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Abstract: The Universal Thermal Climate Index (UTCI) is believed to be a very powerful tool for
providing information on human thermal perception in the domain of public health, but the solar
radiation as an input variable is difficult to access. Thus, this study aimed to explore the optimal
strategy on estimation of solar radiation to increase the accuracy in UTCI calculation, and to identify
the spatial and temporal variation in UTCI over China. With daily meteorological data collected in
35 tourism cities in China from 1961 to 2020, two sunshine-based Angstrom and Ogelman models,
and two temperature-based Bristow and Hargreaves models, together with neural network and
support vector machine-learning methods, were tested against radiation measurements. The results
indicated that temperature-based models performed the worst with the lowest NSE and highest
RMSE. The machine-learning methods performed better in calibration, but the predictive ability
decreased significantly in validation due to big data requirements. In contrast, the sunshine-based
Angstrom model performed best with high NSE (Nash–Sutcliffe Efficiency) of 0.84 and low RMSE
(Root Mean Square Error) of 35.4 J/m2 s in validation, which resulted in a small RMSE of about
1.2 ◦C in UTCI calculation. Thus, Angstrom model was selected as the optimal strategy on radiation
estimation for UTCI calculation over China. The spatial distribution of UTCI showed that days under
no thermal stress were high in tourism cities in central China within a range from 135 to 225 days,
while the largest values occurred in Kunming and Lijiang in southwest China. In addition, days
under no thermal stress during a year have decreased in most tourism cities of China, which could be
attributed to the asymmetric changes in significant decrease in frost days and slightly increase in hot
days. However, days under no thermal stress in summer time have indeed decreased, accompanying
with increasing days under strong stress, especially in the developed regions such as Yangze River
Delta and Zhujiang River Delta. Based on the study, we conclude that UTCI can successfully depict
the overall spatial distribution and temporal change of the thermal environments in the tourism cities
over China, and can be recommend as an efficient index in the operational services for assessing and
predicting thermal perception for public health. However, extreme cold and heat stress in the tourism
cities of China were not revealed by UTCI due to mismatch of the daily UTCI with category at hourly
scale, which makes it an urgent task to redefine category at daily scale in the next research work.
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1. Introduction

There is a close relationship between human thermal perception and the atmospheric
environment [1], but humans do not have receptors to sense the air temperature directly [2].
Rather, what humans feel in the daily experience is actually the comprehensive summary
of the thermal environmental conditions, such as skin temperature and their demand
for heating or cooling [3], which are influenced directly or indirectly by the atmospheric
elements such as solar radiation, air temperature, humidity, and wind speed etc. [3–6]. Thus,
thermal comfort index, rather than simple air temperature, has drawn increased attention in
the recent decades, in order to provide better services for assessing and predicting thermal
perception in the domain of tourism, public health, and climate impact assessment [7–10].

Initially, many two-parameter indices were developed to represent the human thermal
environment, including the effective temperature [11], the wind chill index [12], and the
temperature–humidity index [13]. Though these empirical indices can be easily calculated
with simple algorithms, they neglect significant variables and fluxes influencing thermal
perception, which would inevitably lead to misrepresentation of the thermal environ-
ment [7]. In the recent decades, many heat budget models have been developed in the field
of thermal biometeorology, including representatives such as the MEMI model [14], the
Klima–Michchel Model [1], and the MENEX model [15]. All of these heat budget models
can be used in the assessment of the thermal environment, but none is accepted as the
fundamental standard due to persistent shortcomings caused by the relevant theory on
heat exchange and thermos-physiology [7]. Finally, through the cooperation by scientists
from many countries, the Universal Thermal Climate Index (UTCI) was established under
the commission supposed by the International Society on Biometeorology [3,7,16].

Based on the achievements in many previous heat budget models, especially the Fiala
model, UTCI has fully considered the comprehensive influence of the atmospheric envi-
ronment on human perception [3,17,18]. Up to now, UTCI has been validated extensively
with measured data from climate chamber or wind tunnel experiments, together with data
collected from outdoor surveys [3,19]. It has been identified that UTCI is sensitive to small
variations in the atmospheric environment [20], and believed to be suitable for assessing
thermal environments under all climate conditions [7,21–26].

However, everything has two sides. While UTCI has great advantage over the simple
empirical indices in describing thermal perception due to its full consideration of the atmo-
spheric environment, this consideration inevitably has led to the negative influence on its
application caused by its requirements of more input meteorological variables [3,4,16,27],
among which solar radiation is certainly more difficult to access than the other meteoro-
logical items such as temperature and humidity etc. Under this condition, cloudiness was
often used as proxy of solar radiation as the input variable [9,23,24,28], but the reliability
of the UTCI results might be suspicious, as calculation by cloudiness might result in high
discrepancy in radiation estimation [9].

In fact, solar radiation can be accurately estimated by many methods, including robust
numerical models [29,30], remote sensing [31,32], and empirical models [33–35]. In recent
decades, empirical models, including sunshine- and temperature-based models, have
become popular in radiation estimation due to their simple operation and readily available
variables [36,37]. The sunshine-based models are more preferable to temperature-based
ones because of its high accuracy in radiation estimation [33,38], even in the extreme
climate regions such as the Tibetan Plateau [39]. Recently, many machine-learning methods
have also been used to estimate solar radiation, and have shown great promise with their
high accuracy [40,41]. Based on the sensitivity analysis, Weihs et al. [4] argued that the
uncertainty in the calculated UTCI might be less than ±2 ◦C; if radiation was reasonably
estimated with synoptic observations, so we can envisage that accurate UTCI can be
obtained based on optimal strategy on estimating solar radiation with empirical models
or machine-learning methods. However, to our knowledge, no research has yet has been
conducted to test this hypothesis.
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China covers a huge area with complex topography and diverse climate [42], which
highlights the importance of the assessment of its thermal environment for public ser-
vices [9]. In recent years, some studies on UTCI have already been performed to provide
information on the thermal environment over China [9,10,28,42,43]. However, like the
research conducted in the other countries mentioned above [21–25], UTCI also cannot be
easily calculated in China due to paucity of solar radiation observation, as there are only
about four percent (100 out of 2500) weather stations routinely observe solar radiation over
China, due to scarcity of radiation instruments and their high costs of maintenance [38,41].
Under this circumstance, UTCI in China was often calculated by some readily available
items such as cloudiness [9,28,43], or estimated by simple spatial interpolation of solar
radiation [44], or even analyzed by avoiding the input requirement of solar radiation with
assumption that radiative temperature just equals air temperature [10].

In this study, the sunshine-based Angstrom and Ogelman models, and the temperature-
based Bristow and Hargreaves models, together with neural network and support vector
machine-learning methods, were used to estimate solar radiation for calculating UTCI in
35 tourism cities of China. The objectives of this study were: (1) to investigate the influence
of different strategies of radiation estimation on the accuracy of UTCI calculation, based on
which the optimal strategy could be identified; (2) to provide spatial distribution of UTCI
in tourism cities over China; and (3) to reveal the temporal trend in thermal stress in these
cities in the recent 60 years, which would be beneficial for the local governments to make
relevant policies on assessing and predicting thermal perception for the public health.

2. Materials and Methods
2.1. Database

Chinese main tourism destinations, including 35 cities distributed in different climate
zones (Figure 1), were selected according to the classification based on comprehensive
development indices of tourism industry, urbanization, and ecological environment [45].
Detailed information on these tourism cities can be seen in Table 1.
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Figure 1. Distribution of the large tourist cities in this study. The cities with red color are used for
exploring optimal methods on solar radiation estimation, and the cities with black color are the other
tourism cities in this study. Roman numerals indicate the climate zones in China. I denotes the
temperate and warm-temperate deserts of northwest China, II Inner Mongolia, III the temperate
humid and sub-humid northeastern China, IV the temperate humid and sub-humid northern China,
V the subtropical humid central and southern China, VI the Qinghai–Tibetan Plateau, and VII the
tropical humid southern China. Whole names of the cities can be seen in Table 1.
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Table 1. Detailed information of the tourism cities in China.

Cities Latitude (N) Longitude (E) Altitude (m) Climate Conditions Population
(Million)

Beijing (BJ) 39.8 116.5 31.3 temperate and sub-humid 21.9
Tianjin (TJ) 39.1 117.1 3.5 temperate and sub-humid 13.9
Dalian (DL) 38.9 121.6 91.5 temperate and sub-humid 7.5

Qingdao (QD) 36.1 120.3 76.0 temperate and sub-humid 10.0
Shanghai (SH) 31.4 121.5 5.5 subtropical humid 24.9
Nanjing (NJ) 31.9 118.9 35.2 subtropical humid 9.3
Suzhou (SZ) 31.3 120.6 10.7 subtropical humid 12.7

Hangzhou (HZ) 30.2 120.2 41.7 subtropical humid 12.2
Xiamen (XM) 24.5 118.1 139.4 tropical humid 5.2

Guangzhou (GZ) 23.2 113.3 41.0 tropical humid 18.7
Shenzhen (SE) 22.5 114.0 63.0 tropical humid 17.6

Sanya (SY) 18.2 109.6 419.4 tropical humid 1.0
Qinhuangdao (QH) 39.9 119.5 2.4 temperate and sub-humid 3.1

Ningbo (NB) 30.0 121.6 4.0 subtropical humid 8.5
Harbin (HB) 45.8 126.8 142.3 temperate and sub-humid 10.0

Zhengzhou (ZZ) 34.7 113.7 110.4 temperate and sub-humid 12.6
Wuhan (WH) 30.6 114.1 23.6 subtropical humid 12.3

Zhangjiajie (ZJ) 29.1 110.5 183.5 subtropical humid 1.5
Changsha (CS) 28.2 112.9 68.0 subtropical humid 10.0

Huangshan (HS) 30.1 118.2 1840.4 subtropical humid 1.3
Guilin (GL) 25.3 110.3 164.4 subtropical humid 4.9

Changchun (CC) 43.9 125.2 236.8 temperate and sub-humid 9.1
Hohhot (HH) 40.8 111.7 1063.0 Inner Mongolia 3.4
Jinzhong (JZ) 37.7 112.8 831.2 Temperate and sub-humid 3.3

Nanchang (NC) 28.6 115.9 46.9 subtropical humid 6.4
Xi’an (XA) 34.3 108.9 397.5 temperate and sub-humid 12.9

Chongqing (CQ) 29.5 106.5 351.1 subtropical humid 32.1
Chengdu (CD) 30.7 104.0 507.3 subtropical humid 21.2
Kunming (KM) 25.0 102.7 1888.1 subtropical humid 8.5

Lijiang (LJ) 26.9 100.2 2380.9 subtropical humid 1.3
Zunyi (ZY) 27.7 106.9 843.9 subtropical humid 6.6

Yinchuan (YC) 38.5 106.2 1110.9 Inner Mongolia 2.9
Jiuquan (JQ) 39.8 98.5 1477.2 temperate and warm-temperate 1.0
Xining (XN) 36.7 101.8 2295.2 Qinghai-Tibetan Plateau 2.5

Wulumuqi (WL) 43.8 87.7 935.0 temperate and warm-temperate 4.1

For this research, access to the fundamental database of NMIC (National Meteoro-
logical Information Center) was given by CMA (China Meteorological Administration).
The daily meteorological data, including sunshine hours, mean temperature, maximum
temperature, minimum temperature, vapor pressure, relative humidity, wind speed, pre-
cipitation, and cloudiness, were collected from 1961 to 2020 for all of these locations. There
were very few missing values in the dataset. When a missing value was identified, it was
substituted by the average of the values observed on preceding and following days [10].
Solar radiation is not a routinely observed meteorological item in most weather stations in
China, and the daily solar radiation data were only available in six stations, i.e., Harbin,
Beijing, Wuhan, Chongqing, Hangzhou, and Guangzhou. Daily solar radiation data from
1991 to 2020 in these locations were believed to be reliable after strict data quality control
made by NMIC, so the datasets from 1991 to 2010 were used for model calibration, while
the datasets from 2011 to 2020 were used for model validation in this study.

2.2. Calculation of UTCI

UTCI is defined as the isothermal air temperature which would elicit the same response
under a set of reference conditions [7]. UTCI is calculated by solving Fiala’s heat balance
model [3], which calculates the human physical response to meteorological conditions.
The model is based on a thermoregulation model, consisting of 12 human body elements
and 187 tissue nodes [3]. A rapid calculation of UTCI can be achieved by a polynomial
approximation procedure to compute the offset of UTCI to Ta (UTCI−Ta) as follows [16].

UTCI − Ta = f (Ta, V, e, Tmrt − Ta) (1)
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where Ta denotes the air temperature, V the wind speed, e the vapor pressure, and Tmrt the
mean radiative temperature, respectively. V, e, and Tmrt can be computed as:

V =
√

V2
u + V2

v (2)

e = 6.11 exp
[

5417.753
(

1
273.16

− 1
273.16 + Td

)]
(3)

Tmrt =

(
Rp + 0.5Lg + 0.5La

0.95 × 5.667 × 10−8

)1/4
− 273 (4)

Lg = 5.5 × 10−8×
(
273 + Tg

)4 (5)

La = 5.5 × 10−8×(273 + Ta)
4×
(

0.82 − 0.25 × 10−0.094×e
)

(6)

where Vu and Vv are wind speed at meridional and longitudinal directions, respectively;
Td is the dew point temperature, Tg is the ground temperature, and Rp is the solar radiation
observed by a nude man, which can be estimated by the SolAlt model [9,44].

UTCI is divided into 10 categories ranging from extreme cold stress to extreme heat
stress [16] (Table 2). This category has been extensively validated by both climate chamber
and wind tunnel experiments [3,19], and widely accepted by both the International Society
on Biometeorology [3,7,16] and the researchers in this domain [21–26]. Currently, calcula-
tion of UTCI can be performed by Bioklima 2.6 software package with four meteorological
input variables, including solar radiation, air temperature, vapor pressure or humidity, and
wind speed [9,23]. Detailed description on the input variables can be found in the relevant
procedures and processing steps [44].

Table 2. Category for UTCI in terms of thermal stress (according to Brode et al. [16]).

Category UTCI Range (◦C) Stress Description

Category 1 (C1) above +46 extreme heat stress
Category 2 (C2) +38 to +46 very strong heat stress
Category 3 (C3) +32 to +38 strong heat stress
Category 4 (C4) +26 to +32 moderate heat stress
Category 5 (C5) +9 to +26 no thermal stress
Category 6 (C6) 0 to +9 slight cold stress
Category 7 (C7) −13 to 0 moderate cold stress
Category 8 (C8) −27 to −13 strong cold stress
Category 9 (C9) −40 to −27 very strong cold stress

Category 10 (C10) below −40 extreme cold stress

2.3. Estimation of Solar Radiation

Two sunshine- and two temperature-based empirical models, together with two
machine-learning methods, were used to estimate solar radiation in this study.

2.3.1. Angstrom Model

The Angstrom formula is the most widely used popular empirical sunshine-based
model [46,47], which calculates solar radiation with sunshine hours as follows.

Ra = Re×
(

a + b
S
S0

)
(7)

where Ra is the observed daily solar radiation, Re the extra-terrestrial solar radiation, S the
observed sunshine hours, and S0 the potential sunshine hours, respectively. Re and S0 can
be calculated with the method recommended by FAO [48].
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2.3.2. Ogelman Model

The Ogelman model is also an empirical sunshine-based model, which can be ex-
pressed as [49]

Ra = Re×
[

a + b
S
S0

+ c
(

S
S0

)2
]

(8)

2.3.3. Bristow Model

The Bristow model is an empirical temperature-based model, using temperature as
input variables to predict solar radiation [50].

Ra = a × Re×[1 − exp(−b × Tc)] (9)

where ∆T is the difference between daily maximum and minimum temperature.

2.3.4. Hargreaves Model

The Hargreaves model is also an empirical temperature-based model, estimating solar
radiation with the diurnal range of temperature [51].

Ra = Re ×
(

a × ∆T0.5 + b
)

(10)

2.3.5. BP Neural Network

BP neural network has one or more hidden layers, and one output layer. The data
are propagated from input layer to output layer through hidden layer with error being
transmitted in the opposite direction, so the connection weight of the network can be
corrected to decrease the final error. Recently, BP neural has been argued to be efficient in
solar radiation estimation [52].

2.3.6. Support Vector Machine

The support vector machine (SVM) is a supervised machine-learning method for data
analysis and pattern recognition. The SVM follows the concept of separating the features
from one another. According to the algorithm of SVM, the same types of features are set
on one plane. To be specific, the SVM aims to find a hyperplane that can separate data
points of one class from another to the best degree. The best degree is referred to as the
hyperplane with the largest margin between the two classes, and margin is defined as the
biggest width of the slab parallel to the hyperplane that has no interior data points. Based
on the principle of structural risk minimization, this method can better solve the problems
with nonlinearity and high dimensionality. Up to now, SVM has been widely employed for
radiation estimation due to its high accuracy [41].

2.4. Statistical Analysis

The Nash–Sutcliffe Efficiency (NSE), the Mean Absolute Percentage Error (MAPE),
and the Root Mean Square Error (RMSE) were used as criteria to evaluate the model
performance [39,53]. NSE is analogous to coefficient of determination, with the exception
that NSE ranges from negative infinity to 1, which can be used for indicating model
efficiency. The negative value of NSE indicates that the mean observation can be used as a
better predictor than the simulated values. MAPE is used to identify the relative bias in
simulated values compared with observations, while RMSE is an indicator of the squared
difference between simulated and measured values.

NSE = 1 − ∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi − O

)2 (11)
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MAPE =
∑n

i=1

∣∣∣Oi−Si
Oi

∣∣∣× 100

n
(12)

RMSE = [
1
n

n

∑
i=1

(Oi − Si)
2]

1
2

(13)

where Oi is the observed value, Si the estimated value, O the average of the observed value,
and n the sample number of observations, respectively. Higher NSE and lower MAPE and
RMSE mean better model performance.

Trends in time series of UTCI were estimated by the nonparametric Theil–Sen’s esti-
mator [54].

β = Median
(Xj − Xi

j − i

)
, i < j (14)

where Xi and Xj are the UTCI values for year i and j, respectively. Positive β denotes an
increase in trend, while negative value of β indicates decrease in the time series. The trend
significance was tested by Mann–Kendall method. Detailed information on calculating the
standardized test statistic (z) of MK can be referred to the relevant descriptions [10,55,56].

The empirical coefficients of a, b and c in Equations (7)–(10) were fitted by numerical
iteration methods [53]. The BP and SVM methods were implemented through the “nnet”
and “e1071” packages in R language, respectively. A regression task was involved in the
study, and both the empirical models and the machine-learning methods were calibrated
and validated before application. The machine-learning methods are believed to be more
accurate in radiation estimation than the empirical models [41], but they require big data
for model training. In contrast, the empirical models are easy to operate, and require less
data for model calibration than the machine-learning methods.

3. Results
3.1. Comparison of Model Performance in Radiation Estimation and UTCI Calculation

Coefficients of the empirical models were calibrated with the dataset from 1991 to
2010, and the calibration results are shown in Table 3. For the sunshine-based Angstrom
model, the coefficient a ranged from 0.130 to 0.240 with averaged value of 0.16, while
the coefficient b ranged from 0.456 to 0.587 with an average of 0.528. The values of NSE
were between 0.861 and 0.930 with an average of 0.886, indicating that Angstrom had a
high efficiency in radiation estimation. The average MAPE and RMSE were 16.795 and
27.452, respectively. The calibration performance of the Ogelman model was very similar
to that of the Angstrom model. The average NSE was 0.895 for the Ogelman model, which
was almost equal to that of the Angstrom model. In addition, the values of MAPE and
RMSE were also very close to those of the Angstrom model, either for each location or as a
whole. For temperature-based models, the average value of NSE was 0.673 for the Bristow
model, and the average values of MAPE and RMSE were 22.94 and 46.386, respectively.
The Hargreaves model showed a similar performance as the Bristow model with very close
NSE, MAPE, and RMSE values.
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Table 3. Calibration results of the empirical models and machine-learning methods on estimation of
the solar radiation.

Model City a b c NSE MAPE RMSE Slope Inter n

Angstrom Beijing 0.167 0.518 - 0.930 11.677 21.408 0.894 15.637 7118
Hangzhou 0.136 0.587 - 0.900 17.061 27.982 0.881 15.355 6993
Guangzhou 0.159 0.502 - 0.844 16.697 26.249 0.840 21.090 6665

Harbin 0.240 0.456 - 0.900 13.338 27.154 0.880 18.462 7006
Wuhan 0.130 0.537 - 0.881 17.865 29.602 0.867 17.049 7011

Chongqing 0.133 0.570 - 0.861 24.131 30.517 0.858 13.370 7020
Average 0.161 0.528 - 0.886 16.795 27.152 0.870 16.827 6969

Ogelman Beijing 0.174 0.483 0.038 0.930 11.501 21.422 0.895 16.510 7118
Hangzhou 0.122 0.832 −0.310 0.908 17.158 26.837 0.890 14.371 6993
Guangzhou 0.141 0.743 −0.303 0.858 16.700 25.032 0.873 17.165 6665

Harbin 0.224 0.585 −0.138 0.902 13.574 26.910 0.882 18.270 7006
Wuhan 0.116 0.793 −0.316 0.890 18.152 28.481 0.874 16.323 7011

Chongqing 0.123 0.906 −0.481 0.879 24.012 28.547 0.868 12.635 7020
Average 0.150 0.724 −0.252 0.895 16.850 26.205 0.880 15.879 6969

Bristow Beijing 0.602 0.025 1.840 0.670 20.070 46.432 0.711 47.635 7118
Hangzhou 0.549 0.009 2.428 0.691 23.948 49.186 0.695 41.642 6993
Guangzhou 0.515 0.011 2.336 0.600 23.024 42.090 0.625 47.369 6663

Harbin 0.600 0.081 1.324 0.699 21.321 47.050 0.685 48.281 7006
Wuhan 0.496 0.005 2.938 0.626 24.209 52.551 0.607 53.517 7011

Chongqing 0.563 0.015 1.978 0.750 25.154 41.006 0.753 24.299 7020
Average 0.554 0.024 2.141 0.673 22.954 46.386 0.679 43.791 6969

Hargreaves Beijing 0.180 −0.098 - 0.649 21.504 47.874 0.688 51.044 7118
Hangzhou 0.244 −0.304 - 0.693 24.305 49.000 0.678 44.199 6993
Guangzhou 0.248 −0.325 - 0.604 22.791 41.858 0.597 53.491 6663

Harbin 0.137 0.046 - 0.698 21.220 47.096 0.695 47.187 7006
Wuhan 0.242 −0.296 - 0.625 23.737 52.674 0.572 55.445 7011

Chongqing 0.220 −0.288 - 0.770 23.042 39.282 0.748 25.765 7020
Average 0.212 −0.211 - 0.673 22.767 46.297 0.663 46.189 6969

BP neural network Beijing - - - 0.960 9.745 16.197 0.958 6.336 7118
Hangzhou - - - 0.947 14.718 20.307 0.947 7.359 6993
Guangzhou - - - 0.925 13.429 18.252 0.922 10.088 6665

Harbin - - - 0.925 11.900 23.519 0.922 11.988 7006
Wuhan - - - 0.917 17.318 24.701 0.917 11.456 7011

Chongqing - - - 0.951 18.147 18.083 0.951 4.857 7020
Average - - - 0.938 14.210 20.177 0.936 8.681 6969

Support vector machine Beijing - - - 0.960 9.777 16.155 0.965 5.478 7118
Hangzhou - - - 0.947 14.451 20.369 0.942 7.554 6993
Guangzhou - - - 0.925 13.183 18.174 0.927 10.171 6665

Harbin - - - 0.927 11.256 23.241 0.915 11.244 7006
Wuhan - - - 0.929 16.153 22.959 0.950 7.703 7011

Chongqing - - - 0.953 17.445 17.786 0.952 4.932 7020
Average - - - 0.940 13.711 19.781 0.942 7.847 6969

Correlation analysis identified that many meteorological factors should be used as
input variables for training machine leaning methods, including extra-terrestrial solar
radiation (Re), sunshine hours (Sa), potential sunshine hours (Sp), cloudiness (Cl), air mean
temperature (Ta), maximum temperature (Tm), minimum temperature (Tn), diurnal varia-
tion of temperature (Td), vapor pressure (Pe), humidity (Hu), wind seep (Ws), precipitation
(Pr), and precipitation events (Pt) (Figure 2). However, the machine-learning models could
be over-trained when the highly correlated features were used as input variables simulta-
neously. In this study, when the correlation coefficients among several features were higher
than 0.8, only one feature was used as the input variable for the machine-learning models.
According to this rule, together with the consideration of the data availability, Ta was kept
as input variable for machine-learning models, while Tm, Tn, and Pe were removed from
the dataset. However, all of the three sunshine-related features, including Sp, Re, and Sa,
were used as input variables despite of their high correlation coefficients, as removal of
any one of these features would lead to poor performance of the machine-learning models.
The machine-learning models were also trained with the dataset from 1991 to 2011 for
comparison with the results by the empirical models (Table 3). A “Trial and error” method
was used to tune the machine-learning models to determine the best parameters. For the
BP model, the number of units in the hidden layer and the parameter for weight decay
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were set as 10 and 0.01, respectively. For the SVM model, the kernel used in training and
predicting was set as “radial” basis, and the cost of constraints violation was tuned as 1. The
value of gamma was determined as 0.125. The two machine-learning methods performed
better in calibration with higher NSE and lower MAPE and RMSE. The average values
of NSE, MAPE, and RMSE were 0.938, 14.210, and 20.127, respectively, for the BP neural
network, while the Support Vector Machine further improved the model performance in
calibration by a slightly higher NSE of 0.940, and lower MAPE and RMSE of 13.711 and
19.781, respectively.
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The calibrated empirical models and trained machine-learning models were used for
validation against the observed radiation from 2011 to 2020, respectively. The validation
results are shown in Table 4. For each empirical model, the overall model performance in
validation was quite similar to that in calibration. However, compared to the performance
in calibration, the machine-learning methods showed worse performance in validation.
The average value of NSE was 0.878 for the BP neural network, much lower than that of
0.938 in calibration. In addition, the values of MAPE and RMSE also became larger in
model validation for machine-learning methods.

The estimated radiation dataset in 2011–2020 was used to calculate UTCI, and the
obtained UTCI was compared to that calculated with observed radiation. The UTCI
validation result is shown in Table 5. As a whole, the error in radiation estimation was not
amplified, but reduced in the UTCI calculation process. The sunshine-based Angstrom
model had a high average NSE value of 0.990, and lower RMSE value of 1.236 (Table 5).
Referred to the validation in radiation (Table 4), an average error of 35.4 J/m2 s radiation
estimation led to an average error of 1.2 ◦C in UTCI calculation, which was exactly within
the error range of 2.1 ◦C identified by sensitivity analysis [4]. The Ogelman model showed
very similar performance to the Angstrom model. However, the temperature-based models,
both the Bristow and Hargreaves models, presented lower NSE and higher MAPE and
RMSE than sunshine-based models. In contrast, the NSE values of the machine-learning
methods were 0.992, slightly higher than those of the sunshine-based models. The average
RMSE value for both machine-learning methods was about 1.1 ◦C, showing very limited
advantage over the sunshine-based models. Considering both accuracy and applicability,
the Angstrom model was selected to estimate solar radiation for UTCI calculation in
regional analysis below, due to its easy calibration and readily available input data. The
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accuracy of the Angstrom model in calculating UTCI and day number within each category
can be seen in Figures 3 and 4, respectively.

Table 4. Validation results of the empirical models and machine-learning methods on estimating
solar radiation.

Model City NSE MAPE RMSE Slope Inter n

Angstrom Beijing 0.866 14.284 31.979 0.823 13.784 3157
Hangzhou 0.839 21.244 39.101 0.794 14.421 3181

Guangzhou 0.848 18.853 28.226 0.849 8.514 3048
Harbin 0.758 17.935 42.942 0.745 30.079 2982
Wuhan 0.838 21.756 35.622 0.838 6.737 3090

Chongqing 0.865 25.230 34.305 0.833 11.752 2666
Average 0.836 19.884 35.363 0.814 14.215 3021

Ogelman Beijing 0.871 13.925 31.430 0.824 14.753 3157
Hangzhou 0.850 20.544 37.641 0.805 13.005 3181

Guangzhou 0.859 18.600 27.114 0.870 5.298 3048
Harbin 0.766 17.675 42.292 0.758 28.327 2982
Wuhan 0.851 20.876 34.192 0.851 5.718 3090

Chongqing 0.869 25.018 33.765 0.812 13.284 2666
Average 0.844 19.440 34.406 0.820 13.398 3021

Bristow Beijing 0.676 20.839 49.781 0.663 47.803 3156
Hangzhou 0.688 27.359 54.323 0.665 36.553 3180

Guangzhou 0.673 22.910 41.338 0.670 39.519 3047
Harbin 0.616 23.049 54.105 0.602 55.703 2981
Wuhan 0.631 25.879 53.798 0.612 58.487 3088

Chongqing 0.728 29.767 48.626 0.698 21.339 2665
Average 0.669 24.967 50.329 0.652 43.234 3020

Hargreaves Beijing 0.659 21.534 51.117 0.650 50.072 3156
Hangzhou 0.693 25.461 53.913 0.665 36.779 3180

Guangzhou 0.683 22.481 40.661 0.673 42.975 3047
Harbin 0.618 22.622 54.003 0.607 55.754 2981
Wuhan 0.659 23.908 51.761 0.686 52.406 3088

Chongqing 0.744 26.345 47.135 0.696 22.075 2665
Average 0.676 23.725 49.765 0.663 43.344 3020

BP neural network Beijing 0.902 13.060 27.385 0.864 7.698 3158
Hangzhou 0.894 18.316 31.648 0.854 7.498 3182

Guangzhou 0.878 16.842 25.254 0.910 −4.069 3049
Harbin 0.792 17.363 39.825 0.796 20.184 2983
Wuhan 0.891 20.557 29.313 0.899 −0.245 3091

Chongqing 0.912 20.084 27.717 0.862 8.983 2667
Average 0.878 17.704 30.190 0.864 6.675 3022

Support vector machine Beijing 0.899 13.192 27.851 0.861 7.882 3158
Hangzhou 0.890 18.298 32.325 0.845 8.477 3182

Guangzhou 0.881 17.139 24.889 0.919 −5.099 3049
Harbin 0.791 17.470 39.939 0.787 20.197 2983
Wuhan 0.894 20.770 28.865 0.933 −5.885 3091

Chongqing 0.909 20.048 28.068 0.852 10.173 2667
Average 0.877 17.820 30.323 0.866 5.958 3022
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Table 5. Validation results of the UTCI calculation based on solar radiation estimated by empirical
models and machine-learning methods.

Model City NSE MAPE RMSE Slope Inter n

Angstrom Beijing 0.993 7.683 1.121 0.994 −0.375 3157
Hangzhou 0.990 7.210 1.137 0.992 −0.275 3181

Guangzhou 0.989 3.788 0.907 1.001 −0.404 3048
Harbin 0.987 10.162 2.013 1.017 −0.601 2982
Wuhan 0.989 7.093 1.238 0.992 −0.309 3090

Chongqing 0.989 4.505 0.998 0.983 0.175 2666
Average 0.990 6.740 1.236 0.997 −0.298 3021

Ogelman Beijing 0.993 7.617 1.112 0.994 −0.350 3157
Hangzhou 0.991 6.453 1.044 0.993 −0.245 3181

Guangzhou 0.990 3.584 0.843 1.003 −0.425 3048
Harbin 0.987 10.034 1.994 1.018 −0.582 2982
Wuhan 0.990 6.449 1.146 0.990 −0.213 3090

Chongqing 0.990 4.331 0.967 0.975 0.308 2666
Average 0.990 6.411 1.184 0.996 −0.251 3021

Bristow Beijing 0.982 11.797 1.778 0.996 −0.134 3156
Hangzhou 0.974 8.787 1.790 0.986 −0.144 3180

Guangzhou 0.979 4.816 1.242 0.975 0.400 3047
Harbin 0.981 12.933 2.366 1.006 −0.211 2981
Wuhan 0.976 9.028 1.779 0.940 1.347 3088

Chongqing 0.980 5.246 1.368 0.972 0.079 2665
Average 0.979 8.768 1.721 0.979 0.223 3020

Hargreaves Beijing 0.980 12.380 1.858 0.994 −0.178 3156
Hangzhou 0.975 8.810 1.774 0.988 −0.219 3180

Guangzhou 0.978 5.079 1.280 0.976 0.393 3047
Harbin 0.983 12.607 2.297 1.005 −0.218 2981
Wuhan 0.980 8.134 1.635 0.951 1.197 3088

Chongqing 0.982 4.970 1.277 0.965 0.269 2665
Average 0.980 8.663 1.687 0.980 0.207 3020

BP neural network Beijing 0.994 7.024 1.036 0.992 −0.322 3158
Hangzhou 0.993 5.496 0.944 0.996 −0.274 3182

Guangzhou 0.992 3.008 0.774 0.999 −0.369 3049
Harbin 0.988 9.361 1.878 1.011 −0.573 2983
Wuhan 0.991 6.008 1.106 0.996 −0.326 3091

Chongqing 0.992 3.206 0.874 0.983 0.137 2667
Average 0.992 5.684 1.102 0.996 −0.288 3022

Support vector machine Beijing 0.994 7.201 1.056 0.992 −0.343 3158
Hangzhou 0.993 5.533 0.950 0.996 −0.284 3182

Guangzhou 0.992 3.103 0.770 1.001 −0.391 3049
Harbin 0.988 9.638 1.878 1.010 −0.597 2983
Wuhan 0.992 5.576 1.038 0.993 −0.258 3091

Chongqing 0.992 3.176 0.847 0.981 0.204 2667
Average 0.992 5.705 1.090 0.996 −0.278 3022

3.2. Spatial Analysis of UTCI and Day Number within Each Category

The calibrated model was used to calculate the UTCI in all of the tourism cities from
1961 to 2020. The spatial distribution of average yearly UTCI and the days within each
category in Chinese tourism cities are shown in Figure 5a, and the detailed information
is shown in Table 6. As a whole, the UTCI increased gradually from north to south in the
tourism cities of China, with the exception of Huangshan location due to its high altitude
(see Table 1). UTCI in the tourism cities of northeast China was lower than 5 ◦C, while the
UTCI reached the highest value around 28 ◦C in Sanya, the southernmost part of China.
The days within each category are shown in Figure 5b–h. For the days under no thermal
stress (Figure 5d), Kunming and Lijiang had the largest value between 225 and 320 days.
The tourism cities in northeast and southeast China had the lowest values between 90 and
135 days with the lowest and highest UTCI, respectively. The tourism cities in the most
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developed regions such as the Yangtze River Delta and Zhujiang River Delta had about 170
days under no thermal stress in a year. The distribution of days under slightly cold stress
was very similar to that under no thermal stress (Figure 5e).
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Figure 3. Validation of the radiation estimation and UTCI calculation in Beijing by different methods.
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[36,91] 
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[1,41] 
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[0,5] 

DL 
5.5 ± 2.8 

[0.3,10.8] 

0.5 ± 1.8 

[0,13] 

24.2 ± 12.6 

[3,53] 

150.3 ± 11.8 

[126,179] 

56.2 ± 9.3 

[35,85] 

81.5 ± 10.5 

[60,105] 

40.0 ± 13.5 

[9,66] 

10.8 ± 7.3 

[0,28] 

QD 
7.3 ± 2.3 

[1.8,11.7] 

0.8 ± 1.7 

[0,9] 

27.3 ± 13.0 

[6,55] 

154.2 ± 10.8 

[135,178] 

67.7 ± 10.7 

[49,97] 

77.9 ± 13.3 

[46,102] 

31.6 ± 10.7 

[10,61] 

5.3 ± 4.6 

[0,19] 

SH 
14.2 ± 1.9 

[10.2,17.8] 

17.8 ± 10.2 

[1,42] 

54.1 ± 8.2 

[37,66] 

166.8 ± 17.1 

[133,208] 

72.6 ± 9.7 

[50,93] 

48.5 ± 15.7 

[14,79] 

5.3 ± 6.1 

[0,28] 

0.1 ± 0.3 

[0,1] 

NJ 
15.4 ± 1.2 

[12.8,18.3] 

23.6 ± 9.8 

[6,52] 

57.7 ± 9.5 

[35,80] 

168.2 ± 13.4 

[138,207] 

70.4 ± 9.2 

[53,91] 

41.5 ± 12.2 

[12,71] 

3.2 ± 3.4 

[0,15] 

0.0 ± 0.0 

[0,0] 

SZ 
14.8 ± 2.2 

[10.1,18.5] 

22.1 ± 11.4 

[4,45] 

54.3 ± 9.4 

[33,79] 

167.6 ± 16.1 

[129,201] 

72.6 ± 9.6 

[56,91] 

44.0 ± 19.5 

[8,89] 

4.1 ± 5.4 

[0,22] 

0.1 ± 0.3 

[0,1] 

HZ 
16.8 ± 1.1 

[14.5,18.8] 

32.6 ± 12.1 

[14,61] 

56.3 ± 9.7 

[25,82] 

176.8 ± 13.5 

[145,205] 

68.0 ± 9.1 

[48,95] 

29.7 ± 10.6 

[8,58] 

1.5 ± 2.0 

[0,10] 

0.0 ± 0.0 

[0,0] 

XM 
20.5 ± 1.3 

[17.4,22.4] 

28.5 ± 14.7 

[3,66] 

93.1 ± 13.8 

[59,122] 

198.6 ± 13.9 

[169,232] 

39.2 ± 13.0 

[13,63] 

5.8 ± 5.6 

[0,24] 

0.0 ± 0.0 

[0,0] 

0.0 ± 0.0 

[0,0] 

GZ 
23.4 ± 0.9 

[21.2,25.0] 

48.7 ± 11.1 

[21,71] 

120.0 ± 13.0 

[95,156] 

171.8 ± 11.9 

[149,200] 

20.4 ± 7.1 

[5,39] 

4.3 ± 4.9 

[0,18] 

0.1 ± 0.2 

[0,1] 

0.0 ± 0.0 

[0,0] 

SE 
23.5 ± 1.0 

[21.5,26.0] 

47.2 ± 12.4 

[25,86] 

122.5 ± 13.8 

[100,160] 

173.8 ± 15.2 

[143,201] 

18.0 ± 7.3 

[3,34] 

3.7 ± 3.6 

[0,16] 

0.0 ± 0.2 

[0,1] 

0.0 ± 0.0 

[0,0] 

SY 
26.7 ± 3.0 

[19.4,30.4] 

66.7 ± 45.6 

[0,153] 

160.3 ± 33.2 

[76,204] 

134.2 ± 63.0 

[46,272] 

4.0 ± 8.1 

[0,39] 

0.2 ± 0.7 

[0,4] 

0.0 ± 0.0 

[0,0] 

0.0 ± 0.0 

[0,0] 

QD 
9.9 ± 1.6 

[5.7,12.7] 

2.3 ± 3.2 

[0,14] 

44.6 ± 9.6 

[16,66] 

152.8 ± 9.9 

[128,170] 

59.5 ± 8.4 

[45,81] 

88.7 ± 9.3 

[53,109] 

16.5 ± 11.2 

[1,45] 

0.8 ± 1.6 

[0,9] 

NB 
16.8 ± 1.5 

[14.0,20.3] 

31.0 ± 13.2 

[6,60] 
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Figure 4. Comparison of the days within each UTCI category calculated by observed radiation (line
blue circle) with those by estimated radiation (line with pink triangle).

Table 6. Detailed information on UTCI and the yearly days within each category in the large tourism
cities of China.

Cities UTCI (◦C) C3 (Day) C4 (Day) C5 (Day) C6 (Day) C7 (Day) C8 (Day) C9 (Day)

BJ 11.6 ± 1.3
[8.7,13.9]

7.2 ± 5.0
[0,22]

60.2 ± 8.7
[40,81]

146.8 ± 10.6
[122,171]

61.1 ± 11.1
[39,84]

74.2 ± 9.8
[53,95]

14.6 ± 8.8
[1,36]

1.2 ± 2.0
[0,8]

TJ 11.7 ± 1.3
[8.8,14.1]

8.6 ± 5.5
[0,24]

61.4 ± 10.1
[38,82]

142.9 ± 10.0
[113,165]

62.4 ± 10.2
[36,91]

74.6 ± 11.5
[53,102]

14.8 ± 8.3
[1,41]

0.9 ± 1.2
[0,5]

DL 5.5 ± 2.8
[0.3,10.8]

0.5 ± 1.8
[0,13]

24.2 ± 12.6
[3,53]

150.3 ± 11.8
[126,179]

56.2 ± 9.3
[35,85]

81.5 ± 10.5
[60,105]

40.0 ± 13.5
[9,66]

10.8 ± 7.3
[0,28]

QD 7.3 ± 2.3
[1.8,11.7]

0.8 ± 1.7
[0,9]

27.3 ± 13.0
[6,55]

154.2 ± 10.8
[135,178]

67.7 ± 10.7
[49,97]

77.9 ± 13.3
[46,102]

31.6 ± 10.7
[10,61]

5.3 ± 4.6
[0,19]

SH 14.2 ± 1.9
[10.2,17.8]

17.8 ± 10.2
[1,42]

54.1 ± 8.2
[37,66]

166.8 ± 17.1
[133,208]

72.6 ± 9.7
[50,93]

48.5 ± 15.7
[14,79]

5.3 ± 6.1
[0,28]

0.1 ± 0.3
[0,1]

NJ 15.4 ± 1.2
[12.8,18.3]

23.6 ± 9.8
[6,52]

57.7 ± 9.5
[35,80]

168.2 ± 13.4
[138,207]

70.4 ± 9.2
[53,91]

41.5 ± 12.2
[12,71]

3.2 ± 3.4
[0,15]

0.0 ± 0.0
[0,0]

SZ 14.8 ± 2.2
[10.1,18.5]

22.1 ± 11.4
[4,45]

54.3 ± 9.4
[33,79]

167.6 ± 16.1
[129,201]

72.6 ± 9.6
[56,91]

44.0 ± 19.5
[8,89]

4.1 ± 5.4
[0,22]

0.1 ± 0.3
[0,1]

HZ 16.8 ± 1.1
[14.5,18.8]

32.6 ± 12.1
[14,61]

56.3 ± 9.7
[25,82]

176.8 ± 13.5
[145,205]

68.0 ± 9.1
[48,95]

29.7 ± 10.6
[8,58]

1.5 ± 2.0
[0,10]

0.0 ± 0.0
[0,0]

XM 20.5 ± 1.3
[17.4,22.4]

28.5 ± 14.7
[3,66]

93.1 ± 13.8
[59,122]

198.6 ± 13.9
[169,232]

39.2 ± 13.0
[13,63]

5.8 ± 5.6
[0,24]

0.0 ± 0.0
[0,0]

0.0 ± 0.0
[0,0]

GZ 23.4 ± 0.9
[21.2,25.0]

48.7 ± 11.1
[21,71]

120.0 ± 13.0
[95,156]

171.8 ± 11.9
[149,200]

20.4 ± 7.1
[5,39]

4.3 ± 4.9
[0,18]

0.1 ± 0.2
[0,1]

0.0 ± 0.0
[0,0]

SE 23.5 ± 1.0
[21.5,26.0]

47.2 ± 12.4
[25,86]

122.5 ± 13.8
[100,160]

173.8 ± 15.2
[143,201]

18.0 ± 7.3
[3,34]

3.7 ± 3.6
[0,16]

0.0 ± 0.2
[0,1]

0.0 ± 0.0
[0,0]

SY 26.7 ± 3.0
[19.4,30.4]

66.7 ± 45.6
[0,153]

160.3 ± 33.2
[76,204]

134.2 ± 63.0
[46,272]

4.0 ± 8.1
[0,39]

0.2 ± 0.7
[0,4]

0.0 ± 0.0
[0,0]

0.0 ± 0.0
[0,0]

QD 9.9 ± 1.6
[5.7,12.7]

2.3 ± 3.2
[0,14]

44.6 ± 9.6
[16,66]

152.8 ± 9.9
[128,170]

59.5 ± 8.4
[45,81]

88.7 ± 9.3
[53,109]

16.5 ± 11.2
[1,45]

0.8 ± 1.6
[0,9]

NB 16.8 ± 1.5
[14.0,20.3]

31.0 ± 13.2
[6,60]

58.9 ± 9.1
[32,78]

177.8 ± 14.8
[146,209]

68.2 ± 10.1
[46,92]

27.6 ± 12.1
[4,50]

1.6 ± 2.2
[0,10]

0.0 ± 0.0
[0,0]

HB 0.5 ± 3.0
[−5.1,5.9]

0.3 ± 0.7
[0,3]

16.9 ± 10.0
[1,46]

129.3 ± 13.6
[101,163]

46.7 ± 8.1
[31,72]

62.4 ± 8.5
[47,90]

85.3 ± 11.2
[52,110]

23.3 ± 19.4
[1,72]

ZZ 13.9 ± 1.6
[9.7,17.4]

14.6 ± 7.7
[4,42]

64.3 ± 9.9
[40,86]

153.7 ± 11.0
[127,179]

69.9 ± 9.4
[45,91]

55.1 ± 12.8
[24,79]

7.1 ± 6.7
[0,30]

0.4 ± 1.1
[0,7]

WH 17.4 ± 1.6
[14.1,20.3]

36.8 ± 10.8
[14,60]

65.9 ± 10.4
[46,89]

164.5 ± 15.8
[126,209]

66.6 ± 9.6
[40,95]

27.4 ± 14.0
[2,61]

2.3 ± 3.2
[0,14]

0.1 ± 0.3
[0,2]

ZJ 18.3 ± 0.9
[16.5,19.8]

32.7 ± 9.9
[13,55]

68.9 ± 9.7
[51,90]

183.4 ± 14.0
[156,220]

65.3 ± 10.0
[44,95]

14.4 ± 9.6
[0,40]

0.5 ± 1.2
[0,7]

0.0 ± 0.0
[0,0]
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Table 6. Cont.

Cities UTCI (◦C) C3 (Day) C4 (Day) C5 (Day) C6 (Day) C7 (Day) C8 (Day) C9 (Day)

CS 16.7 ± 0.9
[14.8,19.4]

37.6 ± 10.5
[18,73]

64.0 ± 8.0
[49,86]

161.7 ± 13.2
[129,195]

61.3 ± 9.6
[33,84]

36.7 ± 9.5
[16,60]

3.5 ± 3.0
[0,12]

0.1 ± 0.3
[0,2]

HS −1.7 ± 1.7
[−4.8,1.3]

0. ± 0.1
[0,1]

0.1 ± 0.3
[0,2]

91.6 ± 17.3
[61,125]

92.9 ± 11.1
[62,121]

101.6 ± 8.9
[80,120]

62.7 ± 10.5
[43,85]

14.8 ± 6.1
[1,30]

GL 18.2 ± 1.2
[15.5,20.2]

36.0 ± 9.3
[13,59]

89.0 ± 9.7
[65,117]

156.7 ± 12.6
[122,190]

48.9 ± 7.6
[30,67]

30.8 ± 10.2
[6,51]

3.9 ± 4.3
[0,16]

0.1 ± 0.2
[0,1]

CC 1.3 ± 2.5
[−4.5,6.4]

0.4 ± 0.8
[0,4]

17.8 ± 10.0
[3,44]

131.9 ± 10.7
[106,158]

46.3 ± 8.3
[27,66]

68.1 ± 12.1
[41,91]

79.9 ± 11.7
[52,107]

20.3 ± 15.5
[0,65]

HH 6.9 ± 1.8
[2.4,9.2]

0.2 ± 0.6
[0,3]

18.4 ± 9.6
[0,41]

162.9 ± 12.0
[134,186]

59.3 ± 8.7
[34,81]

87.7 ± 11.5
[65,109]

33.4 ± 15.8
[9,74]

3.4 ± 3.2
[0,16]

JZ 8.9 ± 1.3
[5.7,11.5]

0.2 ± 0.6
[0,3]

26.5 ± 8.7
[7,48]

169.2 ± 10.4
[152,199]

60.4 ± 9.6
[40,80]

89.0 ± 9.7
[64,110]

18.8 ± 9.1
[2,41]

1.1 ± 1.3
[0,5]

NC 17.7 ± 1.7
[14.5,20.4]

45.8 ± 10.3
[22,74]

64.0 ± 11.4
[38,87]

162.3 ± 14.8
[128,198]

57.0 ± 8.5
[36,75]

29.8 ± 12.9
[7,59]

4.6 ± 6.0
[0,24]

0.3 ± 0.7
[0,4]

XA 14.5 ± 1.1
[12.6,18.0]

11.7 ± 6.9
[0,29]

57.2 ± 9.0
[37,78]

172.0 ± 13.3
[150,197]

80.5 ± 10.6
[57,103]

41.9 ± 12.2
[18,73]

2.0 ± 2.5
[0,13]

0.0 ± 0.0
[0,0]

CQ 19.0 ± 0.8
[17.1,20.5]

33.5 ± 10.5
[13,58]

63.2 ± 11.6
[41,94]

203.1 ± 12.4
[179,234]

62.7 ± 12.6
[37,97]

2.0 ± 2.6
[0,14]

0.0 ± 0.0
[0,0]

0.0 ± 0.0
[0,0]

CD 17.5 ± 0.7
[16.4,20.1]

6.6 ± 5.4
[0,21]

65.7 ± 8.8
[50,101]

216.3 ± 15.0
[176,243]

72.2 ± 12.2
[45,105]

4.4 ± 3.9
[0,22]

0.0 ± 0.1
[0,1]

0.0 ± 0.0
[0,0]

KM 15.8 ± 1.3
[13.4,18.5]

0. ± 0.
[0,0]

1.7 ± 2.3
[0,10]

319.2 ± 18.4
[274,350]

39.0 ± 17.4
[11,78]

5.3 ± 3.3
[0,13]

0.1 ± 0.2
[0,1]

0.0 ± 0.1
[0,1]

LJ 11.3 ± 1.6
[8.6,14.0]

0. ± 0.
[0,0]

0.1 ± 0.4
[0,2]

226.2 ± 27.7
[185,279]

113.1 ± 14.3
[83,140]

25.7 ± 19.9
[1,75]

0.1 ± 0.3
[0,2]

0.0 ± 0.0
[0,0]

ZY 16.5 ± 0.8
[15.1,18.4]

3.4 ± 4.6
[0,18]

64.6 ± 12.9
[39,93]

204.9 ± 17.8
[175,245]

78.2 ± 11.5
[45,111]

14.2 ± 8.2
[1,35]

0.0 ± 0.2
[0,1]

0.0 ± 0.0
[0,0]

YC 10.1 ± 1.1
[7.5,12.5]

0.7 ± 1.3
[0,7]

32.3 ± 8.9
[9,51]

171.0 ± 10.5
[151,199]

64.8 ± 9.4
[40,89]

84.4 ± 11.4
[55,113]

11.9 ± 6.3
[1,28]

0.2 ± 0.4
[0,1]

JQ 7.4 ± 1.3
[4.6,10.1]

0. ± 0.1
[0,1]

13.1 ± 7.0
[0,32]

168.2 ± 7.7
[155,186]

64.6 ± 9.0
[46,84]

97.9 ± 10.8
[68,122]

21.1 ± 10.7
[5,45]

0.3 ± 0.5
[0,2]

XN 7.7 ± 1.6
[3.8,9.9]

0. ± 0.
[0,0]

0.9 ± 1.9
[0,8]

182.9 ± 15.5
[136,208]

86.0 ± 11.2
[54,117]

86.5 ± 13.4
[59,116]

8.9 ± 8.3
[0,29]

0.1 ± 0.4
[0,2]

WL 6.5 ± 1.5
[1.6,9.0]

0.5 ± 1.3
[0,7]

21.8 ± 9.9
[3,42]

160.2 ± 11.5
[139,198]

50.5 ± 8.6
[36,71]

85.9 ± 14.0
[57,118]

45.1 ± 14.0
[13,75]

0.1 ± 2.0
[0,9]

Note: In A ± B [X,Y], A, B, X, and Y denote the mean, standard deviation, minimum value, and maximum
value, respectively.

In contrast with the spatial distribution of days under no thermal stress and slightly
cold stress, more days under heat stress were identified in the tourism cities of south China
(Figure 5b,c), while more days under cold stress were found in the tourism cities of north
China (Figure 5f–h). According to category 3, many tourism cities in the lower reach of
Yangtze River, including Wuhan, Nanjing, Hangzhou, and Shanghai etc., had about one
month under strong heat stress, while the tourism cities in Zhujiang River Delta such as
Guangzhou and Shenzhen had about two months under strong heat stress in a year. Sanya,
the southernmost China, experienced 70 days under strong heat stress in a year.

Strong cold stress mainly occurred in the tourism cities of north China. The largest
days under strong cold stress occurred in Harbin and Changchun in northeast China and
Wulumuqi in northwest China, in a range from 45 to 86 days in a year (Figure 5g). Days
under very strong cold stress occurred very seldom in most tourism cities of China. Many
locations, 28 out of 35 cities, had less than two days under very strong cold stress, most
of which were located in south China (Figure 5h). However, Changchun and Harbin in
northeast China did experience very strong cold stress in a year with day number between
15 and 25.
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3.3. Temporal Trend in UTCI and Day Number within Each Category

The time analysis was further conducted with the calculated UTCI in all of the tourism
cities from 1961 to 2020, and the trend analysis of the UTCI and days number within each
category from 1961 to 2020 is presented in Figure 6. On the whole, the UTCI showed an
overall increasing trend for most of the large tourism cities in China (Figure 6a), most of
which increased with very high statistical significance level of 99% (z > 2.58). Only 2 out
of 35 tourism cities showed negative trends in UTCI. Huhehaote had a negative trend
with very small value of −0.009 ◦C/a, and the negative trend in UTCI was negligible in
Chengdu with an even smaller value of −0.001 ◦C/a. In addition, both trends did not
pass the significant level of 90% (z < 1.96). In other words, very slight decreases in both
locations were not significant in terms of statistical analysis. Generally speaking, the days
under no thermal stress increased in most of the tourism cities over China (Figure 6d). The
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days under slight cold stress increased in most locations in the northern parts of China,
while they decreased in most locations in the southern parts of China (Figure 6e). The days
under moderate heat stress and strong heat stress generally increased over China from 1961
to 2000 (Figure 6b,c). In contrast with these increasing trends, trends in the days under
moderate cold, strong cold, and very strong cold stresses presented an overall decreasing
trend in most locations over China (Figure 6f–h). Especially, the days under very strong
cold stress decreased in all locations of China (Figure 6h). In short, the UTCI increased in
most locations of China, accompanying with an overall increase in days under no thermal
stress and heat stress, and an overall decrease in days under cold stress (Figure 6a–h).
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4. Discussion
4.1. Optimal Strategy on Estimating Solar Radiation for UTCI Calculation

The sunshine-based Angstrom model was selected as the best choice to estimate solar
radiation for UTCI calculation. In this study, the sunshine-based models performed better
than the temperature-based models in terms of higher NSE and lower MAPE and RMSE
(Tables 3 and 4), which was in agreement with the results from the previous reports [33,38].
The machine-learning method is believed to be a promising choice for accurate estimation
of solar radiation [41], but the strict requirement of many input variables for model training
cannot always be met, which inevitably leads to better performance in calibration but worse
performance in validation [57]. This inherent defect was again identified by the higher NSE
in calibration and the lower NSE in validation in this study (Tables 3 and 4). In fact, the
machine-learning methods can only slightly improve the accuracy in radiation estimation
compared with the sunshine-based models, but require many more input variables and
datasets for model training [41]. Due to limitation of length, only the BP and SVM methods
were implemented in this study. Recently, the Random Forest method has also been
identified as an effective algorithm in radiation estimation [58], which may outperform
the BP and SVM methods. So, involvement of more machine-learning methods to further
improve accuracy in radiation estimation becomes necessary in the future research work.

Based on sensitivity analysis, Weihs et al. [4] concluded that the maximum uncertainty
in solar radiation estimation would be 15% in conventional sites, which might contribute
to a maximum uncertainty in UTCI with 2.1 ◦C. In this study, the RMSE of the radiation
by the Angstrom model was 32 J/m2 s in Beijing, while the average solar radiation was
around 300 J/m2 s in clear days (Figure 3). This error resulted in an uncertainty of about
11% in radiation estimation, which further led to an uncertainty of about 1.2 ◦C in UTCI
calculation (Figure 3), just within the error range made by sensitivity analysis [4]. Therefore,
it can be reasonably concluded that accurate UTCI can be obtained through the optimal
strategy for radiation estimation. Based on the results and analysis above, the sunshine-
based Angstrom model is recommended as the optimal strategy due to its excellent model
performance, easy operation, and readily available input variables.

4.2. Increase in Yearly Day Number under no Thermal Stress Accompanying with More Risks in
Heat Stress in Summer in China

Global warming has been well acknowledged in modern society [59], with its great
negative effects in many aspects such as the economy [60], agriculture [61], and global
food security [62]. In addition, climate change is also believed to give rise to more extreme
weather events, which would pose great risks to the public health [63–67]. Considering so
many impressive negative impacts, people would naturally envisage that days under no
thermal stress would decrease in the context of climate change. However, this study showed
an opposite result in that the yearly day number under no thermal stress increased in most
tourism cities over China in the recent six decades (Figure 6d). To investigate its reliability,
the probability of days under each category in the period of 1961–1990 and 1991–2020 was
analyzed, respectively. Figure 7 clearly indicates that the distribution probability curve
slightly right-shifted in the tourism cities of China. This shift can be attributed to the
decrease in cold days and increase in warm days caused by climate warming. For most
locations, more days under cold stress changed to the days under no thermal stress, while
fewer days under no thermal stress shifted to the days under heat stress. This might be
the exact reason for the increasing days under no thermal stress in most tourism cities of
China. Only for very few tourism cities such as Shenzhen was this shift was not significant
due to the high temperature in south part of the tropical humid zone. In short, it is the
asymmetric changes in the hot days and cold days that led to the increase in days under
no thermal stress within a year in the tourism cities of China. This argument is strongly
justified by the previous report given by Zhai et al. [68], who identified that the number of
hot days displayed a slight increasing trend, while the number of the frost days exhibited a
significant decreasing trend in China in the recent decades.
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The increase in days under no thermal stress mainly occurred in the spring and
autumn. In summer, the days under no thermal stress did decease (Figure 8a). Without
consideration of the radiation effect on UTCI, Yan et al. [10] also believed that days under
no thermal stress have been decreasing in most locations of China from 1961 to 2016 in
summer. In contrast to the decrease in days under no thermal stress, the days under strong
heat stress showed an increasing trend in most tourism cities in summer (Figure 8b), which
would inevitably cause more potential heat threats to the public health and make the further
investigation on thermal perception essential and urgent [28].
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4.3. Certainties and Uncertainties in UTCI Estimation over China

It is certain that UTCI deserves its name, as the term “universal” means that UTCI
is appropriate for all assessments of the outdoor thermal conditions in the major human
bio-meteorological applications [7]. Previously, many simple thermal indices have already
been suggested in different regions in China [69–71], but none of them could be used
for the spatial analysis at the national scale over China due to regional adaptability. In
contrast, UTCI successfully revealed the overall distribution of the thermal environments
in the tourism cities of China (Figure 5), and the results are highly consistent with public
cognition. For example, Kunming is called “spring city” due to its long period of thermal
comfort, which has been identified by UTCI as the city with the most days under no thermal
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stress (Figure 5d). The general distribution of more cold stress in tourism cities of north
China and more heat stress in tourism cities of south China also agree well with the basic
public cognition. However, it should be noted that Huangshan is an exception of this
the general spatial distribution of UTCI (Figure 5a). Though located in the central part of
China, the yearly UTCI of Huangshan is much lower than the surrounding cities due to
its high altitude (Table 1). This unique UTCI makes Huangshan become one of the most
attractive tourism destinations in the summertime. So, the effect of topographic features
on UTCI should be explored in the future research relevant to the distribution of thermal
environments in China.

The general spatial distribution of UTCI in the tourism cities of China is comparable
to the previous reports [9,44], with quantitative differences due to different strategies on
dealing with input variables. In the future, error in UTCI calculation caused by using
cloudiness [9] or simple interpolation [44] should be examined deliberately. In addition,
UTCI stress should be redefined at daily scale. Currently, UTCI category is defined at hourly
scale [16]. However, air temperature has obvious seasonal and daily changes, especially
in the monsoon climate regions such as China [72]. As air temperature is the dominant
element of UTCI, and UTCI also has seasonal and daily changes at daily and seasonal scales.
Therefore, both heat stress and cold stress would be underestimated if the daily UTCI were
classified according to the current UTCI category at the hourly scale. For example, the daily
UTCI of 26 ◦C was defined as no thermal stress (9–26 ◦C) according to the current hourly
category (Table 2). However, there is a great possibility that UTCI is higher than 26 ◦C in
many hours during the day, so it actually should be classified as moderate heat stress rather
than no thermal stress in this day. Vice versa, the daily UTCI of 9 ◦C should actually be
referred to as a slight cold day, as UTCI would be lower than 9 ◦C in many hours of the
day. Likewise, daily UTCI values within category 3 or category 9 might actually belong to
category 2 or category 10. This might be the exact reason that no very strong heat stress
(category 10) and extreme hot stress (category 2) were identified in both this study and all
of the previous reports, which is obviously contradicted to the public cognition that there
are many “ice” and “furnace” cities in China. Thus, it is urgent to redefine UTCI category
at daily scale through comparison of daily UTCI with hourly values in the future work.

5. Conclusions

The sunshine-based Angstrom model performed well in estimation of solar radiation
in the tourism cities of China with high NSE of 0.864 and low RMSE of 35.4, which resulted
in a high efficiency in UTCI calculation with NSE of 0.99. Uncertainty in UTCI calculation
with estimated solar radiation by the Angstrom model was 1.2 ◦C, just within the error
range obtained by sensitivity analysis. So, the Angstrom model is proposed as the optimal
strategy on solar radiation estimation for UTCI calculation due to its high accuracy and
easy operation.

Spatial distribution of UTCI indicated that day number under no thermal stress was
higher in the tourism cities of central China, within a range from 135 to 225 days, and
the largest days under no thermal stress occurred in Kunming and Lijiang in southwest
China. Very strong cold stress mainly occurred in Harbin and Changchun in northeast
China, with a period between 15 and 25 days in a year. Strong heat stress mainly occurred
in the tourism cities of south China, especially southernmost Sayan, with a period between
40 and 70 days in a year.

Contrary to popular belief, days under no thermal stress during a year have increased
in most tourism cities of China in the recent decades in the context of global warming,
which can be attributed to the asymmetric changes in the significant decrease in frost days
and slightly increase in hot days over China in the recent decades. However, in the summer,
days under no thermal stress have decreased in most regions of China, accompanying with
increasing trends in days under very strong heat stress, especially in the developed regions
such as Yangtze River Delta and Zhujiang River Delta, which would pose great risks to
thermal perception for the public health in these regions.
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UTCI can successfully identify the general spatial distribution and temporal trend of
thermal environments in most tourism cities of China. However, up to now, all reports on
Chinese UTCI were performed by classifying daily UTCI values according to the category
obtained at hourly scales, which would result in the underestimation of days under extreme
hot or cold stress conditions. This is exactly the weakness of UTCI performance in China,
i.e., no extreme cold or extreme hot days have been identified by the daily UTCI values.
Thus, it is urgent to redefine UTCI category at daily scales by comparing daily UTCI with
the corresponding hourly values in the future research work.
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