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Abstract—Goal: The United States (US) is currently one
of the countries hardest-hit by the novel SARS-CoV-19
virus. One key difficulty in managing the outbreak at the
national level is that due to the US’ diversity, geographic
spread, and economic inequality, the COVID-19 pandemic in
the US acts more as a series of diverse regional outbreaks
rather than a synchronized homogeneous one. Method:
In order to determine how to assess regional risk related
to COVID-19, a two-phase modeling approach is devel-
oped while considering demographic and economic cri-
teria. First, an unsupervised clustering technique, specif-
ically k-means, is employed to group US counties based
on demographic and economic similarities. Then, time se-
ries forecasting of each cluster of counties is developed
to assess the short-run viral transmissibility risk. Results:
To this end, we test ARIMA and Seasonal Trend Random
Walk forecasts to determine which is more appropriate for
modeling the spread and lethality of COVID-19. From our
analysis, we then utilize the superior ARIMA models to
forecast future COVID-19 trends in the clusters, and present
the areas in the US which have the highest COVID-19 related
risk heading into the winter of 2020. Conclusion: Including
sub-national socioeconomic characteristics to data-driven
COVID-19 infection and fatality forecasts may play a key
role in assessing the risk associated with changes in in-
fection patterns at the national level.

Index Terms—ARIMA, COVID-19, data analytics, k-means
clustering, time series analysis.
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I. INTRODUCTION

THROUGHOUT 2020, the novel SARS-CoV-2 virus driv-
ing the COVID-19 pandemic has completely changed the

world, and has particularly affected the United States (US).
In a one-year period starting with the detection of community
spread in late February 2020, the virus infected almost 28 million
Americans and is confirmed to have led to over 425,000 fatalities
as a result of various complications from infection [1].

There have been numerous factors that have complicated the
American federal-level response to COVID-19. These include
medical considerations, such as the ability of the virus to ride
along aerosolized particles that an infected individual breathes
out [2], and political ones [3]. Less-discussed is the vast geo-
graphic spread of the US. Notably, the series of infection waves
in the US have led to surges of cased that were more concentrated
in certain regions of the US. The appearance of a series of
loosely-connected regional outbreaks versus a coordinated set of
waves of infection that appear all at once nationally is partially
the result of the large geographical and demographic diversity in
the US. When considering this regional-outbreak perspective, it
may be prudent to segment sections of the country into distinct
groups. At a population-level, groups of people with similar
demographics and/or socioeconomic standing are likely to have
similar behaviors due to cultural similarities. It is therefore
worthwhile to build viral case forecasting models that take this
into account.

Since COVID-19 began to spread globally in Spring 2020,
researchers have applied various mathematical models with
the intent to forecast future COVID-19 cases. According to
the authors of [4], models that are utilized in epidemiological
settings tend to either be mechanistic models based on grounded
epidemiological theory or physical system characteristics, or
are data-driven statistical models. Mechanistic models aim to
leverage both the infection/fatality data in a pandemic and
known physical processes that underpin the spread of a virus
in order to model the dynamic change in the number of in-
fected people as time progresses [5]. Examples of less complex
mechanistic models include the Susceptible-Infected-Recovered
(SIR) models [6], [7] and the Susceptible-Exposed-Infectious-
Recovered (SEIR) models [8]. These models are effective at
developing quick insights into how a pandemic may progress,
and may include varying degrees of complexity, based on the
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approach of the developers [9]. Subsequently, they have been
applied to model the progression of the COVID-19 pandemic
in China [10] and Canada [11]. Due to the lower degree of
complexity of these models, as they only model three or four
potential system states, there have been attempts to apply or
extend them in applications related to COVID-19. The authors
of [12] and [13] developed generalized mechanistic models that
consider seven and eight (respectively) potential states the pop-
ulation may exist in as a result of COVID-19: susceptible, pro-
tected (quarantined), exposed, infected, infected and isolated,
hospitalized (only in [13]), dead, and recovered. They found
that their approach improved performance versus Susceptible-
Exposed-Infectious-Recovered-Dead (SEIRD) models. Another
approach that aimed to apply mechanistic approaches to model
infection waves through “Riccati Modules” at the national-level
in the US was developed by the author of [14].

In the context of epidemiological modeling, data-driven mod-
els aim to model the progression of the virus over time while
not considering epidemiological-specific characteristics like in
mechanistic models. The Generalized Growth Model (GGM)
and Generalized Richards Model (GRM) [15]–[19] are com-
monly used data-driven approaches that aim to fit spread trends
to a generalized logistic curve. While these models can provide
an outlook for the entire progression of a virus, they are not
as effective as mechanistic models at this. In addition, they are
somewhat rigid, preventing the consideration of rapid changes
on a day-to-day or week-to-week basis as the result of public
health policy or virus mutations. Other data-driven approaches
that utilize time series models such as ARIMA [20]–[24], or
deep learning models such as LSTM [25]–[27] can be leveraged
to adapt as the circumstances change. ARIMA models tend to
be more prevalent in medical applications, due to the ease in
building explainable models versus deep learning approaches.
Due to the serious nature of the problem being explored in
this study, as well as the constantly changing circumstances,
ARIMA models may be a more appropriate selection, as they
can be rapidly refit as more data becomes available, and the
relationships may be more clearly explained.

Oftentimes, the application of models in epidemiological
studies must consider factors that may lead to variations in the
transmissibility of a disease – one population group may exhibit
different behaviors than others due to various sociological and
cultural factors, which may result in different population-level
viral spread. While the aforementioned models are effective
for modeling the progression of a pandemic for a region, we
must consider multiple regions. As these regions may supersede
state boundaries in the US, counties may be considered as the
“building blocks” for regions based on socioeconomic charac-
teristics. Consequently, clustering approaches are appropriate
for just this task. There are various areas that leverage the use of
clustering algorithms such as k-means clustering [28] to parti-
tion large population-level datasets into clusters that are grouped
together based on similarity. Clustering approaches are com-
monly applied to demographic features in various applications
for grouping users/subjects based on similarity. These include
recommendation systems [29], sociological analysis [30], data

mining for inductive analysis [31], and for the development of
policy [32].

For the work presented in this paper, we have gathered sev-
eral county-level datasets pertaining to the US. These datasets
include information on population demographics, property de-
velopment, financial productivity, and daily cumulative case
counts and fatalities as a result of COVID-19. From this data,
we plan to leverage demographic and socioeconomic data to
group American counties together into large aggregations based
on their similarities to one another. These aggregate groups
of counties that are similar should have similar cumulative
case count and fatality data, allowing for us to develop case
and fatality forecasts for each to assess of how COVID-19 is
expected to continue spreading if measures continue as-is. Based
on this, we aim to develop a two-stage forecasting system.
After organizing the data into a tidy form, we will first apply
unsupervised learning approaches such as k-means clustering
to group the counties together based on their socioeconomic
profiles. Subsequently, we will aggregate the time series for
each county together based on its assigned cluster to develop
cluster-level time series forecasts. From our analysis, clustering
with k-means and time series forecasting with Autoregressive
Integrated Moving Average (ARIMA) leads to the most effective
fits and forecasts. We then aggregate the cluster-level ARIMA
fits and forecasts to develop a national-level forecast, and see
that it comes close to matching the performance of a dedicated
national-level ARIMA forecast.

The aim of these models is to identify high-risk areas where
public health measures should be focused. To our knowledge,
there does not exist a system that leverages a combination of
clustering on demographic data and data-driven models in order
to forecast COVID-19 progression across a country. The vast
majority of the existing literature related to modeling COVID-
19 seems to focus on producing national-level forecasts. The
remaining sections of this paper outline how this may be done
in the US.

The rest of the paper is organized as follows: In Section II,
we discuss the methods applied to clean and structure socioeco-
nomic and COVID-19 data in a way to be applied to the models
that are developed later on in the section. Following this, we
validate the forecasting models and express key findings from
our modeling approaches in Section III. Finally, we conclude
the paper in Section V.

II. MATERIALS AND METHODS

A. Forecasting Pipeline Overview

The incorporation of socioeconomic data with COVID-19
case and fatality data for a risk analysis Decision Support
System (DSS) requires the development of a pipeline capable
of preprocessing, refining, clustering, modeling, and visualiz-
ing the data. The processes required for the pipeline to work
properly are visualized in Fig. 1. In this paper, we focus on the
development of the core functions of the DSS – prepossessing
the data, development of the clustering process to group the
counties together based on socioeconomic similarity, manually
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Fig. 1. A comprehensive flowchart representing the proposed process
of leveraging socioeconomic data for COVID-19 forecasting in a De-
cision Support System (DSS). The scope of the work in this paper is
contained within the red square.

developing time series forecasts for the data, and expressing the
forecasts in visualizations that highlight the risk profiles for each
cluster of counties.

B. Data Preparation

1) Dataset Overview: We have obtained several county-
level datasets from the US. The first dataset contains demo-
graphic data such as population size, gender, racial, and age
distributions for each county in the US. Note that for the scope
of our analysis, we are only considering counties located within
the 50 states, and excluding all non-state territories (i.e., Puerto
Rico, US Virgin Islands, etc.) The demographic data are from
the 2010 census and population trend forecasts for each year
following the census, up to 2019, via the US Census Bureau.
The second contains daily cumulative COVID-19 cases and
deaths for each county in the United States from late March to
late October 2020, roughly encompassing the first and second
major infection waves, via the CDC. The third dataset contains
United States county-, state-, and national-level Gross Domestic
Product (GDP) from 2010 to 2018, via the US Bureau of Eco-
nomic Analysis. The fourth dataset contains the GIS coordinates
representing the geographic centers of each US county, along
with their land areas in square miles, via the US Census Bureau.
Finally, the fifth dataset is a lookup table that links each US
state and county to a primary key for each county known as the
county Federal Information Processing Standards (FIPS) codes
that each of the aforementioned datasets are indexed row-wise
by.

2) Data Cleaning: As mentioned in the Introduction, we
aim to cluster each US county-level territory based on similar
demographic and economic profiles, as these counties are likely
to contain groups of people with similar behaviors. In order to
cluster these counties, we must perform an inner join on the five
aforementioned datasets. Prior to performing the join, we must
clean the data. Since we are looking at a public health crisis
that occurs in 2020, we are only interested in the most recent
data (2018/19). While we could apply time series models (like

TABLE I
REFINED SOCIOECONOMIC DATASET FOR COUNTY CLUSTERING

ARIMA or Holt-Winters Exponential Smoothing) to forecast the
2020 county-level demographics and Gross Domestic Product
(GDP) contribution, in the interest of an expedient process due to
the dire situation posed by the coronavirus, we are assuming that
GDP in 2018 and 2019-level demographic data is a reasonable
basis for clustering these counties together.

First, we aim to build the socioeconomic data table explained
in Table I that will be used to cluster the counties together. We
begin by isolating the most recent (2018) county-level GDP, and
link the values to their corresponding FIPS key. We then generate
two features from the raw GDP: the percentage of the state- and
national-level GDP contributed by the county, by dividing the
county GDP by the state and national GDP, respectively. We
make one assumption when dealing with Virginia independent
cities, because in the raw data, some were grouped together if
they had small populations. If this was the case, we split them
into two separate rows, and assumed they each contributed to half
of the recorded GDP, as these were likely intertwined municipal
economies. There are very few missing GDP data after these
changes.

After handling the economic data, we filter and clean the
demographic data. We begin by selecting only the data from July
2019 – the most recent demographic forecasts. From the most
recent demographic information, we select the columns contain-
ing age group sizes, and the populations of all men, all women,



238 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 2, 2021

TABLE II
REFINED COVID-19 COUNTY-LEVEL INFECTION AND FATALITY

DATASET FOR INFECTION MODELING

White men, White women, Black men, Black women, Native
American men, Native American Women, Hispanic/Latino men,
Hispanic/Latino women, men identifying as two or more races,
and women identifying as two or more races for each age group,
respectively. These features are linked to their respective county
FIPS code. The age groups are the number of people binned
in half-decade increments (i.e., 0–4, 5–9, 10–14,..., 85+ years
old). From the selected features, we compute the percentage of
the county belonging to an ethnic/racial group by taking each
of the aforementioned demographic groups and dividing them
by their county’s respective total population count. The average
age of the county is estimated by taking a weighted average of
the sizes of the stratified age groups of the county data. The
average age is normalized by dividing by 100. Finally, in order
to attain the county population density in persons per square
mile, we divide the estimated county population by the land
area of the county in square miles. Following the economic and
demographic preprocessing, we then combine the features into
the demographic table by performing an inner join along the
FIPS key. This results in the refined structured data summarized
in Table I.

We then turn our attention to the county-level COVID-19 data.
We isolate only the features containing the FIPS key, date of data
recording, the number of cumulative cases, and the number of
cumulative fatalities based on the FIPS key. We then divide the
number of cumulative cases/fatalities for each day in the county
time series by the respective county population. This leads to
the time series to be represented as a percentage rather than
an absolute number of cases, allowing for a per-capita analysis
of the COVID-19 pandemic progression that leads to ease of
comparison. This processed time series data is summarized in
Table II.

After generating the clean data organized by the structure
defined in Tables I and II, we perform two last preprocessing
steps on the demographic data. First, we perform min-max
normalization on each feature in the demographic data in order
to ensure that all of the features exist along the same [0, 1] scale.
Following this, we then perform Principal Component Analysis
(PCA) [33] on the normalized demographic/economic data. Due
to the fact that much of the demographic information is likely to
contain correlated information, we apply PCA (via the python
sklearn package [34]) to reduce the dimensionality of the data
and retain most (in this work, 99.5%) of the variance of the
data. This will aid in facilitating the development of clusters that
more readily capture distinctions. PCA also helps to counter the
curse of dimensionality. As the number of features increases,
the feature space becomes sparser, reducing the effectiveness of
Euclidean distance as a measure for the clustering approaches.

These refined data will be utilized in the development of the two
cornerstone models in this prediction system.

C. Model Development

In this section, we develop the models that are utilized in the
demographic-based forecasting approach. First, we utilize the
preprocessed demographic data to form clusters of counties with
the aim that they exhibit maximized demographic similarity.
Following the grouping of counties together, we then pool their
cumulative infection and fatality data to create unique infection
and fatality time series for each of the aggregated groups.
Following this, we develop ARIMA forecasts for each of the
aggregated clusters, which are then utilized to gauge future
COVID-19 risk.

1) County Clustering Approaches: The US is vast and
diverse, both geographically and demographically. Due to this,
when modeling a pandemic in the US, it is worthwhile to break
the country up into regions, and model the spread in each region.
Oftentimes, we consider geographical regions when subdividing
the US (i.e., NJ, NY, CT, and PA are often grouped together as
the Mid-Atlantic States, due to their geographic proximity to the
Atlantic Coast of the United States, and position between New
England and the Southern United States). Due to the rapid nature
in which Americans can easily traverse the United States (e.g.,
one can fly from New York City to West Palm Beach, a span of
nearly 1500 miles, in less than three hours), and the ability for the
virus to be transmitted via asymptomatic carriers, we think that
there are other factors that link the transmission of the virus more
effectively than geography. Economic and demographic factors,
in particular, may offer a pathway to developing a more robust
system to group American counties together. For example, Los
Angeles County, CA is likely to be more similar in the context
of this pandemic to New York County (Manhattan), NY than
Imperial County, CA. While Imperial County is located much
closer to LA county than New York County, LA county likely
has a much more similar economic and demographic profile
with Manhattan than the agricultural Imperial County. These
economic and demographic similarities more likely than not
imply similar population movement and dispersion patterns than
simple geography. In addition, the effects of the virus may be
more likely to lead to different prognoses based on race. Indeed,
studies have shown that Black and Hispanic Americans are
hospitalized [35] and die from COVID-19 [36] at higher rates
than White Americans.

To this end, we apply clustering approaches to the PCA-
feature engineered dataset described in Table I, in order to
develop “regions” that are linked via racial/ethnic composition
and economic productivity (which correlates with population
mobility, size, and wealth), in addition to geographic consid-
erations. In clustering approaches, the aim is to determine k
centroid points in the data such that the sum of the variance of
the distance between points in a cluster and its centroid (i.e.,
Sum of Squared Errors (SSE)) are minimized – this can be
mathematically expressed as follows:

SSE = min

k∑
c=1

∑
i∈Ck

||xi − μc||2, (1)
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TABLE III
COUNTY CLUSTER PROFILES BASED ON FIG. 4

where xi is a data entry, μc is the centroid of cluster c, Cc is the
set of entries that are contained within cluster c such that each
county i is only contained within one cluster.

There exist several algorithms to find suboptimal solutions
to the NP-hard problem expressed in (1). The most widely-
known and used unsupervised approach is the naive k-means
algorithm [37]. Other approaches leverage metaheuristic search
algorithms such as Particle Swarm Optimization (PSO) to search
for the cluster centroids [38].

In order to determine a reasonably good set of clusters in
the context of this problem, we utilize the elbow and silhouette
analysis methods to evaluate the effectiveness of the clusters.
For both, we first run the PSO and k-means approaches for a
varying number of k clusters (2− 20). In the elbow method, we
compute the sum of squared errors for each set of clusters as ex-
pressed in (1), and subjectively look to see where a diminishing
returns effect in the performance gains occur (the “elbow”) in
the graph. For the silhouette analysis method [39], we evaluate
the silhouette coefficients for each number of clusters (2− 20),
where the coefficient is a value in the [−1, 1] range. A value of
1 for a silhouette means that the point fits the cluster very well
and is located far away from the boundary for another cluster, a
value close to 0 implies that the point lies close to the boundary
of another cluster, and a negative value implies that a point may
be located in the wrong cluster.

Based on the results of the elbow analysis and the average
silhouette scores for eachk presented in Fig. 2, we selectedk = 9
as the most appropriate, as we felt that it appropriately handled
the trade-off between low SSE, acceptable average silhouette
coefficient value, and had a sufficiently large enough number of
distinct clusters to draw nuance in the county cluster demograph-
ics. While the average silhouette coefficient of approx. 0.35 is
somewhat low, in the context of the data we have it appears to
generate sufficiently good clusters. We see in Fig. 3 that while
Clusters 1, 5, and 7 have some members with negative silhouette
values, the clusters formed appear to have relatively well-defined
regions.

We summarize the profiles of each county cluster briefly
in Table III, provide example counties that are most like the
cluster centroid in Table III, and provide the cluster geographic
centers, populations, and population densities in Table III. The
cluster profiles are constructed based on the mean values for
each cluster centroid. Fig. 4 shows that each cluster has a distinct

Fig. 2. (Top) Sum of Squared Errors (SSE) for each number of clusters
k, calculated from (1). (Bottom) Average silhouette coefficient for each
number of clusters k. The red vertical lines correspond to the selected
number of clusters (k = 9).

TABLE IV
COUNTIES THAT ARE CLOSEST TO THE MEAN

OF THE CLUSTER DISTRIBUTION

demographic profile. Interestingly, while we did not account for
geography at all in our clustering process, the clusters show some
geographical connectedness, and unique regional positioning
(i.e., a majority of counties with a majority Black population
are located within the deep south states Louisiana, Arkansas,
Mississippi, Alabama, Georgia, and South Carolina). implying
that demographics and economic productivity correlate with
location in the US. This is visualized with a map that color
codes each county based on its assigned cluster in Fig. 5.
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Fig. 3. (Left) Silhouette plots for k = 9 clusters. The dashed red vertical line corresponds with the average silhouette score. (Right) Clustering
dataset compressed to two-dimensional space with PCA to visualize the effectiveness of the clusters. The clusters are color-coded and their
centroid is numerically labeled. We notice that some of the lower silhouette scores result from the decision boundaries between a handful of
clusters, however clearly-defined regions appear to have been formed.

TABLE V
OTHER CLUSTER-RELATED INFORMATION – GEOGRAPHIC CENTERS AND

AVERAGE POPULATION DENSITIES FOR EACH CLUSTER

Fig. 4. Heatmap of the county centroid values. Darker values signify
lower percentages. These values are utilized in conjunction with Table III
to express the profiles of the county clusters.

2) Time Series Modeling of Cases and Deaths: After
the clustering process in which we combined the cumulative
COVID-19 case and death data for each cluster, we apply time se-
ries analysis methods in order to build forecasts of future trends
in the data. These forecasted trends are the basis for the risk
modeling, as areas that are expected to have dramatic increases

in cases, and consequently, deaths, are likely to need more
resources to manage their outbreaks. Prior to the development of
the models, we first develop the infection and fatality time series
for each of the clusters generated previously. We generate the
series by computing the weighted sum of the percentages of the
counties in each cluster infected/dead, and divide the sums by
the total population of the cluster of counties to obtain the cumu-
lative percentage infected or dead by COVID-19 in the cluster.
After obtaining the cumulative fraction of infections/fatalities
to the cluster population, we then take the first-order difference
(i.e., the cumulative cases from one day minus the previous day)
to obtain the daily new active infections/fatalities. The new active
infections/fatalities serve as the series of interest to model.

Seasonal Autoregressive Integrated Moving Average with eX-
ogenous factors (SARIMAX) models are generalized versions
of the Autoregressive Integrated Moving Average (ARIMA)
model [40]. ARIMA is a powerful, explainable modeling ap-
proach for forecasting time series. SARIMAX improves upon
ARIMA by incorporating seasonality and external influences
on a time series. The consideration for seasonality is a result of
how COVID-19 data collection and reporting occurs in practice
– there is weekly seasonality in both the cumulative cases and
fatalities series as more data is collected/processed during the
work week versus the weekend. When modeling the cumulative
cases series, we consider the series as independent endogenous
factors, and utilize a SARIMA (no exogenous factors) approach.
It is worthwhile to note that fatalities are a lagging indicator
from the number of cases, as it typically takes 2-3 weeks for
increases in deaths to result from increases in cases, based on
symptomatic progression of the disease [41]. We thus utilize
SARIMAX approaches for fatalities, with cumulative cases as
an exogenous factor.

In order to streamline the discussion of the
SARIMA/SARIMAX models, we will refer to them collectively
as ARIMA models, and utilize the following notation to express
the model orders: ARIMA(p, d, q)x(P,D,Q, s), where p
represents the autoregressive order of the model, d represents
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Fig. 5. Visual representation of county groups, where the color corresponds to the cluster determined by k-Means Clustering. Blank counties
imply that we do not have data for them.

the number of first-order differences applied to the series, q
represents the moving average order of the model, and finally,
P ,D, andQ refer to the seasonal autoregressive, difference, and
moving average orders for a seasonality of s lags, respectively.
In the context of this problem, we utilize a weekly seasonality
(s = 7).

a) ARIMA Forecasting. After constructing the infection and
fatality time series for each of the clusters, we explore and
fit their corresponding individual ARIMA models. We note
that after performing the two first-order differences and one
first-order seasonal difference on the series in order to achieve
weak stationary series, there still existed autocorrelations in the
de-trended data residuals. In order to address this, we fit separate
ARIMA models for each time series based on manual analysis
of the residual patterns. From the analysis of the time series
for each cluster, we have fit ARIMA(0, 1, 1)x(0, 1, 1, s = 7)
models to the active case series for each cluster. We also fit
ARIMA(1, 0, 0)x(0, 1, 1, s = 7) models to the fatalities series
for each cluster, with infections from 14 days prior as exogenous
factors. In other words, we include a linear relationship between
the daily change in fatalities and the daily change in cases 14
days prior along with the ARIMA components.

b) Seasonal Trend Random Walk Forecasting. A random
walk process is a discrete stochastic process, where at each
interval, the state of the process has an independent likelihood
of increasing or decreasing [42]. In the context of time series
models, this implies that once de-trended, there exists no au-
toregressive or moving average components; each observation
is independent of the previous one. In the context of ARIMA,
a random walk may be modeled as ARIMA(0, 1, 0), and if

there is a seasonal trend as well, then it may be modeled as
(ARIMA(0, 1, 0)x(0, 1, 0, s)) [43]. When analyzing the trends
of the COVID-19 case and death time series, it is notable that in
order to de-trend the series (i.e., make the series approximately
stationary), a first-order difference and a first-order seasonal
difference can be applied to the active case and death series,
where the seasonality is weekly due to how COVID-19 data is
collected and reported.

c) Forecasting Approach. Pandemics lead to very rapidly
changing circumstances. Due to the exponential growth in the
number of infections that may occur in uncontrolled settings,
the forecasts for the number of new active cases and fatalities
must regularly be updated. In our analysis, we simulate this
re-calibration on the data by utilizing a sliding window of
interest. Our models will output 28-days forecasts from 56 days,
worth of training data. We then slide the window forward every
two weeks. In a real-life scenario, this would be equivalent to
producing the first forecast after 8 weeks of recorded transmis-
sions, and re-calibrating the model every two weeks. We test
the forecast accuracy by comparing the first seven days of the
forecast with the true data in each forecast window. This sliding
window approach is utilized to measure the effectiveness of the
models introduced earlier in this section.

D. Validation Metrics

An effective method for validating the fit of ARIMA models
is a Ljung-Box goodness-of-fit test on the model residuals [44].
In this test, the null hypothesis is that the residuals are not auto-
correlated, and the alternative is that they are. Autocorrelations
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TABLE VI
LJUNG-BOX TEST RESULTS AT LAG-14. WE DETERMINE THE NUMBER OF
ROLLING HORIZON FORECASTS WHERE WE FAIL TO REJECT THE NULL

HYPOTHESIS OF RANDOM AUTOCORRELATION (OUT OF SIXTEEN TOTAL) AT
THE α = 0.01 LEVEL. THE BETTER PERFORMING MODEL IS HIGHLIGHTED

IN BOLDFACE FONT

in the residuals imply that the model has not fully captured the
signal in the data or that the model is over-fitting to noise. A
general rule of thumb is to apply the test to the lag-2˜s residual
in ARIMA models, where s is the seasonality. In the context
of our model, we apply this to the 14th lag. The results of the
test are summarized in Table VI. In order to verify that the
re-calibration forecasting strategy outlined in Paragraph II-C2
leads to models that fit the data well, we need to track whether
or not the sub-models fail to reject the null hypothesis at the
α = 0.01 significance level. To this end, we check to see the
total number of times where the results of the Box-Ljung test
led to this outcome out of the 16 total sliding window forecasts.
Based on the results presented in Table VI, the ARIMA models
provide much stronger fits than the random walks. In every
cluster, several more of the sliding window sub-models for the
ARIMA forecasts failed to reject the null hypothesis versus the
random walk models. This implies that the ARIMA models are
much more effective at capturing the signal in the time series
than the Random Walk models.

Another useful metric for evaluating the goodness-of-fit of
the model is the Root Mean Squared Error (RMSE), which can
be determined as follows:

RMSEcm =

√√√√ 1

(T − t∗cm)

T∑
t=t∗cm

(ytcm − ŷtcm)2, (2)

where RMSEcm is the Root Mean Squared Error for the model
type m = {cases, deaths} fitted for cluster c, t∗cm is the index
of the first day of recorded infections or deaths, respectively, for
the series that is fitted for cluster c, T is the index of the day that
splits the forecast from the fit, ŷtcm are the fitted values in the time
series model, and ytcm is the real data. Note that ytcm − ŷtcm are
the residual values. The RMSE scores for the daily new active
infections and fatalities are summarized in Tables VII and VIII,
respectively.

In addition to evaluating the goodness of fit of a model, it
is worthwhile to utilize metrics to evaluate the effectiveness of
a forecast. In the context of time series models, measures of
the effectiveness of a forecast should measure the bias and the
accuracy of the model. An effective metric for measuring the
forecast accuracy is the Mean Absolute Error (MAE), expressed

TABLE VII
RMSE OF THE ACTIVE INFECTION MODEL FITS. THE MODEL WITH THE

BETTER (LOWER) RMSE IS HIGHLIGHTED IN BOLDFACE FONT

TABLE VIII
RMSE OF THE ACTIVE FATALITY MODEL FITS. THE MODEL WITH THE

BETTER (LOWER) RMSE IS HIGHLIGHTED IN BOLDFACE FONT

TABLE IX
MAE OF THE ACTIVE INFECTION MODEL FITS. THE MODEL WITH THE

BETTER (LOWER) MAE IS HIGHLIGHTED IN BOLDFACE FONT

as follows:

MAEcm =
1

(Tf − T )

Tf∑
t=T

∣∣ytcm − ỹtcm
∣∣, (3)

where MAEcm is the MAE for each model forecast, ỹtcm are
the forecasted values, and Tf is the index of the f -step ahead
forecast. In the context of the models proposed in this paper, we
validate on the one week, or f = 7 forecast. A smaller MAE
implies a more accurate model. The MAE scores for the daily
new active infections and fatalities are summarized in Tables IX
and X, respectively.

To measure the bias of the forecast, a useful metric is the Mean
Error (ME), expressed as follows:

MEcm =
1

(Tf − T )

Tf∑
t=T

(ytcm − ỹtcm), (4)
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TABLE X
MAE OF THE ACTIVE FATALITY MODEL FITS. THE MODEL WITH THE BETTER

(LOWER) MAE IS HIGHLIGHTED IN BOLDFACE FONT

TABLE XI
ME OF THE ACTIVE INFECTION MODEL FITS. THE MODEL WITH THE BETTER

(CLOSEST TO ZERO) ME IS HIGHLIGHTED IN BOLDFACE FONT

TABLE XII
ME OF THE ACTIVE FATALITY MODEL FITS. THE MODEL WITH THE BETTER

(CLOSEST TO ZERO) ME IS HIGHLIGHTED IN BOLDFACE FONT

where MEcm is the ME for each model forecast. A negative
bias implies that the forecast is overestimating the true trend,
and a positive bias implies the forecast is underestimating
the true trend. The ME scores for the daily new active in-
fections and fatalities are summarized in Tables XI and XII,
respectively.

Note that when computing the validation metrics, the values
of the time series expressed as infections/deaths per 100 k are
used. In other words, an MAE score of 1 implies an aver-
age error magnitude of 1 infection per 100 k in the forecast
window.

III. RESULTS

In this section, we validate the approach of the random walk
and ARIMA forecasts developed in the previous section. We
implement the fitting process for the Seasonal Trend Random
Walk, and custom ARIMA(p, d, q)x(P,D,Q, s) for each cluster

of counties (via the python numpy, pandas, and statsmodels
packages [45]–[48]).

Based on the results of our residual analysis via the Box-Ljung
test, along with the RMSE, MAE, and ME metrics, the ARIMA
models for each cluster are superior to the random walk models.
For each cluster, there are more sub-forecasts in the simulated
biweekly re-calibration where the ARIMA models fail to reject
the null hypothesis of the Box-Ljung test at the α = 0.01 signif-
icance level versus the random walk models. This implies that
over time, the ARIMA models are more effective at capturing
the signal of the time series processes in each cluster versus
the random walk models. The results of the RMSE calculations
further reinforce this conclusion – the average RMSE for each
cluster’s ARIMA models are lower than those of the random
walk, showing that the fitted time series curve more closely
approximates the true data. In most clusters, the average MAE
and ME of the ARIMA models were lower/closer to zero, respec-
tively, implying more accurate and less biased forecasts than the
random walk counterparts. Based on the results of the residual
analysis, we utilize the ARIMA models for the remainder of the
analysis conducted in the manuscript.

A. Cluster Risk Modeling

After the validation and model-selection process, we apply
the fitted ARIMA models to each of the clusters and gen-
erate their 28-day forecasts such that the first seven days of
the forecast overlap with the last seven days of real data and
the remaining 21 days of the forecast extends beyond the most
recent data. This is done to show visually whether or not the
fitted models adequately forecast future trends, and to provide a
visualization of future potential trends.

We visualize the fitted models on the data along with the
forecasts for the number of infections in Fig. 6, and num-
ber of deaths in Fig. 7. Note that the figures represent the
fitted/forecasted daily new active infections/deaths per 100 k
people by multiplying the proportion infected/killed daily by
100,000. We observe from the figures that the last seven
days of real data generally follow the trend forecasted or are
within the 95% (infections)/80% (fatalities) forecast confidence
intervals.

We note a few trends based on the visuals expressed in
Fig. 6 and Fig. 7. The county clusters with large concentrations
of minority populations (clusters 2, 3, 6, and 8) experienced
disproportionately high concentrations of cases and fatalities
during the first and second major infection waves, matching the
findings in the literature [35], [36]. While new cases in clusters
containing large Black pluralities (clusters 2 and 8) and large
Latino pluralities (clusters 3 and 5) are forecasted to level off
or decline heading into the holidays, we observe that in cluster
6 (large Native American pluralities), the number of new cases
are forecasted to further accelerate into the holiday season. We
also see that the number of new cases in White-majority county
clusters (0 and 1) are expected to have some of the highest rates
of acceleration of new cases heading into the holiday season.

The daily infection rates are a useful tool for determining risk.
A growing trend in the daily new cases indicates an accelerating
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Fig. 6. ARIMA Forecasts for each cluster (cases) during the most recent forecasting window.

spread of SARS-CoV-2, implying the higher risk associated
with the virus, whereas a flattened or decreasing trend implies
containment of the virus through various means, such as wearing
masks, social distancing, public health policy, etc. We gauge the
risk a cluster faces by taking the average of the 22nd to 28th
day forecasts (average of the 4th week out from the train/test
split). These values are utilized to generate a risk heatmap for
new cases and deaths (visualized in Fig. 8). From the figure, we
observe that counties in the Midwestern US, particularly those in
the Dakotas, are at the highest risk of increased fatalities heading
into the holiday season, and are among the highest-risk counties
for infection accelerations.

B. National-Level Forecasts

Since the progression of the SARS-CoV-2 pandemic is driven
predominantly in regional waves, it is worthwhile to assess how
effective a national-level forecast generated by pooling together
the cluster forecasts would be. To achieve the cluster aggregation
forecast, we take the weighted averages of the fitted values,
forecasts, and confidence intervals of all of the cluster sums.
The resultant fit and forecasts for the national per-capita cases
and fatalities are visualized in the left panes of Fig. 9 and Fig. 10.

Upon visual inspection, the aggregated forecasts seem to fit the
data well.

In order to determine a baseline for comparison, we fit an
ARIMA(0, 1, 1)x(0, 1, 1, s = 7) model to the national daily
active infections series, and an ARIMA(1, 0, 0)x(0, 1, 1, s = 7)
model to the national fatality series (with the national cases as an
exogenous factor). These orders were based on residual analysis
of various fits until the ARIMA models failed to reject the null
hypothesis of the Box-Ljung goodness-of-fit test. The fits of
these models are visualized in the right panes of Fig. 9 and
Fig. 10. In addition to the visual validation of the national-level
forecast, we compute the RMSE for the ARIMA and pooled
models to measure the goodness-of-fit, and the MAE/ME to
measure the accuracy and bias, respectively, of the forecasts at
the last forecast window only; we do not simulate the rolling
forecasts as we did earlier. The results of these computations
are shown in Table XIII. From the results in the table, we can
conclude that both the ARIMA and aggregated models fit the
data very well based on their RMSE values, and both provide
high-quality forecasts. Moreover, from the visual and numerical
validation, we can conclude that the cluster aggregation ap-
proach at the national level is quite effective. It fits the data very
well, and provides accurate, low-bias forecasts in the validation
window of one week out. Indeed, in many of the metrics, the
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Fig. 7. ARIMA Forecasts for each cluster (deaths) during the most recent forecasting window.

TABLE XIII
MAE, ME, AND RMSE SCORES OF THE NATIONAL FORECASTS. LOWER
(BETTER) MAE, ME CLOSER TO 0, AND LOWER RMSE SCORES ARE IN

BOLDFACE FONT

aggregated forecast outperforms the dedicated national ARIMA
model.

IV. DISCUSSION

A. Model Risk Measurement

Since new hospitalizations, fatalities, and other costs asso-
ciated with the pandemic are tied directly to the number of
daily new active infections, we utilize the forecasted future daily
change in infections as the main gauge of risk. The CDC has
published guidelines that tie exposure risk to the average daily
active cases over a 28-day period based on testing density. For
example, based on a high testing density, a low exposure risk is
associated with [0, 5) infections per 100 k, a medium risk with
[5, 50) infections per 100 k, a high risk with [50, 100) infections

per 100 k, and an extremely high risk with >100 infections per
100 k in high-population areas [49].

After utilizing the cluster aggregation time series to fit the
ARIMA models, we then applied the trained model on the
individual counties normalized to a ratio along the [0, 1] range
by dividing the county’s daily new cases/fatalities by the corre-
sponding county population. This approach is done as a sort
of “smoothing” technique; the aggregated clusters will have
much less volatility in the day-to-day changes in the new active
infections versus the individual counties. When the most recent
ARIMA models are applied to each county (based on which
cluster it is a member of), the 28-day forecasts are utilized to
project the average new infections per 100 k 28 days from the
last day of the model. From Fig. 8, we see that the highest-risk
counties heading into the 2020 holiday season are concentrated
in the Midwestern United States: The Dakotas, Missouri, Min-
nesota, and Illinois have the highest concentration of counties
that are projected to exceed 75 new infections per 100 k over a
28-day average.

B. Implications of Results

There are a few key takeaways from the results presented
in this manuscript. First, the aggregated time series for each
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Fig. 8. Visualizing the projected holiday season risk of new infections each county based on the clustering/time series approach. Darker counties
are at higher risk (i.e., more likely to see higher cumulative proportions of their populations infected). Grey counties do not have data available.

Fig. 9. National daily active infection forecasts from pooled cluster
forecasts (left) and ARIMA(0, 1, 1)x(0, 1, 1) forecast (right).

Fig. 10. National daily fatality forecasts from pooled cluster forecasts
(left) and ARIMA(1, 0, 0)x(0, 1, 1) forecast (right).

cluster helps highlight the inequity of the impacts of COVID-19
on minority communities at a macro level. We see from the
trends that counties with large ethnic pluralities in the US
experienced larger spikes during the second major transmission

wave. Secondly, we see distinct geographic patterns emerge after
applying the trained ARIMA models to each county. There is
a concentration of higher-risk counties in the Midwestern and
parts of the Southeastern US, and these counties are mostly
geographically adjacent to one another. The third key insight
comes with the benefit of hindsight. The model projects that
the Dakotas in particular are to be extremely hard-hit by the
COVID pandemic heading into the winter holiday, and this
largely matched with real-world progression of the pandemic
in this part of the US. Finally, it is noteworthy that when aggre-
gated together, the combined cluster forecasts lead to a forecast
that slightly outperforms a dedicated ARIMA model for the
national-level data, showing that the approach presented in this
paper can be applied to both county-level and with national-level
decision-making. Based on this real-world success, we believe
our proposed two-stage approach has promise in a DSS to aid
policymakers in allocating resources in anticipation of changes
in infection progression.

C. Limitations of Current Approach

Based on the silhouette analysis of the clusters, along with
the Box-Ljung test results along with the RMSE, MAE, and
ME metrics for the ARIMA models, the work presented in
this manuscript is a good start and may serve as a baseline
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to evaluate other, potentially more robust approaches. In the
clustering approach, we note that there is difficulty in drawing
clear demarcations between county clusters with the current
set of features considered. It may be worthwhile to measure
the economic interconnections between counties, as these are
likely to lead to a higher likelihood of travel/contact between
people living in those counties. Incorporating additional fea-
tures into the clustering data may help the algorithm converge
to a solution where there are more clear boundaries between
the cluster sectors. For the time series models, the rejection
of the null hypothesis in some time windows along with the
correspondingly poor worst-case performance for a few of the
scenarios shows that the ARIMA approach, while promising,
can be improved upon. Improvements in the clustering approach
may lead to improvement off the bat. Additional improvement
may come from the exploration of long-term memory models in
the time series forecasts. Two models that may be applied here
are LSTM and AutoRegressive Fractionally Integrated Moving
Average (ARFIMA) models, which both consider short-term
trends that are most impactful on the forecast, while remember-
ing longer-term behavior of the series overall, which may help in
forecasting corner cases (the cases where our current ARIMA
approach may be falling short). Normal ARIMA approaches
remove the impact of long-term trends when differencing is
applied, which may lead to bias in the longer-term forecasts.

D. Next Steps for Incorporation Within a DSS

Our approach presented here can serve as an excellent baseline
for building a DSS. To get a viable working DSS, the main task
to address is the development of automated time series modeling
that can take into account all of the data available, such as the
use of LSTM and ARFIMA. These models can be compared
with the results presented in this manuscript as a baseline. After
the modelling approach can be automated, other steps needed to
get a viable DSS would determine how to pull data on a regular
basis from open repositories, how to transform the stream of data
so the automated modeling approaches could leverage it, and
exploring how to effectively visualize the results in a succinct
way for the end-user of the DSS.

V. CONCLUSION

In this paper, we developed a multi-step forecasting system,
where we first cluster US counties into alike regions based on
shared economic and demographic factors. We then utilized the
aggregate of the case data for each region to build seasonal
random walk and ARIMA forecast models. We demonstrate via
Ljung-Box tests that custom ARIMA forecasting is superior, as
every cluster contains either autoregressive or moving-average
components, and that the forecasts are aligned with existing liter-
ature related to high-risk demographic groups and the effects of
COVID-19 on their communities. Moving forward, this system
has the potential to be incorporated into a Decision Support Sys-
tem that may aid national-level policymakers in determining how
to allocate medical resources to various counties in the United
States. In order to develop such a system, automatic long-term
memory models should be explored in order to automate the

development of the time series forecasts. Future work should
also seek to improve the quality of the forecasts by incorporating
several exogenous factors into the data such as more detailed
health demographic data (obesity rates, cardiovascular health
data, etc.), hospitalization rates related to COVID-19, popula-
tion movements, etc. In addition, the national-level aggregate
forecast may be improved by incorporating network analytics
to define relationships between the various regional clusters that
are developed based on socioeconomic factors.
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