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Abstract: A new type of polyampholyte with unique viscoelastic properties can be easily synthesized
by the copolymerization of butyl acrylate with dimethylaminoethyl methacrylate and acid acrylate
in one pot. The elastic modulus of the as-prepared polyampholyte can be easily tuned by adjusting
the ratio between the butyl acrylate and ionic monomers. The polyampholyte synthesized by a
low proportion of ionic monomer showed low tensile strength and high stretchability, resulting
in good conformal compliance with the biological tissues and potent energy dissipation. Due to
the existence of high-intensity reversible ionic bonds in the polymer matrix, excellent self-recovery
and self-healing properties were achieved on the as-prepared polyampholytes. By combining the
high Coulombic interaction and interfacial energy dissipation, tough adhesiveness was obtained
for the polyampholyte on various substrates. This new type of polyampholyte may have important
applications in adhesives, packaging and tissue engineering.

Keywords: polyampholytes; tough; stretchable; self-recovery; self-healing; dual adhesiveness

1. Introduction

Polyampholytes, in which both positive and negative charges exist, have aroused
widespread interest due to their tunable properties and functions, e.g., anti-fouling [1],
self-healing [2–4] and shape memory [5]. Much attention has been given to the fabri-
cation of polyampholytes, e.g., free radical solution polymerization [6], reverse phase
micro-emulsion polymerization [7], active anionic polymerization [8] and group transfer
polymerization [9]. Polyampholyte hydrogels can be formed when polyampholytes with
a suitable degree of crosslinking are swollen in water, and they may find a wide range
of applications in the field of biomedical engineering [10,11], tribology [12,13] and anti-
fouling [14]. Due to their unique zwitterionic molecular structures and tunable interchain
ionic interactions, polyampholyte hydrogels have shown outstanding self-healing, adaptive
adhesiveness [15,16] and shape-memory properties. These properties are very important
for the applications of polyampholyte-based hydrogels in flexible electronics, artificial skins
and tissue engineering. Compared with double-network hydrogels [17–19], polyampholyte
hydrogels may have intrinsic advantages in forming strong adhesion to different charged
surfaces due to their unique self-adjustable surface charge distribution. However, polyam-
pholytes synthesized by the direct copolymerization of anionic and cationic monomers are
physically crosslinked by ionic bonds, resulting in physical gels with limited elastic moduli
and toughness [20]. This in turn lowers the upper limit of the energy dissipated during the
detachment between the polyampholyte and the substrate, and hence attenuated adhesion
toughness. To address this issue and obtain polyampholytes with high adhesion toughness,
recent attempts have been focused on introducing new monomers with zero charge into the
polymeric structure of polyampholytes, but the true effect was ambiguous and essentially
depended on the reactivity between the neutral and ionic monomers [21].

Herein, we proposed a new type of highly tough and adhesive polyampholyte
(PBADMA) by using butyl acrylate (BA) to copolymerize the ionic monomers of dimethy-
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laminoethyl methacrylate (DMA+) and acid acrylate (AA−) in a simple and fast one-pot
manner. The as-obtained polyampholyte showed typical viscoelastic properties with
high tensile strength (4.7 MPa) and an extremely high fracture strain of 2700%. The
presence of BA can effectively tune the viscoelastic behaviors of the as-prepared polyam-
pholytes, achieving excellent self-recovery and self-healing properties. High adhesion
toughness surpassed the conventional hydrogel materials by means of combining the
Coulombic surface interaction and viscoelastic energy dissipation was also achieved for
the as-prepared polyampholytes.

2. Results
2.1. Characterization of PBADMA

A series of PA elastomers was prepared using BA, AA, and DMA, denoted as P(BA-co-
AA-co-DMA)-x (PBADMA-x), while x represented the molar ratio of the ionic monomers.
We used BA because it can be easily copolymerized with the other molecular components
upon heating, and its long alkyl side chain may endow the copolymers with high chain
mobility, which is beneficial for the self-healing and adhesive properties. AA and DMA
were used to form a physical crosslinking structure by the electrostatic interactions of the
opposite charges to strengthen the PA elastomers (Figure 1a). The chemical structure of
the PA elastomer was confirmed by FT-IR date and 1H NMR analysis (Figure S1). The PA
elastomers showed similar FT-IR information in Figure 1b and the peak near 1580 cm−1

was assigned for the COO− antisymmetric stretching vibration of the ionized -COOH as
a result of the ionic interaction between AA and DMA [22]. The intensity of the peak at
1580 cm−1 was found to be proportional to the molar fraction of the ionic monomers. These
results confirmed that ionic interactions were formed between AA and DMA and become
stronger as the molar fraction of ionic monomers is increased.
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Figure 1. (a) Schematic illustration of the formation process of PA and (b) FT-IR spectra of the
as-prepared PA elastomers.

2.2. Mechanical Properties of PBADMA

The mechanical properties of PA elastomers are shown in Figure 2. It is shown that the
tensile strength of PBADMA-15, PBADMA-25, PBADMA-32 and PBADMA-41 is 74 KPa,
350 KPa, 3.6 MPa and 4.7 MPa, respectively. However, the fracture strain of PBADMA-15,
PBADMA-25, PBADMA-32 and PBADMA-41 is 2761%, 877%, 510% and 142%, respectively.
The mechanical properties of PA elastomers are essentially dependent on the molar percent-
age of oppositely charged monomers in the precursor. As the molar percentage increased
from 15 to 41%, the tensile strengths of the as-obtained PA were considerably increased
from 0.07 to 4.7 MPa, and the corresponding ruptured strains were changed from 2761% to
142%, respectively. As the molar percentage of AA and DMA in the precursor was higher
than 41% (Figure 2a–c), the PA elastomers could not be formed due to the strong electro-
static interaction between AA and DMA, resulting in the formation of milky precipitates
(Figure S2). Figure 2d,e show the elastic modulus and toughness of the PA elastomers
calculated from the corresponding stress–strain curves. It can be seen from Figure 2d that
the elastic modulus of PA is proportional to the molar percentage of the ionic monomers.
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As the molar percentage of ionic monomers increased from 15% to 41%, the elastic modu-
lus of PA significantly increased from 0.11 ± 0.03 MPa to 26.09 ± 8.47 MPa, indicating the
intensification of strong ionic bonds in the PA physical gel. On the other hand, the tough-
ness of the PA elastomers was calculated to be 0.14 ± 0.06 MJ m−3, 4.02 ± 1.51 MJ m−3,
9.2 ± 2.85 MJ m−3 and 4.15 ± 0.95 MJ m−3, respectively (Figure 2e). However, the discrep-
ancy observed in the elastic modulus and toughness trends indicated that there exists a
trade-off between the tensile strength and fracture toughness of PA upon adjusting the
molar concentration of the ionic monomers. It has been reported that the strong ionic
bonds may constitute the stiff network of PA, which provides high tensile strength and
shape-memory property; the weak ionic bonds may constitute the tough network of PA,
which endows PA with a high strain and recovery property [23]. These two networks
combined form the biphasic continuous microstructure of PA, which appeared as a trans-
parent, homogeneous elastomer. To achieve the optimal self-healing property, it is vital
to manipulate the relative proportion of the strong and weak bonds. It is believed that
by conducting copolymerization in the atmospheric condition, the participation of free
oxygens in the reaction can reduce the crosslinking density of the polyampholytes, forming
products with low elastic modulus.
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By adjusting the molar percentage of the ionic monomers to 25%, PA with good
self-recovery and anti-fatigue properties can be obtained, as shown in Figure 3. The
as-prepared PBADMA-25 subjected to 300% strain showed a nearly complete recovery
of elastic modulus and dissipated energy after resting for 30 min (Figure 3a,b). The as-
prepared PBADMA-25 showed typical viscoelastic behaviors by cycling under constant
strain (100% and 300%). The large hysteresis of the strain was observed for the samples in
the second cycle, but the hysteresis for each subsequent cycle became smaller as the cycling
test proceeded, as shown in Figure 3c; as the applied strain increased to 300%, the hysteresis
observed for each subsequent cycle increased, compared to the case of the 100% strain
(Figure 3d). This thus indicated that the energy dissipation during the strain for PBADMA-
25 largely occurred through the breaking of the sacrificial weak ionic bonds [24]. At high
strain rates, the breaking speed of the weak ionic bonds overwhelms the recovery speed of
weak ionic bonds, resulting in enhanced hysteresis. The hysteresis behavior of PBADMA-25
is in good accordance with the viscoelastic model proposed by Creton et al. [25].
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Figure 3. Loading–unloading test under various conditions: (a) loading–unloading tests of PBADMA-
25 under fixed strain of 300% after different rest times (0.25 min, 1 min, 5 min and 30 min); (b) the
elastic modulus and dissipated energy calculated from (c). Five-cycle loading–unloading tests of
PBADMA-25 under different strains of 100% (c) and 300% (d).

2.3. Self-Healing Property of PBADMA

Due to the existence of high-proportion dynamic weak ionic bonds in the gel matrix,
the as-prepared PBADMA showed good self-recovery and anti-fatigue properties under
high cycling strain. On the other hand, they may also show excellent self-healing properties
after rapture. The self-healing properties of the PBADMA samples were shown in Figure 4a.
It can be observed that the healing efficiency of the PBADMA samples decreased as the
molar percentage of the ionic monomers was increased. The PBADMA sample with the
lowest ionic monomer content (PBADMA-15) showed the best self-healing efficiency as a
result of the high proportion of weak ionic bonds in its gel chemical structure. Figure 4b
shows typical stress–strain curves of raptured PBADMA-15 samples processed for a differ-
ent self-healing time. After 24 hours’ self-healing at room temperature, the tensile strength
of the healed PBADMA-15 could be fully recovered, and its fracture strain was enhanced
compared to the pristine state. A photograph of the self-healed PBADMA sample was
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shown in Figure 4c. One of the raptured parts of the sample was dyed purple to better
demonstrate the effect of self-healing. Actually, the healed sample can be stretched to a
strain even higher than the pristine sample. It thus evidenced that PBADMA-15 had a
remarkable self-healing property.
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2.4. Adhesion Properties of the PA Elastomers

PBADMA-15 also showed a high adhesion property to different substrates, i.e., in-
organic, organic and biological (Figure S3). The lap shear measurements were used to
evaluate the adhesion strength of PBADMA-15 to different substrates, including glass
slide, PVA hydrogel, pork skin and pork heart; the schematic illustration of the experiment
is shown in Figure 5a. In Figure 5b, the adhesion strengths of PBADMA-15 to the glass
slide and pork skin are shown to be 68 and 52 KPa (Figure 5b), respectively, which are
significantly higher values than those previously reported for adhesive hydrogels [26–29],
as well as higher than that of commercially available glue (15 KPa). On the other hand,
PBADMA-15 showed a lower adhesion strength to the substrates in the wet state, including
the pork heart (4 KPa) and PVA hydrogels (0.7 KPa). In contrast to the conventional polyam-
pholytes and elastomers, which generate adhesive force through Coulombic interactions
and interfacial energy dissipation [30,31], the as-prepared viscoelastic polyampholytes,
i.e., PBADMA-15, obtained the advantages of both polyampholytes and elastomers in
the case of adhesion. By adjusting the molar percentage of the ionic monomers to 15%,
the self-ionic association within the polyampholyte matrix can be effectively mitigated,
forming a viscoelastic neutral polyampholyte with a mechanical strength of (0.07 MPa) in
the same order of magnitude with the pork heart tissue (~0.024 MPa). Due to the equal
molar ratio between the positively charged and negatively charged monomers, the total
charge of the as-prepared PBADMA-15 is balanced to neutral, making it possible to form
Coulomb interactions with all types of charged surfaces through a self-adaptive charge
redistribution process [30]. Moreover, the viscoelastic PBADMA-15 can dissipate a great
amount of energy during peeling, and significantly enhances the adhesion toughness.
These synergistic effects make PBADMA-15 show superior adhesion strength compared to
double-network hydrogels, plastic-like hydrogels and elastomers [32–34].
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Figure 5. Lap shear test to measure the adhesion of PBADMA-15 to different substrates: (a) schematic
illustration of the test; and (b) shear stress–displacement curves of PBADMA-15 with respect to the
measured substrates.

To evaluate the dynamic conformal adhesiveness of the as-prepared PA during motion,
2 mm-thick PBADMA-15 stripes were applied onto the skins of body joints, i.e., the finger
knuckle, wrist, elbow, and knee, as shown in Figure 6a–d. It was observed that the PA
stripe can firmly adhere to the skin surface during repeatedly joint motion, and the motion
was not restricted by the stripe due to its low modulus and high stretchability. The tough
adhesion property of PBADMA-15 was further demonstrated by fixing a plastic bottle with
an opened hole (Figure 6e). A plastic bottle with an opened hole at the bottom was used to
contain water: as can be observed from Figure 6e, water can rapidly escape from the bottle
through the opened hole, but after fixing the hole by adhering a piece of PBADMA-15
onto it, no further leakage can be observed—even when the bottle was filled with water
(h = 150 mm), indicating that PBADMA-15 can withstand at least 1.47 kPa water pressure
without detachment.
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3. Materials and Methods
3.1. Materials

Butyl acrylate (Alfa Aesar, Shanghai, China, purity > 98%), dimethylaminoethyl
methacrylate (Macklin, Shanghai, China, purity 99%), acid acrylate (Damao Chemical
Reagent Factory, Tianjin, China, analytical reagent), ethyl acetate (Macklin, Shanghai,
China, purity 99%), methyl benzoate (Alfa Aesar, Shanghai, China, purity 99%), azo-
bisisobutyronitrile (Macklin, Shanghai, China, purity 98%), polyvinyl alcohol (Macklin,
Shanghai, China, PVA-1799), and petroleum ether (Guangzhou Chemical Reagent Factory,
Guangzhou, China, analytical reagent).

3.2. Synthesis of PBADMA

The polyampholytes were prepared by one-pot polymerization method. Firstly, the
positive charged monomer and the negative charged monomer (the molar ratio of the
monomers was 1:1) were dissolved in 50 mL ethyl acetate, followed by adding butyl
acrylate and methyl benzoate into the mixed solution. Afterwards, the initiator (1‰ of
the total mole of monomers) was dissolved in the mixed solution. Eventually, the reaction
was allowed to proceed in the mixed solution at 70 ◦C for 5 h under constant magnetic
stirring. As the reaction was completed, the mixed solution was thoroughly centrifuged by
petroleum ether at least three times. The precipitation was dried at 40 ◦C overnight to collect
the polyampholytes. By adjusting the molar ratio of the positively and negatively charged
monomers to BA, polyampholytes with different mechanical properties can be obtained.

3.3. Characterizations of PBADMA
3.3.1. Fourier Transform Infrared Spectroscopy (FT-IR)

The FT-IR spectra of polyampholytes with different compositions were measured at
room temperature by NICOLET 6700 (Thermo Scientific, Waltham, MA, USA) in the atten-
uated total reflection (ATR) mode to study the formation process of the polyampholytes.
Pristine polyampholytes in the solid state were used for the measurement. The scan range
was set between 400 cm−1 and 4000 cm−1, the resolution was set as 2 cm−1, and the scan
number was set as 32.

3.3.2. H NMR Spectroscopy

After 10 mg PA elastomer was completely dissolved in 500 µL deuteroxide in a 1H
NMR cube, the 1H NMR spectra of the as-prepared samples were obtained by nuclear
magnetic resonance spectrometer (Avance III, Bruker Corporation, Rheinstetten, Germany).
Data analysis was carried out using the Mnova (version 14.2.2, Santiago de Compostela,
Spain) to calculate the molar ratio of both positively and negatively charged monomers in
the polyampholytes.

3.3.3. Characterization of the Mechanical Properties

Mechanical tests of polyampholytes were performed on a LR5K Plus machine (LLOYD,
West Sussex, UK) with a 100 N load cell at 100 mm min−1 cross head speed at room
temperature. The polyampholyte samples were cut into dumbbell shape with a gauge
length of 75 mm, a width of 4 mm and a thickness of 1 mm for the uniaxial tensile tests.
At least five specimens were tested for each type of sample. The stress–strain curves were
obtained and the fracture strength and fracture elongation of the samples were calculated.
Young’s modulus (E) was obtained from the average slope of the linear region of the stress–
strain curve. The fracture energy (W) or toughness was calculated from the area of the
stress–strain curves by the following equation [35]:

W =
∫
τ∂ε, (1)

where τ is the stress and ∂ε is the partial derivative of the strain.
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Cyclic and consecutive mechanical tests were performed on the polyampholyte sam-
ples to study their energy dissipation behaviors. Cyclic tests were performed with constant
strain and the consecutive tests were performed using gradient-increased strains. Strains
of 100%, 200% and 300% were used, respectively. The dissipation energy was calculated
from the area of the corresponding loading–unloading curve after different rest times. The
recovery ratio was defined as the ratio between the hysteresis energy of the specific cycle
and the first cycle.

3.3.4. Characterization of the Self-Healing Property

In the self-healing experiment, the PA samples were cut into two pieces at the mid-
point. Then, the two pieces of the sample were pinched together for different durations
(1 h, 2 h, 4 h, 8 h and 24 h) at room temperature. Afterwards, the tensile strengths of the
self-healed samples were measured. The self-healing efficiency (λ) of polyampholyte was
calculated by the following equation:

λ = Wt/W0, (2)

where Wt and W0 are the fracture energy of the original and self-healed samples, respectively.
The self-healing efficiency for each type of PA was obtained by three parallel experiments.

3.3.5. Characterization of the Adhesion Properties

The adhesive property of the PA elastomers was measured by the lap shear test, a
process that was generally used for measuring the adhesive strengths of the hydrogel-
based tissue adhesives [36–38]. Two substrates (length × width = 75 mm × 25 mm)
were brought into contact with a piece of PA elastomer (length × width × height =
20 mm × 25 mm × 1.7 mm), forming a junction contact area of 5 cm2. The lap joint was
slightly pressurized with a finger for 30 s, then the two ends of the glass substrates were
clamped to the tensile machine. The shear adhesive test was performed at a shear velocity
of 100 mm min−1. The substrates used in this study were glass slides, PVA hydrogel, pork
skin and pork heart, respectively.

4. Conclusions

In conclusion, a new type of polyampholytes with unique viscoelastic properties can
be easily synthesized in a one-pot manner by copolymerizing butyl acrylate with ionic
DMA and AA. The tensile strength and fracture strain of the as-prepared polyampholytes
can be easily tuned by changing the proportion between the butyl acrylate and ionic
monomers for a tensile strength as high as 4.7 MPa and a fracture strain as high as 2761%
can be achieved, respectively. By lowering the molar proportion of the ionic monomers,
polyampholytes of low tensile strength and high fracture strain can be obtained, which
showed remarkable self-recovery and self-healing properties. This phenomenon can be
attributed to the high density of weak ionic bonds in the polymeric matrix of the as-prepared
polyampholytes, which may act as reversible sacrificial bonds to dissipate energy during
stretching. The viscoelastic polyampholytes can realize strong and reversible adhesion
to a wide range of substrates with different surface charges, owing to both the surface
charge self-adjustability of polyampholytes and the intensive energy dissipation originating
from the viscoelasticity. The as-prepared polyampholyte showed tough adhesions as body
stripes and water stoppers, indicating its potent applications in adhesives, packaging and
tissue engineering.
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