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This review considers state-of-the-art analyses of functional

integration in neuronal macrocircuits. We focus on detecting

and estimating directed connectivity in neuronal networks

using Granger causality (GC) and dynamic causal modelling

(DCM). These approaches are considered in the context of

functional segregation and integration and — within functional

integration — the distinction between functional and effective

connectivity. We review recent developments that have

enjoyed a rapid uptake in the discovery and quantification of

functional brain architectures. GC and DCM have distinct and

complementary ambitions that are usefully considered in

relation to the detection of functional connectivity and the

identification of models of effective connectivity. We highlight

the basic ideas upon which they are grounded, provide a

comparative evaluation and point to some outstanding issues.
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Introduction
Several dichotomies have proved useful in thinking about

analytic approaches to functional brain architectures.

Perhaps the most fundamental is the distinction between

functional segregation and integration. Functional segre-

gation refers to the anatomical segregation of functionally

specialised cortical and subcortical systems, while func-

tional integration refers to the coordination and coupling

of functionally segregated systems [1��]. Within func-

tional integration, two main classes of connectivity have

emerged — functional and effective connectivity. Func-

tional connectivity refers to the statistical dependence

or mutual information between two neuronal systems,

while effective connectivity refers to the influence

that one neural system exerts over another [2�,3]. This

distinction is particularly acute when considering the
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different analyses one might apply to electrophysiological

or neuroimaging timeseries.

Functional and effective connectivity

Because functional connectivity is defined in terms of

statistical dependencies, it is an operational concept that

underlies the detection of (inference about) a functional

connection, without any commitment to how that con-

nection was caused. In other words, one tests for depen-

dencies between two or more timeseries, to reject the null

hypothesis of statistical independence. This is equivalent

to assessing the mutual information and testing for signifi-

cant departures from zero. At its simplest, this involves

assessing (patterns of) correlations — of the sort that

define intrinsic brain networks. An important distinc-

tion — within functional connectivity — rests on

whether dependencies are instantaneous or reflect an

underlying dynamical process, in which causes precede

consequences. This leads to the distinction between

analyses of directed and undirected functional connectivity

that do and do not appeal to temporal precedence respect-

ively. Common examples of techniques used to assess

undirected functional connectivity (dependencies) in-

clude independent components analysis [4] and various

measures of synchrony, correlation, or coherence [5].

However, we will focus on analyses of directed functional

connectivity — of which the prime example is Granger

causality (GC) [6�]. This is because coupling in the brain

is both directed and largely reciprocal (producing cyclic

graphs or networks with loops that preclude structural

causal modelling). As we will see below, GC and related

concepts such as transfer entropy (TE) rest on establish-

ing a statistical dependence between a local measurement

of neuronal activity and measurements of activity else-

where in the past.

Functional connectivity considers dependencies between

measured neurophysiological responses. In contrast,

effective connectivity is between hidden neuronal states

generating measurements. Crucially, effective connec-

tivity is always directed and rests on an explicit (para-

meterised) model of causal influences — usually

expressed in terms of difference (discrete time) or differ-

ential (continuous time) equations. The most popular

approach to effective connectivity is dynamic causal

modelling (DCM) [7–10,11��,12��]. In this context, caus-

ality is inherent in the form of the model, where fluctu-

ations in hidden neuronal states cause changes in others:

for example, changes in postsynaptic potentials in one

area are caused by inputs from other areas. The
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parameters of dynamic causal models correspond to effec-

tive connectivity — usually cast as synaptic density or

coupling parameters — that are optimised by fitting the

model to data. The notion of effective connectivity stems

from the pioneering work of Gerstein and Perkel [13] in

early attempts to interpret multivariate electrophysiologi-

cal recordings. At its inception, effective connectivity

referred to models; in the sense of the simplest possible

circuit diagrams that explain observed responses [14]. In

modern parlance, these correspond to dynamic causal

models with the greatest evidence: namely, models with

the minimum complexity that furnish an accurate expla-

nation for data (see below). In what follows, we review

recent developments in the analysis of directed functional

connectivity with GC and TE, the analysis of directed

effective connectivity with DCM and then consider the

approaches in light of each other. Figure 1 provides an

overview of recent developments in these techniques.

Granger causality and transfer entropy
The core idea behind GC is that X ‘Granger causes’ Y if X

contains information that helps predict the future of Y

better than information already in the past of Y (and in the

past of other ‘conditioning’ variables Z). The most com-

mon implementation of GC is via linear vector autoregres-

sive (VAR) modelling of timeseries data, enabling both

statistical significance testing and estimation of GC mag-

nitudes [6�,15�,16]. However, GC is not limited to this

implementation; it can use nonlinear, time-varying, and

non-parametric models [17,18]. In particular, TE [19]

represents an information-theoretic generalisation of GC

that does not require a parameterised model (is model-

free). Specifically, the TE from X to Y is zero if, and only if,

Y is conditionally independent of X’s past, given its own

past. Importantly, for Gaussian data, TE is equivalent to

GC [20��], furnishing a useful interpretation of GC in terms

of information transfer in ‘bits’. Related approaches in-

clude partial directed coherence and the directed transfer

function; see [21] for a review. Here we focus on the most

popular of these techniques, namely GC:

Following its introduction within econometrics [6�,15�],
GC has been applied in neuroscience partly because it is

simple to estimate, given (stationary stochastic) time-

series. Such data are generated by a wide range of

neuroimaging and neurophysiological methods. GC has

some useful properties including a decomposition of

causal influence by frequency [15�] and formulation in

an ‘ensemble’ form, allowing evaluation of GC between

multivariate sets of responses [22]. GC has provided

useful descriptions of directed functional connectivity

in many electrophysiological studies [23–25]. Recently,

Bosman et al. [26��] analysed electrocorticographic data

from macaque monkeys to show that ‘bottom-up’ signals

across multiple cortical regions were most prominent in

the gamma band, while ‘top down’ influences dominated

at beta frequencies — a finding that is strikingly congru-
www.sciencedirect.com 
ent with neural implementations of predictive coding

[27]. GC can also be applied to standard EEG or MEG

signals, either at the source or sensor level (following

spatial filtering to reduce the impact of volume conduc-

tion). For example, Barrett et al. [28�] used source-loca-

lised EEG to show that gamma-band GC between

posterior and anterior cingulate cortices reliably increased

during anaesthetic loss of consciousness, extending

previous results obtained using (undirected) phase syn-

chrony [29]. We will turn to this example later in the

context of DCM.

The application GC to fMRI is more controversial, given

the slow dynamics and regional variability of the haemo-

dynamic response to underlying neuronal activity [30,31];

and see ‘Pros and Cons’ below. While naı̈ve application of

GC to fMRI data is unlikely to be informative, careful

consideration of the methodological issues has permitted

some useful applications that have produced testable

hypotheses. For example, Wen et al. [32�] analysed fMRI

data obtained from a cued spatial visual attention task;

finding that GC from dorsal to ventral frontoparietal

regions predicted enhanced performance, while GC in

the reciprocal direction was associated with degraded

performance. These findings are consistent with the

notion that dorsal attentional regions mediate goal-

oriented top-down deployment of attention, while ventral

regions mediate stimulus-driven bottom-up reorienting.

In a similar paradigm, Bressler et al. [33] found that GC

from parietal to occipital areas was predictive of beha-

vioural performance. In a final and unusual example,

Schippers et al. [34] used GC of fMRI signals to analyse

directed interactions between the brains of two subjects

engaged in a social game (charades), providing novel

evidence for ‘mirror neuron system’ formulations of social

interaction. Another promising application of GC is to

intracranial local field potentials, which possess high

temporal and spatial resolution and which comprise com-

paratively few variables (as compared to fMRI voxels or

EEG sensors). An early application in this area, Gaillard

et al. [35] examined directed functional connectivity

during supraliminal as compared to subliminal visual

word processing.

Dynamic causal modelling
The basic idea behind DCM is that neural activity

propagates through brain networks as in an input-state-

output system, where causal interactions are mediated by

unobservable (hidden) neuronal dynamics. This multi-

input multi-output neuronal model is augmented with a

forward, or observation model that describes the mapping

from neural activity to observed responses. Together

neuronal and observation model comprise a full genera-

tive model that takes a particular form depending on

the data modality. The key outputs of DCM are the

evidence for different models and the posterior

parameter estimates of the (best) model, particularly
Current Opinion in Neurobiology 2013, 23:172–178
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Figure 1

Granger causality (GC) is first
applied to fMRI time-series

using the method of ‘Granger
causality mapping’ (GCM)
from a seed voxel to other

voxels [43]

Important extension of the GCM approach,
examining the influence of confounding
hemodynamic response functions [31]

GC combined with sparse
regression techniques to
allow estimation of high-
dimensional dynamical
models reflecting brain

networks [50]

GC applied to BOLD
signals to reveal top-

down influences
during human visual

attention [33]

Theory and modelling showing invariance of
GC to hemodynamic convolution given fast

sampling and low noise

GC applied within a state-
space framework

incorporating explicit
observation equations for
modelling hemodynamic

responses [49]

GC applied to local-field
potentials (LFPs) recorded

from cat visual cortex;
important early clarification

of statistical issues [23]

GC analysis of LFP data obtained
from awake monkeys reveal
directional beta-frequency

interactions in a large –scale
network during motor

maintenance behaviour [25]

Nonparametric GC
introduced (based on
Fourier and wavelet

transforms) and
validated on monkey

LFP data [18]

Equivalence shown
between GC and

transfer entropy for
Gaussian data [20]

Adaptive multivariate autoregressive (AMVAR)
modelling applied to multichannel event-related

potentials, showing rapidly changing cortical
dynamics during visuomotor integration [24]

GC validated on
electrophysiological data from

rats given deconvolution of
hemodynamic responses [30]
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Dynamic Causal Modelling

Dynamic causal modelling is
introduced as the Bayesian

inversion of dynamic (bilinear)
neurophysiological models of

fMRI time-series [2]

Bayesian model
comparison is

described for selecting
among alternative

DCMs [38]

Neural drivers in DCM for fMRI
validated using concurrent

electrophysiology in rodents [30]

Post-hoc Bayesian model selection
allows rapid estimation of model
evidence for very large model

spaces [51]

Nonlinear DCM for fMRI
is described, allowing
for (neuronal) state-

dependent changes in
connectivity [48]

DCM for fMRI
parameterises
inhibitory and

excitatory neuronal
processes [52]

Stochastic DCM developed
in generalised coordinates

of motion to provide
estimates of hidden
neuronal states [47]

DCM for evoked
electrophysiological responses

is introduced, using neural
mass models with multiple
neuronal populations [7]

Reciprocal
connections
are shown to
be necessary
for generating
late responses

in EEG [8]

DCM for steady
state responses

applied to
intracranial EEG

from rodents:
synaptic measures

validated using
microdialysis [40]

Conductance
based neuronal
models allow for

the testing of
connectivity

through specific
ion channels [39]

Validation of receptor-
specific contributions

using pharmacological
challenge in humans [11]

Current Opinion in Neurobiology

A timeline of recent advances in Granger causality (top panel) and dynamic causal modelling (bottom panel). Entries above the time lines pertain to

functional magnetic resonance imaging (MRI) and those below the lines report specific developments for electrophysiology.
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those describing the coupling among brain regions. These

allow for model and system identification, respectively.

DCM was introduced for fMRI timeseries [36], where the

neuronal model comprises one or two hidden (lumped)

neuronal states for each region. The neuronal dynamics of

each region depend on the strength of connections within

that region (parameterised by a self-connection), on the

strength of external inputs (experimental input

parameters) and on inputs from other regions in the

network (the coupling parameters). Neuronal activity is

then transformed through a haemodynamic model (with

region-specific parameters) to model measured responses

[37]. The coupling between brain regions can then be

estimated for a particular model architecture using stan-

dard variational Bayesian techniques [36]. In practice, it is

usual to specify different architectures or hypotheses and

formally compare the evidence for these models, before

examining parameter estimates [38]. DCM necessarily

accounts for directed connections among brain regions

and disambiguates the neuronal drivers of a particular

event and subsequent signal propagation. Electrophysio-

logical measurements support richer models of neuronal

dynamics in DCM that comprise sources with laminar

specific mixtures of neuronal populations. These have

evolved from kernel-based models [7] that use postsyn-

aptic convolution operators to describe responses at excit-

atory and inhibitory synapses to conductance-based

models, where particular ion channels can be modelled

and identified [39]. These neural mass models are accom-

panied by linear electromagnetic forward models to gen-

erate responses at EEG scalp electrodes, at MEG sensors

or at intracranial recording sites. Application of DCM to

animal local-field potential data has facilitated validation

studies, where independent, invasive measurements (e.g.

microdialysis or pharmacological perturbations) suggest

that DCM can be used to estimate the physiological

mechanisms responsible for mediating effective connec-

tivity [40�].

Pros and cons
Clearly, GC and DCM have complementary aims and

strengths: GC can be applied directly to any given time-

series to detect the coupling among empirically sampled

neuronal systems. This can provide useful insights into

the system’s dynamical behaviour in different conditions

or in spontaneously active ‘resting’ states. One might then

proceed to a more mechanistic (model or hypothesis —

driven) characterisation using DCM. However, this calls

for bespoke models of the system in question [41��]. In

other words, GC is a generic inferential procedure char-

acterising directed functional connectivity, while DCM is

a framework that enforces (or enables) specific models or

hypotheses to be tested. Crucially, both rest on model

selection: In DCM this involves comparing the evidence

for different models directly [38], while model selection

in GC is implicit in the test for the presence of GC — and
www.sciencedirect.com 
also arises in the selection of VAR model order, using

standard approximations to model evidence, such as the

Akaike or Bayesian information criteria [42].

Although GC is generic, its naive application is not

always justified. For example, application to fMRI must

recognise the indirect relation between neuronal

activity and haemodynamic responses. In particular,

regional variations in haemodynamic latency could con-

found the temporal precedence assumptions of GC

[30]. While these variations can be partially controlled

for by contrasting GC between experimental conditions

[17,43,31] false inferences remain possible. Interest-

ingly, recent theory and modelling suggests that GC

may be robust to haemodynamic variations but not

when combined with down-sampling and measurement

noise [44]. In contrast, DCM models haemodynamic

variations explicitly and tries to explain the data at the

level of hidden neuronal states — in other words, it

tries to get beneath the surface structure of the data to

explain how they were generated: see [45,46�] for

further discussion.

In analysis of electrophysiological timeseries, GC is more

widely accepted because there is no temporal lag be-

tween the responses recorded and their underlying

(neuronal) causes and because the data can be sampled

at fast timescales. The advantages of GC in furnishing

frequency-dependent and multivariate measures have

been clearly demonstrated [22,26��,28�]. However, there

is an unresolved issue in this setting — the random

fluctuations assumed by GC are serially independent

(show no temporal correlations and fluctuate at very fast

timescales). This is an issue because neuronal fluctu-

ations in the brain are produced by neuronal systems

that have the same time constants as the system studied.

While serial independence can be checked for, the nature

of neuronal fluctuations may deserve more attention in

the future.

A key feature of DCM is that it can include variables that

describe dynamics that are hidden from observation. For

example, the GC analysis of anaesthetic loss of conscious-

ness by Barrett et al. [28�] mentioned above, was com-

plemented by a mechanistic study by Boly et al. [47�]
using DCM. She found that a DCM that included a

hidden thalamic source performed better than DCMs

based solely on observed cortical timeseries, and estab-

lished a dissociation between the effects of (measured)

cortical and (inferred) subcortical structures on levels of

consciousness. In contrast to GC, being able to model

hidden sources means the model (hypothesis) space can

be very large and calls for a principled approach to

Bayesian model comparison of models that are (a priori)
considered equally plausible. The specification and

interrogation of the model space is an outstanding con-

ceptual issue for DCM.
Current Opinion in Neurobiology 2013, 23:172–178
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DCM posits and identifies neuronal mechanisms respon-

sible for functional integration in the brain. Connectivity

in this setting necessitates biologically plausible expla-

nations. In DCM for fMRI, new developments [48,49]

enable the incorporation of background or ongoing spon-

taneous cortical fluctuations, nonlinearities and inhibitory

neuronal populations [53]. The addition of spontaneous

or stochastic fluctuations enhances the plausibility of the

generative model at the neuronal level, where non-Mar-

kovian noise processes sit atop experimentally induced

brain activations [48]. In DCM for electrophysiological

data, the models will potentially allow the characteris-

ation of receptor-specific contributions to brain connec-

tivity, which may be important in a pharmacological and

clinical setting [11��].

Conclusion
In conclusion, GC and DCM are complementary: both

model neural interactions and both are concerned with

directed causal interactions. GC models dependency

among observed responses, while DCM models coupling

among the hidden states generating observations.

Despite this fundamental difference, the two approaches

may be converging. On the one hand DCM for stochastic

systems [48] can now accommodate the random fluctu-

ations assumed by GC. On the other hand, state-space GC

approaches can incorporate modality specific observation

equations [50]. The ability to handle large numbers of

sources for regions is facilitated by multivariate (ensem-

ble) GC [22] and sparse regression techniques [51], as

well as recent developments in post hoc model optimis-

ation for network discovery with DCM [52]. One might

hope that both approaches — perhaps GC disclosing

candidate models for DCM — will counter the claims

that modern brain mapping is a neo-phrenology and

provide characterisations of brain circuits that may hold

promise for the treatment of neurological and psychiatric

disorders.
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