherapy, challenging the indications for HSCT.5-10 Of note, however,
the combination of chemotherapy and TKI may also be associated with increased
toxicity, as shown in the EsPhALL2010 study.6,7

With advanced technologies, such as whole genome and transcriptome sequenc-
ing, novel genetic subtypes have recently been discovered. In 2009, among the so
called “B-other”, a subgroup of B-cell precursor (BCP)-ALL lacking the known sentinel
BCP-ALL genetic aberrations, a new category of ALL has been described by
Mullighan11 and by den Boer12, and termed Philadelphia chromosome (Ph)-like and
BCR-ABL1-like ALL, respectively. The second term is used in this paper. The two sig-
natures are based on the prediction analysis of microarrays (PAM) classifier consisting
of 257 gene probe sets trained on Ph+ ALL cases (Mullighan11) or on hierarchical clus-
tering of 110 gene probe sets identified to predict the major pediatric ALL subtypes
(den Boer), with only nine overlapping probe sets.12 BCR-ABL1-like ALL, defined by
a gene expression profile greatly similar to that of Ph+ ALL, presents a high frequency
of deletions of IKZF1, which encodes the lymphoid transcription factor IKAROS, and
of other lymphoid transcription factor genes.11,13 BCR-ABL1–like ALL has been recog-
nized as a provisional entity in the 2016 World Health Organization classification of
myeloid neoplasms and acute leukemia;14 the prevalence varies with age from 12%
in children to 21% in adolescents, 27% in young adults, and 20-24% in older adults
with BCP-ALL. In addition to older age at diagnosis, BCR-ABL1–like ALL is associated
with other high-risk clinical features, such as elevated leukocyte count at diagnosis
and poor treatment response, i.e. high levels of end-induction minimal residual dis-
ease (MRD), increased risk of induction failure and of relapse.11,13,15-30

Importantly, BCR-ABL1-like ALL is not defined by a single unifying sentinel molec-
ular aberration; but  rather, it is characterized by a variety of genomic alterations that
activate kinases and deregulate cytokine receptor signaling. Fusion genes involving at
least 17 cytokine receptors or tyrosine kinases have been identified.23,29,31,32 These alter-
ations can be grouped into several major subclasses: approximately 50% of BCR-



ABL1-like cases harbor rearrangements of the cytokine
receptor like factor 2 (CRLF2) resulting in upregulation of
CRLF2 expression, in the vast majority as a consequence of
either a translocation resulting in IGH-CRLF2 juxtaposition
or a deletion of the PAR region of the X chromosome lead-
ing to the P2RY8-CRLF2 fusion. Frequent concomitant acti-
vating gene mutations occur in Janus kinases or other regu-
lators of JAK-STAT signaling, with about 50% of CRLF2
rearranged cases presenting JAK1 or JAK2 point muta-
tions.15,16,33,34 However, although the P2RY8-CRLF2
rearrangement is associated with an intermediate to poor
outcome, its role with respect to relapse disposition is not
fully clear, as the P2RY8-CRLF2 rearrangement has been
reported in some cases to be lost at relapse, particularly
when it has been identified initially in a sub-clone only.35-38
About one-third of BCR-ABL1-like non-CRLF2 rearranged
ALL cases present chromosomal rearrangements that result
in constitutive deregulation of a cytokine receptor or the
formation of kinase fusion genes: a major subgroup
includes ABL-class alterations involving ABL1, ABL2,
CSF1R, LYN, PDGFRA and PDFGRB. A second major group
regards rearrangements that activate JAK family kinases,
including JAK2, EPOR, TYK2 and IL2RB. A third group con-
stitutes a variety of other kinases or cytokine receptor alter-
ations such as NTRK3, FLT3, FGFR1 and BLNK, and the
RAS signaling pathway.11,13,23, 29,32-39 
The limited data available confirm that BCR-ABL1-like

ALL is associated with high-risk features also in pediatric
patients. A single institution reported that the outcome in
BCR-ABL1–like ALL patients, although inferior to that of
other patients, was favorable with MRD-driven therapy
and with the majority of patients treated in the higher risk
arms and 15% undergoing HSCT.23,24 Subsequently, the
COG found that, within standard risk ALL patients defined
by National Cancer Institute (NCI) criteria, Ph-like ALL
patients had a still good, but significantly lower, event-free-
survival and no significant difference in survival when com-
pared to non-Ph-like NCI standard risk ALL.40 In keeping
with these data, Boer reported an increased cumulative inci-
dence of relapse in BCR-ABL1–like ALL compared to non-
BCR-ABL1–like B-other ALL.26 Finally, the AIEOP-BFM
study group has recently reported the outcome of ABL-class
fusion positive BCP-ALL in a retrospective study, which,
although limited by its retrospective nature, and especially
by a potential selection bias towards cases with a poor
treatment response, indicates that these patients have an
overall poor prognosis.41
The role of CRLF2 abnormalities on BCR-ABL1-like ALL

outcome is still controversial. The COG showed that, while
high CRLF2-expression predicted a dismal outcome in
high-risk patients, the two specific genomic CRLF2-lesions
did not confer independent prognostic significance.42
Similarly, CRLF2-rearrangements had no independent prog-
nostic value in the Medical Research Council ALL97 trial,43
while the AIEOP-BFM study group reported that P2RY8-
CRLF2 positive patients allocated in the non-HR group had
a poorer prognosis.35,36 However, it should be remembered
that data on CRLF2-rearranged BCP-ALL are not exclusive-
ly restricted to cases with BCR-ABL1-like gene expression
signature. Outcome data on BCR-ABL1-like ALL are sum-
marized in Table 1. Overall, these data confirm that there is
a clinical need for innovative targeted therapies which may
be effective in this ALL subtype, as suggested by pre-clinical
studies.
In vitro studies have, in fact, demonstrated constitutive

activation of kinase signaling networks in subsets of BCR-
ABL1–like ALL harboring JAK pathway aberrations,42,44,45
and in vivo studies have demonstrated anti-leukemic activity
of the type I JAK2 inhibitor ruxolitinib and of the dual
PI3K/mTOR inhibitor gedatolisib given as a monotherapy
in patient-derived xenograft models of JAK pathway–
mutant BCR-ABL1-like ALL.44,46-50 Other studies have report-
ed superior anti-leukemic efficacy with the type II JAK
inhibitor CHZ868, which synergizes with dexamethasone
to induce apoptosis, suggesting that type II JAK2 inhibition
may be more effective to target CRLF2-rearranged BCP-
ALL. This may be because type II inhibitors stabilize JAK2
in the inactive conformation, and overcome the JAK2
hyperphosphorylation observed with type I JAK inhibitors
which target the ATP binding pocket and stabilize JAK2 in
the active conformation.51 Likewise, pre-clinical experimen-
tal studies have shown that cell lines and human cells
expressing ABL-class fusions, as well as patient-derived
xenograft models, have marked sensitivity to the TKI such
as imatinib and dasatinib, similarly to BCR-ABL1 cells.52
Clinical studies are still very limited. A COG phase I trial

(ADVL1011; clinicaltrials.gov identifier: 01164163) demon-
strated the safety of JAK2 inhibitor ruxolitinib, given as
monotherapy in children with relapsed or refractory can-
cers,53 while anecdotal reports have provided evidence of
efficacy of TKI (imatinib and dasatinib) to induce remission
and clear MRD in patients with ABL-class fusions with
poor response to previous chemotherapy.54-56
Optimal clinical management of pediatric BCR-ABL1-like

ALL, thus, remains to be defined. The heterogeneous
genomic landscape and the diverse array of targetable
kinase-activating lesions of BCR-ABL1–like ALL require
precise diagnostic strategies. Initially, the DCOG group
used a validated Affymetrix gene expression array which
included 110 probe sets, while the COG and SJCRH used
an Affymetrix gene expression array with 255 probe sets to
screen patients for BCR-ABL1-like ALL signature.
Subsequently, COG first utilized a quantitative reverse
transcriptase polymerase chain reaction (RT-PCR)-based
low density array (LDA) platform to identify patients with
BCR-ABL1-like ALL enrolled in their ALL COG front-line
AALL1131 trial. As a second step, a series of multiplex RT-
PCR assays, fluorescence in situ hybridization (FISH), and
DNA sequencing to identify the underlying genomic aber-
ration were applied.57,58 The COG is now using Archer tar-
geted RNA sequencing instead of multiplex RT-PCR assays.
Alternatively, combined FISH or targeted RNA-next gener-
ation sequencing (NGS) strategies with probes capturing
the recurrently fused genes can be successfully applied.59 In
the future, NGS-based whole transcriptome sequencing
should allow the detection of all relevant gene fusions and
mutations in one step, as recently demonstrated by Gu et
al.60 and Li et al.61 This approach will facilitate the timed
diagnosis and the early implementation of specific treat-
ments. Of note, despite the large number of individual
kinase alterations identified, the majority converge on a
limited number of pathways that can be targeted.
The best therapeutic strategy for this subgroup of

patients remains a matter of investigation. Several ongoing
studies are assessing the role of the addition of TKI or rux-
olitinib on top of chemotherapy in pediatric BCP-ALL har-
boring ABL-class fusions or CRLF2/JAK pathway alter-
ations. In the current COG AALL1131 and AALL1521 (clin-
icaltrials.gov identifier: 02883049 and 02723994, respectively)
and SJCRH Total Therapy XVII trials (clinicaltrials.gov identi-
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fier: 03117751), ALL patients with NCI high-risk character-
istics or poor early MRD response are screened for ABL-
class fusions and JAK pathway mutations. In patients posi-
tive for these alterations, dasatinib and ruxolitinib, respec-
tively, are given in combination with conventional front-
line chemotherapy from the consolidation phase until the
end of maintenance therapy.57,62 Patients with NCI standard
risk characteristics and early good MRD response are not
included because available data on their outcome are very
limited.48,52 Other phase I/II trials conducted at the MD
Anderson Cancer Center (clinicaltrials.gov identifier:
02420717) are testing dasatinib or low doses of ruxolitinib
in combination with hyper-CVAD (cyclophosphamide, vin-
cristine, doxorubicin, dexamethasone) in adolescents and
adults with relapsed/refractory ALL and ABL-class fusions
or CRLF2/JAK mutations, respectively; interim data analy-
sis demonstrates the safety of these combinations with lim-
ited efficacy.63 A recent phase I trial (clinicaltrials.gov identifier:
03571321) at the University of Chicago and other institu-
tions is studying ruxolitinib in combination with the pedi-
atric-inspired CALBG 10403 chemotherapy regimen in ado-
lescents with newly diagnosed Ph-like ALL harboring
CRLF2/JAK alterations, with a planned phase II expansion
study if safety is demonstrated.64,65
In Europe, the AIEOP-BFM ALL and ALLTogether study

groups are also investigating the addition of innovative or
targeted therapy on top of chemotherapy in BCR-ABL1-like
ALL. In the AIEOP-BFM ALL 2017 trial (clinicaltrials.gov iden-
tifier: 03643276), patients are screened at diagnosis for
IKZF1 deletions, which are frequently found in BCR-ABL1-
like ALL, and for additional deletions of genes relevant for
B-cell development. Those cases defined as IKZF1 plus pos-
itive66 with any MRD positivity after induction treatment
are randomized to receive the proteasome inhibitor borte-
zomib in addition to chemotherapy during consolidation
and to receive the bispecific T-cell engager (BiTE) antibody
blinatumomab during post-consolidation treatment.

Especially the approach to apply immunotherapy instead of
extremely intensive high-risk blocks may be of advantage
for ABL-class-fusion positive cases, bearing in mind the
high rate of severe treatment-related complications in Ph+
ALL patients treated with high-risk chemotherapy plus
TKI. In  the ALLTogether study, patients are screened for
ABL-class fusions at diagnosis and those positive receive
TKI on top of chemotherapy from day 15 of induction
onward. In both AIEOP-BFM and ALLTogether studies,
these patients have an indication for HSCT in case of poor
MRD response. Likewise, the French CALL-F01 protocol
(clinicaltrials.gov identifier:  02716233) has been amended in
2018 to bring to RNA sequencing all B-other ALL in case of
induction failure or end of induction MRD above or equal
to 10-3: these patients are to receive imatinib on top of
chemotherapy in the high-risk group. Then, according to
subsequent MRD and effective exposure to imatinib, they
either continue TKI plus chemotherapy or go to HSCT. A
similar approach in the early introduction of a TKI in addi-
tion to chemotherapy in ABL-class positive BCP-ALL is
planned within the EsPhALL2017/COGAALL1631 protocol
(clinicaltrials.gov identifier: 03007147), the first intercontinen-
tal collaborative trial for the treatment of pediatric Ph+ ALL
involving COG and EsPhALL study groups. In this trial, an
amendment is ongoing to extend the eligibility to patients
with ABL-class fusion positive BCP-ALL and, thus, treat
them with imatinib given early after diagnosis and contin-
uously on top of high-risk chemotherapy. 
Actually, in pediatric patients there is no clear evidence

for superiority of a specific type of TKI. In the COG
AALL0622 study, dasatinib (60 mg/m2) was substituted for
imatinib (340 mg/m2) on top of the same chemotherapy
backbone of the AALL0031 study with no benefit. The
same dose of dasatinib was used also in a joint
COG/EsPhALL study (BMS CA180372) on top of the
EsPhALL therapeutic strategy with preliminary results
which appear similar to the contemporary EsPhALL study
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Table 1. Outcome of BCR-ABL1-like acute lymphoblastic leukemia among different study groups.
Study group                   Protocol                                           N. BCR-ABL1(Ph) -        Outcome (CIR, EFS, OS)
                                                                                             like ALL patients/total 
                                                                                                        BCP-ALL                 

Roberts et al.23                  Total therapy XV, Total therapy XVI,                264/1725                     5-years pEFS 58.2±5.3%, 41.0±7.4%, and 24.1±10.5% for children 
                                             P9906 AALL0232, E2993, C19802,                                                            with high-risk ALL, adolescents, and young adults;
                                              C10102 and C10403                                                                                    5-years pOS 72.8±4.8%, 65.8±7.1%, and 25.8±9.9% for children 
                                                                                                                                                                     with high-risk ALL, adolescents, and young adults.  Across all 
                                                                                                                                                                     age groups OS rates were inferior to those among patients 
                                                                                                                                                                     with non–Ph-like ALL (P<0.001 for both comparisons)

Roberts et al.24                  Total therapy XV                                                     40/344                       5 -years pEFS 90.0% ± 4.7%  vs. 88.4% ± 0.9%,  P=0.41 in BCR-
                                                                                                                                                                    ABL1–like ALL vs. non-BCR-ABL1–like ALL; 5-years pOS 
                                                                                                                                                                     92.5% ± 4.2% vs. 95.1% ± 1.3%, P=0.41  in BCR-ABL1–like ALL vs.
                                                                                                                                                                     non-BCR-ABL1–like ALL
Roberts et al.40                  COG AALL0331                                                      206/1023                      7-years pEFS 82.4 ± 3.6%  vs. 90.7 ± 1.0%, P=0.0022, Ph-like ALL
                                                                                                                   Standard-Risk ALL            vs. non–Ph-like ALL; 7-years pOS 93.2 ± 2.4% vs. 95.8 ± 0.7%, 
                                                                                                                                                                     P=0.14, Ph-like ALL vs. non–Ph-like ALL
Boer et al.26                        DCOG ALL-8,   ALL-9, ALL10                                77/574                        8-years pCIR 35% vs. 17%, P=0.07, BCR-ABL1–like ALL  vs. non 
                                             COALL 06-97 and COALL 07-03                                                              BCR-ABL1–like B-other ALL 
Cario et al.41                       AIEOP BFM ALL 2000 and                       46 ABL-class fusion            5-years pEFS was 49.1±8.9% , 5-years pOS 69.6±7.8% and 5-years 
                                             AIEOP BFM ALL 2009                                     positive ALL                  CIR was 25.6±8.2% 

ALL: acute lymphoblastic leukemia; BCP-ALL: B-cell precursor acute lymphoblastic leukemia; CIR:  cumulative incidence of relapse; EFS: event-free survival; OS: overall sur-
vival.



which used imatinib (300 mg/m2). A very recent study,
where dasatinib was used at a higher dose (80 mg/m2) and
randomized versus imatinib (300 mg/m2), showed a superi-
ority of dasatinib; however, follow up of this study was rel-
atively short, and results in the cohort treated with imatinib
were inferior to those obtained by the EsPhALL and COG
groups with the use of imatinib, thus, challenging the evi-
dence of superiority itself. Other TKI such as nilotinib,
bosutinib and ponatinib are still being investigated as phase
I and II trials in pediatric cancers. At this moment, the
choice of both imatinib or dasatinib appears to be reason-
able as TKI in frontline ALL protocols for children and ado-
lescents.7,9,10,67,68 
In summary, there are still some challenges to implant-

ing targeted therapy into frontline ALL treatment. There
is a need for an early identification of BCP-ALL harboring
ABL-class and JAK-pathway alterations to allow prompt
intervention with targeted therapy to reduce intensity of
chemotherapy, and refine HSCT indications, as already
shown for Ph+ ALL.5-10 Diagnostic technologies such as
RNA sequencing and similar strategies should be imple-
mented in a timely fashion for all “B-other ALL”.

Although ABL-class and JAK-pathway alterations account
for most BCR-ABL1-like ALL cases, there are also several
alterations involving kinases that are not inhibited by
either TKI or JAK inhibitors. Future studies are required
to assess the potential of targeted inhibitors of these
kinases in model systems and human leukemic cells. In
the meantime, for this subgroup of BCR-ABL1-like cases
without known targetable lesions, the optimal treatment
should be based on MRD response, and might include
innovative therapies such as immunotherapy. Moreover,
all ALL patients treated with targeted approaches should
be registered and closely followed up on the molecular
level as recently discussed by Elitzur and Izraeli in order
to understand response and resistance to targeted treat-
ment.69 Due to the rarity of these clinical entities, collab-
orative international efforts are strongly needed to con-
duct successful studies. 
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