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ABSTRACT
The endocannabinoid (EC) system has pleiotropic functions in the body. It plays a key role in energy 
homeostasis and the development of metabolic disorders being a mediator in the relationship 
between the gut microbiota and host metabolism. In the current study we explore the functional 
interactions between the endocannabinoid system and the gut microbiome in modulating inflam-
matory markers. Using data from a 6 week exercise intervention (treatment n = 38 control n = 40) 
and a cross sectional validation cohort (n = 35), we measured the associations of 2-arachidonoyl-
glycerol (2-AG), anandamide (AEA), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine 
(PEA) with gut microbiome composition, gut derived metabolites (SCFAs) and inflammatory mar-
kers both cross-sectionally and longitudinally. At baseline AEA and OEA were positively associated 
with alpha diversity (β(SE) = .32 (.06), P = .002; .44 (.04), P < .001) and with SCFA producing bacteria 
such as Bifidobacterium (2-AG β(SE) = .21 (.10), P < .01; PEA β(SE) = .23 (.08), P < .01), Coprococcus 3 
and Faecalibacterium (PEA β(SE) = .29 (.11), P = .01; .25 (.09), P < .01) and negatively associated with 
Collinsella (AEA β(SE) = −.31 (.12), P = .004). Additionally, we found AEA to be positively associated 
with SCFA Butyrate (β(SE) = .34 (.15), P = .01). AEA, OEA and PEA all increased significantly with the 
exercise intervention but remained constant in the control group. Changes in AEA correlated with 
SCFA butyrate and increases in AEA and PEA correlated with decreases in TNF-ɑ and IL-6 statistically 
mediating one third of the effect of SCFAs on these cytokines. Our data show that the anti- 
inflammatory effects of SCFAs are partly mediated by the EC system suggesting that there may 
be other pathways involved in the modulation of the immune system via the gut microbiome.
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Introduction

Exercise is known to elicit a feeling of euphoria, 
referred to as a “runner’s high”, which recent stu-
dies indicate is the result of activation of the endo-
cannabinoid system.1,2 Endocannabinoids (ECs), 
such as anandamide (AEA), 2-arachidonoylglycerol 
(2-AG), N-palmitoylethanolamine (PEA), and 
N-oleoylethanolamine (OEA) are lipid mediators 
that bind to specific receptors and elicit cell signal-
ing. The EC system modulates systemic energy 
metabolism, inflammation, pain, and brain 
biology3 and is comprised of ECs, its receptors, 
most notably the G-protein coupled receptors 
CB1, CB2, and the enzymes that produce and 
degrade ECs.4 The role of this system in modulating 

inflammation,5 muscle strength6,7 and energy 
metabolism8,9 is now widely documented in 
humans and in other mammals.10

In addition, there is a vast body of evidence sug-
gesting that the gut microbiome and exercise are 
interconnected to regulate metabolism and home-
ostasis, independent of diet.11 Specifically, exercise 
has been shown in both animal model and human 
studies to increase the relative abundance of buty-
rate-producing microbes and thereby increase the 
production of butyrate, a short chain fatty acid with 
systemic anti-inflammatory benefits.12–17

Separately, the gut microbiome and the EC sys-
tem have also been connected to metabolic regula-
tion and homeostasis.18 For over a decade now it 

CONTACT Amrita Vijay amrita.vijay@nottingham.ac.uk Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of 
Nottingham, Nottingham, UK

Supplemental data for this article can be accessed on the publisher’s website.

GUT MICROBES                                              
2021, VOL. 13, NO. 1, e1997559 (13 pages) 
https://doi.org/10.1080/19490976.2021.1997559

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-9595-5680
http://orcid.org/0000-0003-1141-4471
https://doi.org/10.1080/19490976.2021.1997559
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2021.1997559&domain=pdf&date_stamp=2021-11-12


has been known that specific gut microbial strains 
modulate the expression of cannabinoid and μ- 
opioid receptors in intestinal cells.19 Extensive 
work in animal models has shown that gut 
microbes also counteract obesity-induced overac-
tivity of the EC system in the mouse colon, with 
subsequent reduction of gut permeability to 
lipopolysaccharide

(LPS) (i.e. decreased metabolic endotoxae-
mia) and increased adipogenesis.20,21 

Accordingly, prebiotics, probiotics and antibio-
tics affect the intestinal EC system. These effects 
of the microbiota appear to be mediated in part 
by the modulation of EC inactivating enzymes, 
which also metabolize EC-related mediators 
with activity at non-cannabinoid receptors.22 

Furthermore, dysregulation of the EC system 
has been connected to digestive disorders such 
as inflammatory bowel disease, irritable bowel 
syndrome, as well as obesity.23–25 These condi-
tions involve both a dysregulated microbiota 
(dysbiosis) and altered short chain fatty acids 
(SCFAs) levels.26–28

To date the mechanisms and the extent to which 
the anti-inflammatory effects of gut microbial pro-
duction of (SCFAs) are mediated or induced by 
changes in the EC system have not been explored. 
Moreover, the links between changes in specific 
bacterial strains and EC levels in response to dietary 
or other interventions are lacking in humans. In 
this study we have investigated the cross-sectional 
links between ECs and gut microbiome composi-
tion in two cohorts and further investigated the 
relationship between changes in ECs and gut 
microbiome in response to an exercise 
intervention.

Methods

Study population

The longitudinal cohort belonged to community 
dwelling individuals (Age: >45 y) as part of the 
iBEATOA study.29 The cross-sectional cohort was 
an independent cohort consisting of healthy indi-
viduals aged >18 y. The associations of ECs with 
microbiome and metabolomic data was carried out 
cross-sectionally first in the longitudinal cohort and 
then validated in the independent cohort consisting 

of healthy volunteers. Longitudinal analysis was 
performed using baseline and follow-up data in 
the webex cohort.29

All participants provided written informed con-
sent. For the longitudinal cohort, ethical approval 
was obtained from the Research Ethics Committee 
(ref:18/EM/0154) and the Health Research 
Authority (protocol no: 18021) and the trial is 
registered under the clinicaltrials.gov database 
(NCT03545048). For the cross-sectional (validation 
cohort), ethical approval was sought by the West 
Midlands Black Country Research Ethics 
Committee (18/WM/0066).

Sample collection

Baseline blood, stool, and anthropometric mea-
sures (such as, height and weight) were collected 
in both cohort studies. Blood samples were col-
lected from participants between 8:30am and 
10am during each visit. Participants were 
instructed to come in a fasted state at least 
since 9 pm the night before (i.e. minimum fast-
ing time was 11.5 hours). Blood samples were 
collected using Serum Separator Tubes (SST) 
and were processed within 2–3 hours of collec-
tion for separating serum and aliquoted for sto-
rage at −80 C until the end of the intervention 
period.

Metabolomic analysis

Lipidomic measurements
2-AG, AEA, PEA and OEA measurements were 
extracted from .5 ml serum samples and quantified 
against a fully extracted calibration line using tar-
geted liquid chromatography tandem mass spectro-
metry (LC-MS/MS) based on the method described 
previously.30

Serum short-chain fatty acids
Serum SCFAs in the Webex study cohort were mea-
sured using the standardized procedures by 
Metabolon Inc., Durham, USA.31 Serum SCFA in 
the validation study cohort were measured by the 
Mass Spectrometry Department, King’s College 
London using in-situ pentafluorobenzylation of the   
free acid species, followed by gas chromatography- 
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negative-chemical-ionization mass spectrometry 
(GC-NCI-MS) determination of the resulting deriva-
tives as described previously.32,33

Inflammatory markers
Pro and anti-inflammatory serum markers were 
measured by Affinity Biomarkers, London using 
the standardized Human Proinflammatory panel 1 
assay kit (cat number K151A0H-1), distributed by 
Meso Scale Discovery as described previously.33

Gut microbiome sequencing

Fecal sample collection and processing methods 
were the same in both cohort studies. Fecal samples 
were collected by the participant at home using 
previously provided collection kits and frozen 
immediately at −80°C until further processing. 
Stool DNA extraction was carried out according 
to Goodrich et al.34 using100 mg of the stool sam-
ple. There was no homogenization prior to this 
step. Gut microbiome composition was determined 
by 16 S rRNA gene sequencing carried out as pre-
viously described.32,33 Briefly, the V4 region of the 
16S rRNA gene was amplified using universal pri-
mers 355 F (CCAGACTCCTACGGGAGGCAGC) 
and 806 R (GGACTACHVGGGTWTCTAAT). 
Amplified DNA was sequenced on the MiSeq plat-
form (Illumina, 300bp paired-end reads). Read fil-
tering and clustering were carried out using the 
MYcrobiota pipeline. Briefly, chimeric sequences 
were filtered using the VSEARCH algorithm within 
Mothur, and reads were clustered into operational 
taxonomic units (OTUs) using closed-reference 
clustering against the SILVA database v132 based 
on a 97% similarity. Diversity metrics (Shannon 
index observed OTUs and Unweighted UniFrac) 
were calculated by rarefying the OTU table down 
to 7000 sequences per sample 50 times and taking 
the average. These analyses were carried out in 
QIIME2 (v2018.11).

Gene expression

Barcoded libraries for RNA-seq were prepared with 
5ng of RNA using TruSeq Stranded Total RNA HT 
Sample Prep Kit with Ribo-Zero Gold kit 
(Illumina) per manufacturer’s protocol. Paired- 

end sequencing (100 bp × 2) was performed on 
HiSeq 4000 sequencers (Illumina) at Genewiz 
(UK).35

Statistical analysis

All statistical analyses were carried out in R v4.0.3. 
OTUs with a relative abundance of <.1% in every 
sample were removed, and zero inflated relative 
OTU abundances were inverse normal transformed 
before further analyses. All analyses were adjusted 
for age, gender and BMI and multiple testing using 
false discovery rate (FDR q < .05). Linear regres-
sions were first carried out independently in both 
cohorts to identify significant associations between 
endocannabinoids, gut microbiota composition, 
SCFAs and cytokines along with adjusting for cov-
ariates such as age, sex, BMI and multiple testing 
(FDR q < .05). The standardized estimates were 
meta-analyzed to produce a combined effect after 
adjusting for covariates and multiple testing. Meta- 
analysis takes the effect size, standard error and 
sample size into account to give an overall effect 
from the different groups studied. For the cross- 
sectional analysis, we used fixed-effects inverse- 
variance models since our cohorts were homoge-
nous having adjusted for age, sex and BMI.

Results

The descriptive characteristics of the cohorts are 
shown in Table 1.

The associations of endocannabinoids with gut 
microbiome composition, SCFAs and inflamma-
tory cytokines were assessed both cross-sectionally 
and longitudinally using two independent cohorts 
that were matched for age and gender as described 
in Figure 1.

Cross-sectional and reproducible associations of 
endocannabinoids with gut microbiome 
composition, SCFAs and inflammatory markers

We first carried a cross-sectional analysis to inves-
tigate the associations of endocannabinoid levels 
with gut microbiome composition, short chain 
fatty acids and inflammatory markers. We first 
tested this using the baseline data from the long-
itudinal cohort wherein we found all four 
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endocannabinoids were positively associated with 
Shannon diversity, SCFA producing bacteria such 
as Bifidobacteria and Coprococcus 3 and negatively 
associated with Collinsella and Escherichia 
Shigella, a pathogenic bacterium (Figure 2). We 
found the endocannabinoids mainly AEA, 2AG 
and the endocannabinoid like compound OEA to 
be significantly associated with butyrate (β 
(SE) = .38 (.10), P = .01), propionate (β 
(SE) = .31 (.08) P = .01) and iso-butyrate (β 
(SE) = .34 (.08), P = .02), respectively. 
Furthermore, EC levels were positively associated 
with anti-inflammatory markers such as IL-10 but 
negatively associated with a range of pro- 
inflammatory cytokines as shown in Figure 2. 
These findings were then validated in an indepen-
dent cohort consisting of healthy individuals 
matched for age and gender wherein we found 
similar significant associations (supplementary 
figure S1). We tested reproducibility of the sig-
nificant associations of ECs with the above men-
tioned traits by carrying out a meta-analysis by 
combining the direction of effects observed in 

both independent cohorts and found that the asso-
ciations of endocannabinoids with Shannon diver-
sity, specific OTUs, SCFAs and pro and anti- 
inflammatory markers were significantly reprodu-
cible as shown in Figure 3.

Proportional variance explained by the ECs on the 
associations of the gut microbiome with 
inflammatory markers

We then explored the proportional effect of the gut 
microbiota and ECs on inflammatory markers that 
were significantly associated (FDR p < .05) with 
both these parameters. We explored these effects 
by formal mediation where ECs were fitted as med-
iator of the effect of SCFAs on inflammatory mar-
kers. Overall, we found that ECs partially mediated 
the association between SCFAs and inflammatory 
markers. AEA mediated 33% (P < .001) of the effect 
of SCFA (butyrate) on TNF〈 and 27% (P = .001) 
of the effect of SCFA on IL-6. We also tested how 
much of the effect of ECs on inflammatory markers 
is mediated by SCFA and found that 56% (P = .02) 

Table 1.

Longitudinal cohort (Webex) (N = 78)
Cross-sectional cohort 

(N = 35)

Control group (n = 40) Exercise group (n = 38)

Baseline Mean (± 
SD)

Follow-up Mean (± 
SD)

Baseline Mean (± 
SD)

Follow-up Mean (± 
SD) Mean (± SD)

Demographics
Age (y) 67.59 (9.71) 65.32 (10.08) 69.51 (8.77)
Men/Women 

(%)
8/32 (20/80) 10/28 (26/73) 10/25 (32/68)

BMI (kg/m2) 32.86 (7.80) 32.58 (7.50) 29.81 (5.12) 30.31 
(7.26)

Endocannabinoids
2-AG 52.40 (42.12) 49.32 (32.13) 42.50 (28.85) 44.61 (30.48) 41.91 (36.81)
AEA 1.68 (.38) 1.53 (.26) 1.61 (.35) 1.79 (.44)** .94 (.34)
OEA 7.18 (1.49) 7.15 (2.03) 6.71 (1.87) 7.37 (2.13)** 4.48 (1.78)
PEA 21.99 (33.22) 19.19 (16.99) 26.41 (24.14) 42.07 (31.18)** 26.03 (21.92)
Cytokines
INFγ 18.46 (17.91) 17.15 (15.63) 14.29 (10.80) 11.25 (7.30) 12.71 (8.12)
IL-10 1.02 (1.69) .79 (.76) .55 (.36) .42 (.31) * .67 (.53)
IL-13 3.44 (2.49) 2.91 (1.15) 3.26 (1.54) 1.81 (.98)** 3.18 (2.71)
IL-1 .34 (.45) .22 (.15) .28 (.27) .18 (.09) .41 (.39)
IL-4 .34 (.62) .32 (.21) .30 (.57) .10 (.03)** .15 (.09)
IL-6 3.16 (2.93) 2.82 (2.74) 2.67 (.86) 2.02 (.71) 1.42 (1.22)
IL-8 41.75 (35.62) 40.04 (35.84) 42.50 (2.21) 32.80 (2.20) 31.79 (17.19)
TNFα 7.05 (6.46) 6.44 (6.03) 7.78 (9.01) 5.91 (3.52)* 3.37 (.89)
SCFAs
Acetic acid 28.98 (17.89) 26.92 (16.45) 33.61 (18.43) 32.38 (17.12) 43.43 (68.69)
Butyric acid 11.04 (2.53) 10.63 (2.74) 10.86 (2.67) 17.23 (4.10)* 8.39 (.73)
Propionic acid 2.28 (5.98) 2.28 (6.17) 2.42 (6.57) 6.91 (2.03)* 10.13 (.79)
Valeric acid 3.21 (7.33) 2.92 (7.7) 3.20 (4.31) 3.38 (4.63) 1.25 (.52)
Iso-butyric acid 10.39 (2.90) 10.65 (3.09) 9.67 (2.35) 11.79 (3.47)* 10.69 (5.70)
Iso-valeric acid 5.69 (3.17) 5.95 (3.02) 5.55 (2.52) 5.61 (2.30) 7.26 (2.45)

BMI (Body Mass Index); SCFA (Short Chain Fatty Acids) 
*p < .05; **p < .001. p values are FDR corrected obtained from paired matched t test between baseline and follow-up.

e1997559-4 A. VIJAY ET AL.



Figure 1. CONSORT flow diagram.

Figure 2. Matrix plot showing the associations of: (a) OTU abundance and short chain fatty acids with endocannabinoids; and (b) pro 
and anti-inflammatory markers with endocannabinoids. Associations are based on data from the longitudinal cohort. Squares 
represent beta coefficients with size and color varying based on size and direction of association. (FDR adjusted *p < .05).
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and 48% (P = .001) of SCFA mediated the effects on 
TNF〈 AND IL-6 respectively, as shown in 
Figure 4.

Longitudinal association of endocannabinoids with 
gut microbiome composition, SCFAs and 
inflammatory markers and response to exercise

We found that levels of AEA, OEA and PEA were 
all significantly increased in the exercise group but 
not in the control group. Similarly, we observed 
significant decreases in proinflammatory cytokines 
and increases in specific SCFAs in the exercise but 
not in the control group (Table 1). We then 

assessed the correlations between changes in ECs 
with change in microbiome composition, SCFAs 
and inflammatory cytokines. The associations in 
the intervention arm alone did not show changes 
in ECs to be associated with changes in SCFAs 
(Supplementary Figure S2) after FDR correction. 
Therefore, we looked at changes from baseline to 
follow up using data from both arms looking at the 
overall change effect of ECs with SCFAs and other 
markers. We found that amongst the ECs, changes 
in AEA and OEA were positively associated with 
gut microbiome diversity (β(SE) = .32 (.06), 
P = .002; .44 (.04), P < .001). Increases in ECs 
were also associated with increased abundance of 

Figure 3. Meta-analysis of beta coefficients of with 95% CIs from cross-sectional analysis derived from both cohorts. The figure 
represents the strongest associations of ECs with (a) Microbiome composition; (b) Short chain fatty acids and (c) Pro and anti- 
inflammatory cytokines.

Figure 4. Mediatory effects of ECs and SCFAs on pro-inflammatory markers: TNFα and IL-6. (a) SCFA: butyrate, iso-butyrate (b) EC: AEA, 
PEA.
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SCFA producing bacteria such as Bifidobacterium 
(2-AG β(SE) = .21 (.10), P < .01; PEA β(SE) = .23 
(.08), P < .01), Coprococcus 3 and Faecalibacterium 
(PEA β(SE) = .29 (.11), P = .01; .25 (.09), P < .01) 
and negatively associated with Collinsella (AEA β 
(SE) = −.31 (.12), P = .004). Additionally, we found 
AEA to be positively associated with SCFA Butyrate 
(β(SE) = .34 (.15), P = .01). When we associated 
ECs with cytokines, we found positive associations 
of 2AG and OEA with anti-inflammatory markers 
such as IL-10 and negative associations of most ECs 
with some of the pro-inflammatory cytokines, 
TNFα and IL-6 (Figure 5).

Association of endocannabinoids with gene 
expression levels

The association of endocannabinoids with gene 
expression levels of specific cannabinoid receptors 
as well as SCFA receptors from the longitudinal 

cohort was tested. We found most ECs to be posi-
tively associated with one of the main cannabinoid 
receptors CNR2 (all P < .05). Interestingly, AEA 
and OEA were found to be positively associated 
with FFAR2 which is one of the main SCFA fatty 
acid receptors (Figure 6).

Discussion

In this study we find that approximately one 
third of the anti-inflammatory downstream 
effects of SCFAs are statistically mediated by 
endocannabinoids but approximately two thirds 
of the effect of SCFAs on cytokines appears not 
to be related to ECs. Using an exercise inter-
vention, we report that increases in SCFA- 
producing bacteria and decreases in the pro- 
inflammatory genus Collinsella are correlated 
with increases in endocannabinoid circulating 
levels.

Figure 5. Matrix plot showing the associations of (a) change in OTU abundance and short chain fatty acids with change endocanna-
binoids; (b) change in pro- and anti-inflammatory markers with change endocannabinoids. Squares represent beta coefficients with 
size and color varying based on size and direction of association. (FDR adjusted *p < .05).
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Previous research has shown increased abun-
dance of Collinsella to be strongly associated with 
increased intake of processed food and low vegeta-
ble intake (Menni et al., 2021; Wolf et al., 2019), 
whereas decreased abundance of Collinsella was 
observed following a Mediterranean diet interven-
tion (Ghosh et al., 2020). Furthermore, it was found 
that this genus significantly increased the risk of 
nonalcoholic steatohepatitis, the most serious form 
of nonalcoholic fatty liver disease whereby inflam-
mation causes liver damage that can progress to 
cirrhosis (Astbury et al., 2020). Moreover, 
increased levels of Collinsella have been detected 
in individuals with type 2 diabetes36 and were noted 
to decrease in a weight loss study where insulin 
sensitivity improved during the course of the 
study.37 Collinsella was also positively correlated 
with heightened inflammatory cell count profiles 
(i.e. lymphocytes).38 The concomitant changes 
observed in EC levels, Collinsella and cytokines 
suggest that this genus might exert some of its pro- 
inflammatory effects via modulating the EC system 
and it is possible that some of the effects of this 

genus on insulin resistance may also be linked to 
ECs given the tight relationship between EC mod-
ulation and insulin resistance.39

So far, no previous study examined the poten-
tial link between the EC system, exercise, and 
the gut microbiome. In a study with obese and 
normal weight women, high moderate to vigor-
ous activity levels were not only higher in nor-
mal weight women but were also associated with 
higher OEA and AEA levels.40 Studies have 
shown that acute physical exercise increases cir-
culating AEA, but not 2-AG, levels in 
humans.41,42 Two studies on elite rugby players 
showed that depending on diet and BMI the 
athletes had higher microbial diversity43 and 
increased fecal SCFA levels44 compared to non- 
active controls, whereas another study found 
cardiorespiratory fitness associated with higher 
levels of microbiome diversity, especially buty-
rate-producing bacteria independent of diet.45 

While using small numbers of participants, 
a longitudinal study using 6 weeks of progressive 
endurance exercise without changing diet in 

Figure 6. Heat map indication positive (light blue) and negative (dark blue) associations of ECs with gene expression levels of specific 
EC and SCFA receptor proteins. (*p < .05).
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overweight women found an increase in SCFA- 
producing bacteria,46 independent of age, 
weight, fat % as well as energy and fiber 
intake.47 Therefore, our data confirm findings 
from previous studies that have shown that 
ECs and SCFAs increase with exercise and 
further reveal the strong correlation between 
increases in ECs and decreases in pro- 
inflammatory cytokines. It is possible therefore 
that improved EC tone induced by exercise may 
be mediating the shift in the gut microbiota to 
increased SCFA producers, thereby increasing 
the SCFA production without a dietary change. 
This is a hypothesis that needs testing in 
a controlled experimental setting.

Using formal mediation analysis, we find that 
ECs are statistically mediating up to a third of the 
effect of SCFAs on the circulating levels of pro and 
anti- inflammatory cytokines. We further show that 
EC levels, specifically AEA and OEA, are positively 
correlated not just with EC system genes such as 
cannabinoid receptor 2 (CNR2) but also with 
higher expression levels of the SCFA receptors 
FFAR2 but not with long fatty acid receptor like 
FFAR4. These data complement results from ani-
mal model studies showing that ECs can attenuate 
central and peripheral inflammation, can modulate 
gut microbiota composition and can reduce mar-
kers of gut permeability.48 CNR2 deficient mice had 
higher serum levels of the anti-inflammatory cyto-
kine IL-10 compared to controls following 
a bacterial lipopolysaccharide challenge.49 The anti- 
inflammatory role of CNR2 was further demon-
strated both in a chronic murine animal model 
and in IBD patients.50 FFAR2 was found to be 
necessary for the inulin-induced reduction of food- 
intake and protection against diet-induced 
obesity.51 Overall, our data confirm that ECs and 
SCFAs are crucial modulators of the effects of the 
gut microbiome on human metabolism and 
physiology.

Consistent with previous studies,52–54 we find 
anti-inflammatory effects of endocannabinoids, 
including positive associations of 2AG and 
OEA with anti-inflammatory markers (IL-10) 
and negative associations of most ECs with pro- 
inflammatory cytokines (TNFa and IL-6). At 
the same time, we show that the anti- 
inflammatory effects of ECs are partly mediated 

by increased levels of SCFAs and specifically 
butyrate. Elevated levels of butyrate have been 
shown to decrease mucosal permeability by 
increasing the secretion of mucins.55,56 

Furthermore, ECs have emerged as important 
players in modulating gut permeability via 
enhancing the production of the tight-junction 
protein, occludin-1, as well as decreasing the 
expression of claudin-1, that serves as 
a paracellular barrier.57,58 Although further in- 
vitro and in-vivo studies are required to unravel 
the specific pathways involved, we think that 
the EC system and the gut microbiome play 
a role jointly in regulating an inflammatory 
status.

Our study has a number of strengths. Firstly, 
the findings from our study reinforce previous 
knowledge of an interaction between the EC 
system and the microbiome and add to pre-
vious literature by revealing an interaction 
between ECs, SCFAs and inflammatory system 
markers. Secondly, we have validated the cross- 
sectional associations between ECs and bacterial 
abundances in an independent cohort, and we 
have used gene expression data to annotate the 
pathways involved. Lastly, we have assessed the 
relationship between ECs, SCFAs and cytokines 
both cross-sectionally and longitudinally and 
have shown that simple lifestyle interventions 
such as exercise can modulate inflammatory 
markers via SCFAs and ECs.

We also note some study limitations. The tran-
scriptomic assay we used did not include probes for 
FFAR1 and FFAR3 nor did it include CNR1 making 
our gene expression data only partially informative. 
The exercise intervention we carried out was per-
formed in individuals with pain in knee osteoar-
thritis and may not be directly relevant to other 
groups. However, the associations between ECs, 
SCFAs and cytokines were validated in a healthy 
age and sex matched smaller cohort suggesting that 
our data are generalizable. The findings presented 
from the formal mediation analysis are purely sta-
tistical and do not indicate causality.

In conclusion, in this study we show that 
circulating levels of ECs are consistently asso-
ciated with higher levels of SCFAs, with higher 
microbiome diversity and with lower levels of 
the pro-inflammatory genus Collinsella. We also 
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show statistically that the anti-inflammatory 
effects of SCFAs are up to one third mediated 
by the EC system.
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