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Abstract

Motivation: Bacteriophages/phages are the viruses that infect and replicate within bacteria and archaea, and rich in
human body. To investigate the relationship between phages and microbial communities, the identification of phages
from metagenome sequences is the first step. Currently, there are two main methods for identifying phages: database-
based (alignment-based) methods and alignment-free methods. Database-based methods typically use a large number
of sequences as references; alignment-free methods usually learn the features of the sequences with machine learning
and deep learning models.

Results: We propose INHERIT which uses a deep representation learning model to integrate both database-based and
alignment-free methods, combining the strengths of both. Pre-training is used as an alternative way of acquiring know-
ledge representations from existing databases, while the BERT-style deep learning framework retains the advantage of
alignment-free methods. We compare INHERIT with four existing methods on a third-party benchmark dataset. Our
experiments show that INHERIT achieves a better performance with the F1-score of 0.9932. In addition, we find that
pre-training two species separately helps the non-alignment deep learning model make more accurate predictions.

Availability and implementation: The codes of INHERIT are now available in: https://github.com/Celestial-Bai/
INHERIT.

Contact: yaozhong@ims.u-tokyo.ac.jp or imoto@hgc.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Bacteriophages (phages for short) are the viruses that infect the
bacteria and archaea, and are rich in human body (Edwards and
Rohwer, 2005; Fuhrman, 1999; Reyes et al., 2012; Rodriguez-
Valera et al., 2009; Rohwer and Thurber, 2009). To study the
role of phages in the microbial community in the human body, we
need first to identify phages from the metagenome nucleotide
sequences (Fang et al., 2019; Marquet et al., 2020). Using a
method that can precisely distinguish between phages and bac-
teria can help researchers study phages more efficiently. Many
methods have been proposed to identify phages, such as
VIBRANT (Kieft et al., 2020), VirSorter2 (Guo et al., 2021),
Seeker (Auslander et al., 2020) and DeepVirFinder (Ren et al.,
2020). We categorize them into two groups: database-based

(alignment-based) methods (VIBRANT and VirSorter2), and
alignment-free methods(Seeker and DeepVirFinder) . Both types
have their advantages and disadvantages, and they are comple-
mentary. Database-based approaches are commonly based on
multiple sequence alignment (Chatzou et al., 2016; Edgar and
Batzoglou, 2006; Hyatt et al., 2010) with Profile Hidden Markov
Models (Eddy, 1998), which can achieve good prediction per-
formance. However, such prediction speed is generally limited by
alignment. Alignment-free methods usually can predict fast.
However, subject to the training process of the machine learning
and deep learning models, we need to balance the amount of
phage and bacteria data (Japkowicz and Stephen, 2002), which
affects the amount of information obtained. The introduction of
them can be found in Supplementary Methods Section S1.1.
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In proposing the MSA Transformer, Rao et al. (2021) demon-
strated that pre-trained Transformer-based models can have com-
parable performance to HMM Profiles and are even better in some
cases. That indicates the core of the database-based approaches,
HMM Profiles, can be realized for a similar purpose by representa-
tion learning (). Thus we can use the pre-train-fine-tune paradigm
(Liu et al., 2021; Mao, 2020; Bengio et al., 2013; Gururangan et al.,
2020; Radford et al., 2018; Zhang et al., 2018) to combine the
above two methods.

Here we propose INHERIT: IdentificatioN of bacteriopHagEs
using deep RepresentatIon model with pre-Training. It also means
our model ‘inherits’ the characteristics from both database-based
and alignment-free methods. The code of INHERIT is now available
at https://github.com/Celestial-Bai/INHERIT. We show that using
the representation learning framework can improve deep learning
models, and INHERIT also achieves the best performance in our
tests.

The main contributions of our paper can be summarized as
follows:

1. We proposed INHERIT, an integrated model based on the DNA

sequence language model: DNABERT, with two pre-trained

models as references. It reaches the best performance compared

with four existing state-of-the-art approaches: VIBRANT,

VirSorter2, Seeker and DeepVirFinder. INHERIT outperforms

them with the highest F1-score of 0.9932 in our test.

2. We used an independent pre-training strategy to deal with the

data imbalance issue of bacteria and phages. We found that this

strategy can help the deep learning framework make more accur-

ate predictions for both species.

2 Materials and methods

INHERIT is a model with DNABERT as the backbone and uses two
pre-trained models as references (see the pipeline in Fig. 1A).
DNABERT is an extension of BERT (Devlin et al., 2018) on nucleo-
tide sequences. The structure of BERT model contains of 12
Transformer encoders (Vaswani et al., 2017), and Transformer is a
neural network composed mainly of multi-head self-attention.
Multi-head self-attention is a mechanism that can be expressed with
(Vaswani et al., 2017):

MultiheadðQ; K; VÞ ¼ Concatðhead1; head2; :::; headhÞWO

where headi ¼ softmax
Q �Wi
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KÞ>ffiffiffiffiffi
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Where Q; K; V are the vectors obtained by multiplying
the three learned vectors with the last hidden states.
Wi

Q; Wi
K; Wi

V i ¼ 1; 2; � � � ; hð Þ and WO are all learned matri-
ces. h is the number of attention heads, and dk is the dimension
of K. A detailed introduction of DNABERT can be found in
Supplementary Methods Section S1.1. We fine-tune them simul-
taneously to identify the metagenome sequences. The following
will introduce the structure of INHERIT and the datasets we use.

2.1 Model architecture and pipeline
Here we show the architecture of INHERIT in Figure 1A and how
parameter weights are assigned and transferred in the pre-training
and fine-tuning process.

The sequences are split into several 500 bp-long segments as the
input of INHERIT. When this sequence is not divisible by 500, we
will use the head of this sequence to complement its end until it is
divisible, which keeps the same with Seeker (Auslander et al., 2020).
For each segment, it will be encoded to tokens as k-mer inputs.
According to the previous work (Ji et al., 2021), we use 6-mer as in-
put to DNABERT. Those tokens will be generated to embeddings
for two fine-tuned DNABERTs through each embedding layer sep-
arately. Then each embedding is fed to each transformer encoder

(Vaswani et al., 2017; Devlin et al., 2018). Same with BERT (Devlin
et al., 2018), the representations of the ‘[CLS]’ token is extracted
and generate two outputs for each fine-tuned DNABERT through a
dense layer (Wolf et al., 2020). INHERIT eventually predicts the
label class based on the four outputs with a dense layer. The predic-
tion of the whole sequence is the average of predictions of all seg-
ments, which we call the ‘score’ of the sequence.

Here we used the pre-train-fine-tune paradigm to build
INHERIT (see the process of pre-training and fine-tuning INHERIT
in Fig. 1B). To deal with the information bias that may be caused by
data imbalance (Thabtah et al., 2020), we pre-trained bacteria and
phages independently. The number of bacteria we have known is
much larger than the number of phages, and the length of bacteria is
also longer (Chanishvili et al., 2001). If we want the pre-training set
to carry a considerable amount of data, the segments belonging to
the bacteria will be bound to be much more than those belonging to
the phages. If we combine bacteria and phages in one pre-trained
model, the model will learn much more about bacteria than phages.
Therefore, we prepared two pre-trained models for INHERIT. Here,
we used Masked Language Modeling (Devlin et al., 2018; Naseem
et al., 2021) as the pre-training task, which is the same as Ji et al.
(2021). For the detailed settings of the pre-training, please refer to
Supplementary Methods Section S1.2.

Fine-tuning is very similar to the traditional training strategy
(Dodge et al., 2020). The difference between them is that tradition-
ally we randomly initialize the deep learning model before we start
to train the model. However, we will transfer most of the pre-
trained model weights as the initialization before we start to fine-
tune the deep learning framework. Here, we transferred the weights
of non-linear-probing layers of the two pre-trained models to initial-
ize INHERIT. The linear layers of INHERIT were still randomly
initialized because we could not transfer the weights from the
pre-trained models. All model parameters were fine-tuned together
with a balanced training set. For hyperparameters and platforms of
fine-tuning, please see Supplementary Methods Section S1.2.

2.2 Datasets
2.2.1 Pre-training sets

To make pre-trained models carry as much biological information
as possible, we pre-trained bacteria and phages separately and did
not balance the size of the two pre-training sets. For the bacteria
pre-training set, we used ncbi-genome-download (https://github.
com/kblin/ncbi-genome-download) to obtain the complete bacteria
genome sequence from the NCBI FTP. We used the command: ncbi-
genome-download-formats fasta –assembly-levels complete bac-
teria. All of those bacteria sequences were high quality, and we
called them ‘bacteria assemblies’. We randomly sampled 4124 bac-
teria sequences from them because of the physical memory limita-
tion. However, these 4124 sequences can generate 15 975 346
segments, and the dataset size is large enough. We could not obtain
the phage sequence data in the same way for the phage pre-training
set. Since phage sequences could not be found and downloaded dir-
ectly in the NCBI FTP like the bacteria sequences, we directly
searched for the keyword ‘phage’ on NCBI, downloaded all sequen-
ces longer than 500 bp, and checked all of them manually. We also
referred to the phage sequences used by Seeker and VIBRANT and
finally generated a pre-training set containing 26 920 phage sequen-
ces. It did not include the phage sequences in the test and validation
sets to prevent overfitting. These phage sequences can generate
1 750 662 segments, and the size is still large for a phage dataset.

2.2.2 Training set and validation set for fine-tuning

For bacteria during fine-tuning, we randomly selected 260 bacteria
sequences that were not in the pre-training and test sets but bacteria
assemblies. Two hundred seventeen bacteria sequences were used as
the training set, generating 718 879 segments, and the remaining 43
were used as the validation set, generating 188 149 segments.
However, we did not have as many sequences to choose from for
phages, so we selected 10 574 phage sequences from the pre-training
set that possessed a quality comparable to the bacteria assemblies,
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generating 718 663 segments. We also chose 2643 sequences not in
the pre-training set as the validation set, generating 186 121
segments.

2.2.3 Test set for comparisons

The test set we use is one of the third-party benchmark tests previ-
ously proposed by Ho et al. (2021) for virus identification methods,
called the RefSeq test set. Since our method identifies phages and
not other viruses, we only used data related to phages. The RefSeq
test set contains 710 bacteria sequences and 1028 phage sequences.
However, since there are 19 bacteria sequences removed from NCBI
RefSeq database, we used the rest of them, including 691 bacteria
sequences and 1028 phage sequences, to examine the performance
of the methods on phage identification. It should be added that, in
that article (Ho et al., 2021), the authors split the sequences in this
test set into 1 kb to 15 kb segments on average and predict the results
and calculate metrics on segment level to make a benchmark test.
However, since we consider INHERIT to determine whether a se-
quence is a phage or not in applications, we compared INHERIT
with other existing methods on the sequence level. For experimental
details and results, please refer to Section 3.1.

We have posted the accessions of the sequences used in each
dataset and the sources we obtain in Supplementary Table S1.

3 Experiments

3.1 Benchmarking INHERIT with VIBRANT, VirSorter2,

Seeker, DeepVirFinder
In this section, we compared INHERIT with four state-of-the-art meth-
ods: VIBRANT, VirSorter2, Seeker and DeepVirFinder, which are the
representatives of database-based and alignment-free methods. We
used a third-party benchmark dataset to conduct experiments and
analyses.

3.1.1 Experimental setups

Baselines: Until our work is completed, INHERIT is the only model
that integrates the features of both database-based and alignment-
free approaches. Thus, we chose two representatives which have
achieved state-of-the-art from each of the two methods, VIBRANT
(Kieft et al., 2020) and VirSorter2 (Guo et al., 2021); and Seeker
(Auslander et al., 2020) and DeepVirFinder (Ren et al., 2020), to
compare it with INHERIT. To ensure the comparison is as fair as
possible, we used each method’s default commands for predictions
as much as possible, and we set corresponding rules for some meth-
ods to ensure that the prediction formats of each method are as con-
sistent as possible. Detailed settings for each method can be found in
Supplementary Methods Section S1.3.

Evaluation metrics: The evaluation metrics we chose are:

Precision ¼ TP

TPþ FP
;

Recall ¼ TPR ¼ TP

TPþ FN
;

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
;

F1� score ¼ 2 � TP

2 � TPþ FPþ FN
;

and AUROC (Area Under the Receiver Operating Characteristic
curve) and AUPRC (Area Under the Precision-Recall Curve). In this
article, TP is the number of phage sequences successfully identified as
phages, while FP is the number of bacteria sequences incorrectly iden-
tified as phages. TN is the number of bacteria sequences successfully
identified as bacteria and FN is the number of phage sequences incor-
rectly identified as bacteria. AUROC and AUPRC are calculated

A B

Fig. 1. Panel (A) shows the overall model architecture and explains how the label class is predicted given trained model parameters. In predicting the label class of a given

500 bp nucleotide fragment, it is first encoded into tokens as the k-mer inputs. Then, they will be converted to the embeddings for two fine-tuned DNABERTs through the

embedding layer independently. These embeddings are then fed into the fine-tuned Transformer encoders. The representations of the (CLS) of the two DNABERTs are

extracted and then classified to generate four outputs. Eventually, INHERIT predicts the class from the four outputs of DNABERTs with a dense layer. Panel (B) shows how

the parameter weights are assigned through pre-training and fine-tuning. In pre-training, two randomly initialized DNABERTs pre-train independently with two datasets of

different sizes and species. After that, the pre-trained weights in the lower non-linear-probing layers are first used for the model initialization. Then in the fine-tuning step, all

model parameters, including those of the two pre-trained DNABERTs, are fine-tuned together with a balanced training set
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based on the score of each sequence and the real value (phages are
recorded as 1 and bacteria as 0). Here we calculate all evaluation met-
rics by scikit-learn v1.0.2 (Pedregosa et al., 2011).

Prediction results: The predictions of VIBRANT, VirSorter2,
Seeker, DeepVirFinder and INHERIT for all the sequences in the
test set can be seen in Supplementary Table S2.

3.1.2 Result and analysis

INHERIT performs better than existing methods: From the results
(see Table 1), compared to VIBRANT, VirSorter2, Seeker and
DeepVirFinder, INHERIT performs better than other existing meth-
ods. Moreover, the overall performance of INHERIT is an order of
magnitude more precise. Even if we use the default threshold of 0.5,
the recall of INHERIT does not differ much from that of VIBRANT.
Significantly, the high F1-score of INHERIT proves that INHERIT
performs well enough when we use the default parameters and is
competent for most application scenarios. From the P-values of the
DeLong Test (DeLong et al., 1988) of every two methods, the ROC
curves for each of the two approaches are statistically significantly
different. Therefore, the high AUROC and AUPRC indicate that
INHERIT can distinguish between phages and bacteria better.

The performance of INHERIT is less affected by the length of
nucleotide sequences: We find the performance of INHERIT is less
sensitive to the length of genome sequences compared with other
methods. We divided the phage and bacteria into five length inter-
vals, each based on the quartiles of lengths in the test set. The length
intervals are according to the following rules: ‘minimum—first quar-
tile’, ‘first quartile—median’, ‘median—third quartile’, ‘third quar-
tile—maximum of non-outliers’, ‘the maximum of non-outliers—
outliers’. For phage sequences, there are ‘less than 42 000 bp’,
‘42 000–51 000 bp’, ‘51 500–91 600 bp’ and ‘greater than 91 600 bp’.
For bacteria sequences, there are ‘less than 2 788 000 bp’, ‘2 788 000–
4 107 500 bp’, ‘4 107 500–4 938 000 bp’, ‘greater than 4 938 000 bp’.
We calculated the true positive rates of VIBRANT, VirSorter2,
Seeker, DeepVirFinder and INHERIT in the four intervals of phage
and the true negative rates in the four intervals of bacteria,

respectively. That allows exploring whether these five methods per-
form consistently and robustly at different sequence lengths for
both phages and bacteria. We can find that INHERIT is the only
method to maintain the true positive rate of 0.99 and the true nega-
tive rate of 0.97 in different intervals (see Fig. 2). It does not always
perform the best in every interval, but it is more robust than other
models. For example, the true negative rate of VIBRANT in the
‘2 788 000–4 107 500 bp’ interval is 0.994, which is better than

INHERIT (0.977), but its performance in the ‘4 938 000–
8 000 000 bp’ interval is only 0.767.

INHERIT has appropriate prediction speed: INHERIT is still a
model based on a deep learning framework, so it does not take as
long a time to predict as database-based approaches. We calculated
the average time required for VIBRANT, VirSorter2, Seeker,
DeepVirFinder and INHERIT to predict phage sequences and bac-
teria sequences in the test set. The results (see Table 2) show that the
predictions of VIBRANT and VirSorter2 take much more time than
Seeker and INHERIT. From our experiment, VIBRANT and
VirSorter2 even cannot predict the whole bacteria test set at once.
That indicates that even though database-based methods perform
better than alignment-free methods, they consume a long time to
predict and are more sensitive to dataset size. However, INHERIT
has high performance and predicts the second fastest among
VIBRANT, VirSorter, Seeker and DeepVirFinder. Although
INHERIT takes a longer time to predict than Seeker, it takes much
less time than DeepVirFinder. DeepVirFinder selects different mod-
els for prediction based on the length of the target sequence. In our
experiments, we offered the same environment to INHERIT, Seeker
and DeepVirFinder, but DeepVirFinder is still much slower than the
other two methods, even if it is based on a convolutional neural net-
work (Lecun et al., 1998; O’Shea and Nash, 2015). We conjecture
that it may be because it consumes much time in the process of
DNA sequence encoding and model selection. INHERIT uses one
model to make predictions for each sequence regardless of the
length, showing that INHERIT can give accurate predictions in an
appropriate time budget.

Table 1. The benchmark results of VIBRANT, VirSorter2, Seeker, DeepVirFinder and INHERIT

Model Precision Recall Accuracy F1-score AUROC AUPRC

VIBRANT 0.9541 0.9903 0.9656 0.9718 0.9595 0.9751

VirSorter2 0.9685 0.9893 0.9728 0.9787 0.9932 0.9971

Seeker 0.9264 0.8453 0.8674 0.8840 0.9382 0.9605

DeepVirFinder 0.8992 0.8502 0.8534 0.8740 0.8971 0.9435

INHERIT 0.9884 0.9981 0.9919 0.9932 0.9996 0.9997

Note: For all methods, we used the default commands for predictions. This can make our benchmarking as fair as possible. Values corresponding to best per-

formance are bolded.

Fig. 2. The barplot of the true positive rates and true negative rates at different intervals. Panel (A) shows the true positive rates for each method at different length intervals.

Panel (B) shows the true negative rate of each method at different length intervals
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3.2 Ablation study
We used the validation set to do an additional experiment for con-
sidering ablation. In this section, we discuss how INHERIT’s pre-
training strategy and deep learning structure affect performance.

There are two main differences between INHERIT and the back-
bone: DNABERT. First, we used a strategy to pre-train two species
independently. To use pre-training to provide references and solve
imbalanced bacterial and phage datasets, we pre-trained bacteria and
phages separately. In addition, we utilized two pre-trained models
and have them fine-tuned simultaneously. This model structure has
twice the number of parameters as DNABERT. To explore whether
pre-training would help deep learning frameworks improve per-
formance, we made an ablation study on the validation set. In train-
ing INHERIT, we first trained two pre-trained models on two
separate datasets of different sizes and species. Then, the weights of
these two pre-trained models were used as initialization while fine-
tuning simultaneously on the training set. Therefore, we chose to
compare an INHERIT that does not use any pre-trained models
and randomly initializes two DNABERTs and fine-tuned them on
the training set simultaneously. We denote it as INHERIT (w/o pre-
train). Further, since we used two DNABERTs, INHERIT is about
twice as large as DNABERT in terms of the number of parameters.
Therefore, we also trained a DNABERT to reflect the effect of the
number of parameters on the model performance. All models used
the same hyperparameters as INHERIT during training.

We tested all models’ performance on the validation set. Here
we evaluated all three models on both sequence and segment levels
because the validation set is balanced on the segment level while se-
verely imbalanced on the sequence level (43 bacteria and 2643
phages). The differences in performance reflected by different met-
rics may be biased when we evaluate them on the sequence level.
Therefore, we have attached the confusion matrix of the three mod-
els on the level of both sequence and segment in Supplementary
Table S3. Based on the results (see Table 3), INHERIT improves on
the excellent performance of DNABERT in all metrics and per-
forms better than INHERIT (w/o pre-train) in most of the metrics

on sequence level and performs the best on a segment level.
Meanwhile, although we trained on segment level, the better per-
formance on the segment level, the more accurate the prediction of
the whole genome sequence. The increase in the number of parame-
ters helps INHERIT, allowing it to outperform DNABERT.
However, pre-training can give INHERIT a further boost in very
high accuracy without increasing the number of parameters.
We also made DeLong Test for these three models with each other,
and these three curves are statistically significant. Compared to
INHERIT (w/o pre-train), INHERIT significantly improves the F1-
score from 0.9611 to 0.9943 on the sequence level and from
0.8788 to 0.9542 on the segment level. This reflects that the inde-
pendent pre-training strategy can help the deep learning framework
to distinguish better and make more accurate predictions on both
species. Compared with DNABERT, both two differences help
INHERIT to make better performance.

Pre-training independently will allow the deep learning frame-
work to give predictions closer to the true values. We plotted box-
plots of the scores given by DNABERT, INHERIT (w/o pre-train)
and INHERIT for phage and bacteria samples in the validation set
on sequence level (see Fig. 3). For the vast majority of samples, the
score generated by INHERIT is closer to the true value (1 for phages
and 0 for bacteria). For example, for phage MH576962, DNABERT
gives a score of 0.4707 and INHERIT (w/o pre-train) gives a score
of 0.4968. Neither model classify it correctly. However, the score
from INHERIT is 0.8182. Compared to the other two models,
INHERIT classifies it correctly and significantly improves the score
more toward 1. That means that independent pre-training provides
great help for deep learning frameworks to give more correct predic-
tions on both species. This point even stands for the samples where
none of the three predict correctly or all of the three predict correct-
ly. For example, for phage HQ906662, the DNABERT, INHERIT
(w/o pre-train) and INHERIT prediction scores were 0.4209,
0.2908 and 0.4547, respectively; for bacterium NZ_CP018197, the
DNABERT, INHERIT (w/o pre-train) and INHERIT prediction
scores were 0.2237, 0.1210 and 0.0621, respectively.

Table 2. The average time (second) required for VIBRANT, VirSorter2, Seeker, DeepVirFinder, DNABERT and INHERIT to predict phage

sequences and bacteria sequences in the test set

Sequence VIBRANT VirSorter2 Seeker DeepVirFinder DNABERT INHERIT

Bacteria 565.7887 1256.7568 1.6068 344.4573 53.7031 67.3556

Phage 19.1440 29.1797 0.1139 16.2840 2.7851 3.0127

Note: The time of each model implies their average running time (second) on predicting each bacterium and phage. The average length of bacteria samples on

the test set is 3 950 500 bp, while the average length of phage samples on the test set is 75 800 bp. Values corresponding to fastest speed are bolded.

Table 3. The comparison among DNABERT (without pre-training, i.e. training from scratch), INHERIT (without pre-training) and INHERIT

Model Precision Recall Accuracy F1-score AUROC AUPRC

Sequence level

DNABERT 0.9992 0.9224 0.9229 0.9593 0.9751 0.9996

INHERIT (w/o pre-train) 0.9996 0.9255 0.9263 0.9611 0.9839 0.9997

INHERIT 0.9992 0.9894 0.9888 0.9943 0.9971 1.0000

Segment level

DNABERT 0.8767 0.8809 0.8792 0.8788 0.9508 0.9507

INHERIT (w/o pre-train) 0.9044 0.8951 0.9008 0.8997 0.9530 0.9422

INHERIT 0.9436 0.9650 0.9539 0.9542 0.9875 0.9882

Note: We use the validation set to evaluate the performance of the three models. Here, we evaluate all three models on sequence level and segment because the

validation set is balanced on the segment level while severely imbalanced on sequence level. Values corresponding to best performance are bolded.
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We also tested the prediction speed of DNABERT. From the results
(see Table 2), the average prediction speed of DNABERT is 53.7031 s
for bacteria sequences and 2.7851 s for phage sequences in the test set.
It is slightly faster than INHERIT. That is because INHERIT has a
more complex structure than DNABERT. However, INHERIT can still
give predictions faster than other methods.

4 Conclusions

In this work, we proposed INHERIT, an integrated method that
combines both database-based and alignment-free approaches
under a unified deep representation learning framework. It uses
two pre-trained models as references and keeps the features of
alignment-free methods by the deep learning structure. On a third-
party benchmark dataset, we compared the proposed method with
VIBRANT, VirSorter2, Seeker and DeepVirFinder, representing
database-based methods and alignment-free methods. We demon-
strate that INHERIT can achieve better performance than the four
existing methods in all metrics. In particular, INHERIT improves
the F1-score from 0.9787 to 0.9932. Meanwhile, we also prove
that using an independent pre-training strategy can make deep
learning models make better predictions on both species.
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