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Abstract 

Background: Based on conventional MRI images, it is difficult to differentiatepseudoprogression from true progres‑
sionin GBM patients after standard treatment, which isa critical issue associated with survival. The aim of this study 
was to evaluate the diagnostic performance of machine learning using radiomics modelfrom  T1‑weighted contrast 
enhanced imaging(T1CE) in differentiating pseudoprogression from true progression after standard treatment for 
GBM.

Methods: Seventy‑sevenGBM patients, including 51 with true progression and 26 with pseudoprogression,who 
underwent standard treatment and  T1CE, were retrospectively enrolled.Clinical information, including sex, age, KPS 
score, resection extent, neurological deficit and mean radiation dose, were also recorded collected for each patient. 
The whole tumor enhancementwas manually drawn on the  T1CE image, and a total of texture 9675 features were 
extracted and fed to a two‑step feature selection scheme. A random forest (RF) classifier was trained to separate the 
patients by their outcomes.The diagnostic efficacies of the radiomics modeland radiologist assessment were further 
compared by using theaccuracy (ACC), sensitivity and specificity.

Results: No clinical features showed statistically significant differences between true progression and pseudopro‑
gression.The radiomic classifier demonstrated ACC, sensitivity, and specificity of 72.78%(95% confidence interval [CI]: 
0.45,0.91), 78.36%(95%CI: 0.56,1.00) and 61.33%(95%CI: 0.20,0.82).The accuracy, sensitivity and specificity of three 
radiologists’ assessment were66.23%(95% CI: 0.55,0.76), 61.50%(95% CI: 0.43,0.78) and 68.62%(95% CI: 0.55,0.80); 
55.84%(95% CI: 0.45,0.66),69.25%(95% CI: 0.50,0.84) and 49.13%(95% CI: 0.36,0.62); 55.84%(95% CI: 0.45,0.66), 
69.23%(95% CI: 0.50,0.84) and 47.06%(95% CI: 0.34,0.61), respectively.

Conclusion: T1CE–based radiomics showed better classification performance compared with radiologists’ assess‑
ment.The radiomics modelwas promising in differentiating pseudoprogression from true progression.
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Background
Glioblastoma multiforme (GBM) is the most common 
primary malignant brain tumor in adults. Although 
maximal safe surgical resection followed by concurrent 
chemoradiotherapy (CCRT) with temozolomide (TMZ) 
and adjuvant TMZ has been a standard treatment, the 
prognosis of GBM patients is still very poor. Specially, the 
median overall survival ranges from 14 to 16 months, and 
the 2-year survival rate is only 26–33% [1, 2]. To improve 
this situation, the early and accurate diagnosis of postop-
erative progression has become very critical because it 
can directly influence the optimal therapy schemeselec-
tion associated with patient survival.

However, the pseudoprogression is a treatment-related 
change within 12  weeks after the completion of CCRT, 
including inflammation, radiation effects, ischemia and 
increased vascular permeabilityand contrast enhance-
ment on MR imaging [3]. Both the true progression and 
pseudoprogression exhibit progressive enlargement and 
new enhancement within the radiation field. It is also 
difficult to differentiate them with conventional MRI 
sequences because pseudoprogression can mimic true 
progression in terms of tumor location, morphology, and 
enhancement patterns [4]. However, their treatments 
and prognosis are completely different [5]. Generally, 
pseudoprogressionshows better outcomes and overall 
survival without invasive treatment [2]. According to 
the Response Assessment in Neuro-Oncology (RANO) 
criteria [3], the current strategy to distinguish pseudo-
progression from true progression heavily depends on 
continuous follow-up MRI examinations. Where, it may 
take several months to obtain a reliable diagnosis, result-
ing in the delay or inappropriate management of pro-
gressed GBM patients [6]. Moreover, studies by Ellington 
et al. [7] have shown that once tumor recurrence occurs, 
there is no consensus on its treatment standard. Then, 
even if the most aggressive treatment is adopted, it is 
expected that there will be no significant survival benefit. 
Therefore, it is crucial to develop an effective method to 
differentiate pseudoprogression from true progression as 
early as possible.

Although advanced MR imaging techniques, including 
diffusion-weighted imaging (DWI), perfusion-weighted 
imaging e.g. arterial spin labeling (ASL), dynamic con-
trast-enhanced MRI(DCE) anddynamic susceptibility 
contrast perfusion MRI (DSC) andmagnetic resonance 
spectroscopy (MRS), have been demonstrated to be 
promising in differentiating pseudoprogression from 
true progression, there are still limitations for them.First, 

the lesions were measured on the basis of a single slice 
region of interest(ROI)or the hot-spot method, leading 
to theincompleteassessment of tumors [8, 9]. Second, the 
limited image information applied in these studies can-
not fully address tumor heterogeneity. Third, excessive 
parameters and time-consuming post-processing limit 
their clinical applications [10, 11]. Besides, advanced 
sequences highly depend on the performance of the scan-
ner and are not available in all hospitals.Thus, it is urgent 
to develop a user-friendly protocol for the early and com-
prehensive differentiation ofpseudoprogression from true 
progression.

Recently, the term radiomics,byextracting a large 
number of quantitative image features combined with 
machine learning algorithms, radiomics can provide 
information that is difficult to perceive by visual inspec-
tion to guide clinical decision-making, has attracted 
increased attention in the medical field, especially in 
tumor research for diagnosis, staging and prognosis [12–
15]. Theradiomics strategy hasalso been used to identify 
pseudoprogression and true progression [16–18]. How-
ever, most of them were largely focused on advanced MR 
techniques, andthe varied post-processing models, var-
ied interpretation and uniform standards for evaluation 
restricted their clinical applications. In contrast,  T1CE 
is widelyused in almost all hospitalsfor thediagnosis and 
follow-upof GBM patients. Thus, developing an effective 
 T1CE based radiomics model to differentiate pseudopro-
gression and true progressionwill have great potential in 
clinic.

In this study, we aimed to evaluate the diagnostic 
power of  T1CE imaging radiomics-based machinelearn-
ing in differentiating pseudoprogression from true pro-
gression inGBM patients after standard treatment.The 
diagnostic power of radiomics model was further com-
pared with that of radiologists’ assessment.

Methods
Patient population
This study was approved by our institutional review 
board, and the requirement for informed consent was 
waived based on its retrospective nature. One hun-
dred thirty-one pathologically confirmed primary GBM 
patients were retrospectively enrolled from May 2014 to 
February 2017 in Tangdu hospital.

The inclusioncriteria were as follows: (1) GBM patients 
underwent gross total resection or subtotal resection of 
the lesion; (2) routine MRI was performed within 48  h 
after surgery, including  T1-weighted imaging  (T1WI) 
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and contrast-enhanced  T1WI; (3) the patients underwent 
standard treatment (CCRT with TMZ and six cycles of 
adjuvant TMZ after surgery); (4) the patients underwent 
a second round of MR imaging within 2  months after 
CCRT with TMZ, and the third follow-up MRI examina-
tion was obtained at 6 months after CCRT [19]; (5) the 
patients did notreceivecorticosteroidtreatment3 days 
before each MRI examination; (6) the patients had new or 
enlarged enhancement within the radiation field on the 
second follow-up MR images; and (7) thepatientswere 
confirmed to havetrue progression or pseudoprogression 
through pathology after the second surgery or clinical 
radiologic follow-up.

Fifty-four patients were excluded for the following rea-
sons: (1) absence of new or enlarged enhancement at the 
end of radiation therapy with concurrent TMZ (n = 15); 
(2) lack ofstandardized treatment schedules after sur-
gery (n = 10); (3)poor image quality or motion artifacts 
(n = 11); and (4) lack ofcomplete clinical radiological fol-
low-up or pathological evidence (n = 18).

Finally, 77 patients were included and confirmed 
to have true progression (n = 51) or pseudoprogres-
sion (n = 26). Thirteen patients with true progression 
and 2 patients with pseudoprogression were confirmed 
by pathology of the reoperation samples. The other 
2 patients died of GBM-related complications within 
9  months and were also classified intothe true progres-
sion group. The other patients with true progression 
(n = 36) or pseudoprogression (n = 24) according to the 
RANO criteria [3]. The details of the patient enrollment 
are shown in Fig. 1.

Image Acquisition
The MRI protocol was performed on a 3.0 T MRI scan-
ner (MR750, GE Healthcare, and Milwaukee, Wisconsin, 
USA) with an 8-channel head coil (General Electric Med-
ical System). Preoperative and the follow-up MR images 
were collected including axial  T1-weighted imaging 
 (T1WI),  T2-weighted imaging  (T2WI), fluid-attenuated 
inversion recovery (FLAIR) and  T1-weighted contrast-
enhanced imaging  (T1CE).

The scanning parameters were as follows: axial 
 T1WI(TR/TE, 1750  ms/24  ms; matrix size, 256 × 256; 
FOV,24 × 24  cm; number of excitations (NEX), 1; slice 
thickness, 5  mm; and gap, 1.5  mm),axial  T2WI(TR/TE, 
4247 ms/93 ms; matrix size, 512 × 512; FOV, 24 × 24 cm; 
NEX, 1; slice thickness, 5 mm; and gap, 1.5 mm), sagit-
tal  T2WI (TR/TE, 4338 ms/96 ms; matrix size,384 × 384; 
FOV, 24 × 24 cm; NEX, 2; slice thickness, 5 mm; and gap, 
1.0  mm), and axial FLAIR (TR/TE, 8000  ms/165  ms; 
matrix size, 256 × 256; FOV, 24 × 24  cm; NEX, 1; slice 
thickness, 5  mm; and gap, 1.5  mm). Finally, a contrast-
enhanced  T1-weighted spin-echo sequence was acquired 

in the transverse, sagittal, and coronal planes after intra-
venous administration of 0.1  mmol/kg gadodiamide 
(Omniscan; GE Healthcare, Co., Cork, Ireland).

Segmentation of the volume of interest(VOI)
The research pipeline, including image preprocess-
ing, feature extraction, feature selection and radiomics 
model building is depicted in Fig.  2.Two neuroradiolo-
gists (L.F.Y., with 12 years of experience and Y.Z.S., with 
10 years of experiencein neuro-oncology imaging) inde-
pendently reviewed all images. A third senior neurora-
diologist (G.B.C., with 25  years of experience in brain 
tumor imaging) re-examined the images and deter-
mined the finalclassificationwhen inconsistencies existed 
between the two neuroradiologists. In assessing whether 
the lesion progressed after complete resection, the pre-
operative image features of the tumor would affect the 
results. Thus, the preoperative image features of the 
tumor were also observed and characterized based on the 
criteria outlined in Additional file 1: Table S1.

The VOIs were semi-automatically segmented by the 
two neuroradiologists(L.F.Y. and Y.Z.S.)using ITK-SNAP 
(version 3.6, http://www.itk-snap.org). The VOIs cov-
ering the enhanced lesion were drawn slice by slice on 
 T1CE, avoiding the regions of macroscopicnecrosis, 
cystic, edema and non-tumor macrovessels, at the sec-
ond follow-up MR imaging within 2 months after stand-
ard treatment [20].

Radiomics Strategy
Feature Extraction
A series of texture featureswere involved in this study, 
including 42 histogram features, 11  Gy level size zone 
matrix (GLSZM) texture features, 10 Haralick features, 
144 Gy level co-occurrence matrix (GLCM) texture fea-
tures and 180 run-length matrix (RLM) texture features 
of the original images. The after 25 times Gabor and 
Haarwavelettransforming. Then, a total of 9675 features 
were extracted from the  T1CE images using Analysis-
Kinetics (A.K., GE Healthcare) software.The aforemen-
tioned features were used here because they were found 
to be relevant for distinguishing glioma grades in our 
previous study[14].

Feature Selection
After normalization, the highly redundant and corre-
lated features were subjected to a two-step feature selec-
tion procedure. First, highly correlated features were 
eliminated using Pearson correlation analysis, with anr 
threshold of 0.75. Then, a random forest (RF) classi-
fier consisting of a number of decision trees was used to 
rankthe feature importance. Specially, each node in the 
decision trees is a condition on a single feature, designed 

http://www.itk-snap.org
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Fig. 1 Flow chart of patient enrollment

Fig. 2 Workflow of image processing and machine learning
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to split the dataset into two and similar response values 
will end up in the same set. The measurement based on 
which the (locally) optimal condition is determinedis 
called impurity. When training a tree, how much each 
feature decreases this weighted impurity in the tree can 
be computed. Furthermore, for a forest, the impurity 
decrease ofeach feature can be averaged across the trees, 
and then used to rank the features, i.e. features impor-
tance. In our study, the Gini impurity decrease was used 
as the criterion to evaluate the feature importance for 
feature selection.

Radiomics Model Building
After feature ranking, the 50 most important features 
were fed into a conditional inference RF classifier for 
model fitting [21]. The synthetic minority oversam-
pling technique (SMOTE) strategy was used to address 
the data imbalance issue [22].Five-fold cross validation 
method was employed for tuning the hyperparameter 
and performed 3 times to avoid bias and overfitting as 
much as possible. Then these results were averaged to get 
the final performance.

The accuracy, sensitivity and specificityof the receiver 
operating characteristic (ROC)were computed to evalu-
ate the constructed radiomics model.

Radiologists’assessment
To compare the efficacies of radiologists’ assessment and 
radiomics modelin differentiating pseudoprogression 
from true progression, the images were also evaluated by 
three junior neuroradiologists (Q.T., G.X. and Y.H., with 
8, 7 and 7 years of experience in neuroradiology, respec-
tively) using the second follow-up MR images when new 
or enlarged enhanced lesions were observed within the 
radiation field.The neuroradiologists were blinded to 
the clinical information but were aware that the tumors 
showedeither pseudoprogression or true progression, 
without knowing the exact category each patient fell 
in. Each readers independently assessed only the  T1CE 
images and recorded a final diagnosis using a 4-point 
scale (1 = definite pseudoprogression; 2 = likely pseudo-
progression; 3 = likely true progression; and 4 = definite 
true progression) [23].

Statistics
For comparisons of the differences in clinical characteris-
tics between thepseudoprogression and true progression 
groups, Fisher’s exact test or thechi-square test wasused 
for the categorical variables, and unpaired Student’s t test 
was used for continuous variables. These were performed 
by using SPSS 20.0 software (SPSS Inc., Chicago, IL, 
USA). P value < 0.05 was considered to indicate statistical 
significance.

Radiomics model construction was performed using R 
version 3. 4. 2 (R Foundation for Statistical Computing). 
The ‘RF’,‘caret’ and ‘unbalanced’R packages were used for 
feature selection and SMOTE, respectively. Thediagnos-
tic performance of the radiomics model was assessedby 
using the accuracy, sensitivity, specificity.The samevalues 
of the three readers for differentiating pseudoprogression 
from true progression were also calculated and compared 
with the radiomicsmodel.

Results
Patient Characteristics and Qualitative MR Assessment
The patient characteristics are summarized in Table  1. 
The study group consisted of 40 men and 37 women with 
a mean age of 49.1 ± 10.5 years (range 17–76 years).The 
symptoms of these patients included headache and vom-
iting (61.0%; 47 of 77 patients), epilepsy (18.2%; 14 of 77), 
physical dysfunction (20.8%; 16 of 77) and others (31.1%; 
24 of 77). None of the pretreatment clinical character-
istics, including sex, age, Karnofsky Performance Status 
(KPS) score, resection extent, neurological deficit and 
mean radiation dose, showed significant differencein dif-
ferentiating pseudoprogression from true progression.

In addition, the diagnostic powers of preoperative 
image features in differentiatingpseudoprogression from 
true progression were summarized in Additional file  1: 
Table S2. The side of the tumor exhibited statistically sig-
nificant (P = 0.023), and the location of the tumor had a 
tendency towards statistical significancebetween-group 
difference (P = 0.053).

Figures  3 and 4 demonstrate representative patients 
withpseudoprogression and true progression onT1CE 
imaging, respectively. The pseudoprogression case 
(Fig. 3), in the absence of more interventions, showed a 
strengthened extent of the lesion and a reduced degree 
of enhancement. The case of true progression (Fig.  4) 
showed a marked increase in the extent of the enhanced 
lesions, which was confirmed by secondary surgical 
pathology as tumor recurrence.

Quantitative MR Texture Analysis
Figure  5 depicts the relative importance of the top 50 
featuresbased on the Gini index. In the present study, 
92% (n = 46) of the key features in the radiomics model 
were wavelet features. Twenty-two of the top 50 texture 
features had significant differences between the true 
progression group and the pseudoprogression group 
(Table 2).

These optimal features included1 GLSZM texture fea-
ture, 6 histogram texture features, 19 GLCM texture 
featuresand 24 RLM texture features. The details of the 
optimal feature subsets are provided in Additional file 1: 
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Table  S3.The RLM texture features accounted forthe 
highest proportion of the top 50 features, among which 
Short Run Emphasis_angle45_offset1_LHHL was the 
most relevant feature and was significantly lower in 
patients with true progression than in patients with pseu-
doprogression (Table 2). The GLCM texture feature was 
the second most dominant featurecomputed from  T1CE 
(Fig. 5)and was significantly higher in patients with pseu-
doprogression than in patients with true progression 
(Table 2). The histogram feature and GLSZM texture fea-
ture were the least relevantof the top 50 features. Skew-
ness_LHLH and low intensity small area emphasis were 
the fourth and ninth most relevant features (Fig. 5) and 
were significantly lower in patients with true progression 
than in patients with pseudoprogression (Table  2). Low 
intensity small area emphasisindicated that hypointense 
zones were more likely to be present inpseudoprogres-
sion patients. The above results indicated that lesions 
with a relatively homogenous appearance were associated 
with pseudoprogression.

The optimal performance was obtained by using an RF 
classifier trained with 50 trees. The RF classifier achieved 
an ACC of 72.78% (95% confidence interval [CI]: 
0.45, 0.91) for differentiating pseudoprogression from 
true progression,with a sensitivity of 78.36% (95% CI: 
0.56,1.00), and a specificity of 61.33% (95% CI: 0.20,0.82)
(Table 3).

Comparison of the diagnostic performance 
between theradiomicsmodeland the radiologists’ 
assessment
Table  3 showed the comparison of the diagnostic per-
formance of the radiomicsmodel and the radiologists’ 
assessment using the  sameT1CE image data.The accuracy, 
sensitivity and specificity of three radiologists’ assess-
ment were 66.23% (95% CI: 0.55, 0.76), 61.50% (95% CI: 
0.43, 0.78) and 68.62% (95% CI: 0.55, 0.80); 55.84%(95% 
CI: 0.45, 0.66), 69.25% (95% CI: 0.50, 0.84) and 49.13% 
(95% CI: 0.36, 0.62); 55.84% (95% CI: 0.45, 0.66), 69.23% 
(95% CI: 0.50, 0.84) and 47.06% (95% CI: 0.34, 0.61), 
respectively.In comparing the diagnostic performance, 
theACC,sensitivityand specificityof the radiomics model 
were significantly higher than those of the three radiolo-
gists’ assessment.

The ROC curve in Fig.  6 indicated that the radiomics 
model hasbetter diagnostic performance than the radi-
ologists’ assessment.

Discussion
In this study, none of the pretreatment clinical charac-
teristics showed significant difference between the two 
groups.In addition, according to the results of preopera-
tive imaging characteristics analysis,only the side of the 
tumor was statistically significantand the location of the 
tumor had a tendency towards statistical significance 
between two groups (Additional file  1: Table  S2). The 

Table 1 Clinical characteristics of patients

Except where indicated, data are numbers of patients
a Data are mean ± standard deviation

*Calculated by using the Fisher’s exact test. **Calculated by using unpaired Student t test

The difference between the groups was significant (P < 0 .05)

Variable Total Pseudoprogression True progression P value

No. of patients 77 n = 26 n = 51 NA

Gender

 Male 40 12 (46.2%) 28 (54.9%) 0.482*

 Female 37 14 (53.8%) 23 (45.1%)

Age

Mean 49.1 ± 10.5 47.1 ± 10.2 50.1 ± 10.4 0.230**

Karnofsky Performance Scale Score

  ≤ 80 36 11 (89.3%) 25 (98.9%) 0.635*

  > 80 41 15 (10.7%) 26 (1.1%)

Surgery

 Subtotal resection 17 5 (29.4%) 12 (70.6%) 0.776*

 Gross total resection 60 21 (35%) 39 (65%)

Neurological Deficit

 No 44 16 (36.4%) 28 (63.6%) 0.633*

 Yes 33 10 (30.3%) 23 (69.7%)

Mean Radiation Dose(Gy) 59.1 59.5 58.6 0.365*
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Table 2 Statistical differences of  radiomic features determined by  using RF classifier between  pseudoprogression 
and true progression

Feature Gini Importance True progression Pseudoprogression p value

Median Interquartile range Median Interquartile Range

Feature1 3.73 0.998 0.995–0.999 0.996 0.993–0.999  < .001

Feature2 2.91 1.30 × 10–5 2.0 × 10–6–6.8 × 10–5 3.39 × 10–5 7.34 × 10–6–1.19 × 10–4  < .001

Feature3 2.08 3.0 × 10–13 1.04 × 10–14–4.2 × 10–12 5.59 × 10–13 1.26 × 10–13–7.91 × 10–12 .079

Feature4 2.08 − 0.20 − 1.21–0.83 − 0.58 − 1.79–1.09  < .001

Feature5 1.98 1.14 × 104 1725.0–72,802.4 2.03 × 104 9098.51–56,899.20 .015

Feature6 1.53 3.32 × 10–4 1.44 × 10–4–7.51 × 10–4 4.65 × 10–4 1.71 × 10–4–7.57 × 10–4  < .001

Feature7 1.45 16.22 1.20–241.05 37.06 11.14–254.88 .137

Feature8 1.42 221.32 14.89–5051.62 349.15 89.95–5227.03 .765

Feature9 1.39 5.25 × 10–6 2.45 × 10–7–2.04 × 10–5 6.44 × 10–7 2.43 × 10–7–8.2 × 10–6 .828

Feature10 1.32 5.35 × 108 2.20 × 107–1.64 × 1011 2.34 × 109 1.85 × 108–9.06 × 1010 .374

Feature11 1.25 4.84 × 10–5 1.3 × 10–5–1.96 × 10–4 7.3 × 10–5 5.74 × 10–6–1.75 × 10–4 .008

Feature12 1.25 14.49 1.08–342.81 35.44 2.47–189.35 .244

Feature13 1.24 − 2393.65 − 61,416.60–36,264.10 − 1.26 × 104 − 152 × 105–5.76 × 104 .015

Feature14 1.09 1.5 × 10–13 5.05 × 10–15–8.51 × 10–9 2.72 × 10–13 8.2 × 10–14–1.83 × 10–11 .445

Feature15 1.07 1.8 × 10–5 1.22 × 10–6–7.55 × 10–5 2.8 × 10–5 5.75 × 10–6–1.08 × 10–4 .005

Feature16 1.01 0.998 0.994–0.999 0.996 0.993–0.999  < .001

Feature17 0.93 3.27 × 10–5 − 3.14 × 10–4–7.18 × 10–4 1.47 × 10–4 − 5.47 × 10–4–4.69 × 10–4 .050

Feature18 0.93 − 744.67 − 1.68 × 104–1.03 × 104 748.24 − 11,634.40–18,560.10 .138

Feature19 0.89 0.12 1.91 × 10–4–8.93 0.14 5.95 × 10–4–5.43 .197

Feature20 0.82 0.55 0.35–0.66 0.56 0.50–0.73 .028

Feature21 0.81 1.3 × 10–13 1.20 × 10–14–2.97 × 10–12 2.52 × 10–13 5.05 × 10–14–2.07 × 10–9 .161

Feature22 0.76 1.83 × 109 6.18 × 107–7.80 × 1010 6.48 × 109 7.02 × 108–9.28 × 1010 .048

Feature23 0.75 0.998 0.994–0.999 0.997 0.994–0.998 .256

Feature24 0.74 0.998 0.994–1.000 0.998 0.997–0.999 .347

Feature25 0.73 5.1 × 10–12 1.53 × 1013–4.33 × 1010 1.44 × 10–11 1.17 × 10–12–3.16 × 10–8 .141

Feature26 0.72 1.73 × 10–4 − 2.99 × 10–4–7.68 × 10–4 1.69 × 10–4 3.13 × 10–6–7.69 × 10–4 .060

Feature27 0.71 3.72 × 10–4 2.19 × 10–4–1.06 × 10–3 4.43 × 10–4 3.16 × 10–4–1.04 × 10–3 .006

Feature28 0.70 7.47 × 103 999.18–41,102.90 1.16 × 104 1287.42–25,000.80 .111

Feature29 0.69 − 342.35 − 4559.64–8392.05 672.42 − 8078.63–28,881.70 .208

Feature30 0.68 − 1.02 × 103 − 5065.29–1823.32 − 600.96 − 2031.27–3107.47 .125

Feature31 0.66 6.80 × 108 2.59 × 107–1.87 × 1010 2.12 × 109 3.88 × 107–3.44 × 1011 .103

Feature32 0.65 843.33 160.59–1046.56 753.13 258.74–1333.93 .147

Feature33 0.62 − 9.8 × 10–5 − 5.9 × 10–4–3.22 × 10–4 − 8.60 × 10–5 − 3.36 × 10–4–1.4 × 10–4 .799

Feature34 0.62 967.43 69.37–6660.59 2441.03 149.65–10,040.5 .002

Feature35 0.60 5.83 × 10–6 1.51 × 10–6–1.89 × 10–5 8.91 × 10–6 2.43 × 10–6–2.95 × 10–5 .015

Feature36 0.58 1.69 × 104 9790.15–26,645.1 18,893.30 13,895.80–32,379.50 .008

Feature37 0.58 1.99 × 10–4 − 3.4 × 10–4–8.7 × 10–4 2.87 × 10–4 − 7.65 × 10–5–1.44 × 10–3 .060

Feature38 0.53 − 467.89 − 3.00 × 104–1.79 × 104 799.64 − 35,322.10–20,325.90 .575

Feature39 0.53 4.95 × 10–9 1.34 × 10–9–1.60 × 10–8 5.83 × 10–9 5.38 × 10–10–3.45 × 10–8 .037

Feature40 0.53 14.17 − 5.15 × 103–1.25 × 104 − 939.69 − 27,364.50–5113.09 .026

Feature41 0.52 − 259.96 − 16,902.50–9521.71 1264.01 − 10,087.90–6781.62 .121

Feature42 0.52 − 1.20 − 2.52–0.10 − 0.81 − 2.07–0.20 .043

Feature43 0.52 2.22 0.30–12.95 2.76 1.54–5.43 .536

Feature44 0.52 9.53 × 1010 1.10 × 1010–4.10 × 1012 2.30 × 1011 4.82 × 109–7.26 × 1012 .023

Feature45 0.52 1.04 × 105 2.21 × 104–5.96 × 105 1.40 × 105 37,793.10–516,907.00 .025

Feature46 0.52 3.30 × 105 1.23 × 105–2.56 × 106 4.29 × 105 1.27 × 105–1.39 × 106 .505

Feature47 0.51 9.1 × 10–14 9.09 × 10–14–9.42 × 10–15 1.96 × 1013 4.65 × 10–14–8.41 × 10–13 .110

Feature48 0.50 0.51 0.39–0.64 0.48 0.38–0.62 .074

Feature49 0.49 6.27 × 10–7 5.39 × 10–8–4.22 × 10–6 1.37 × 10–6 1.71 × 10–7–4.76 × 10–6 .005

Feature50 0.49 − 4.9 × 10–3 − 0.55–0.50 0.06 − 0.68–0.63 .414
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results may be related to the small sample size and data 
imbalance, we will observe the results in future research.

The ability of quantitative radiomics features based 
on  T1CE imagesto differentiate pseudoprogression from 
true progressionin patients with GBM after CCRTwas 
investigated in the current study.When combined with 
RF classifier, the radiomics model achieved relatively 
gooddiagnosis performance with higher ACC (72.78%) 
and sensitivity (78.36%) than radiologists’ assessment.

Regarding the top 50 most important features select-
edby using the Gini index as a metric,most of them 
were RLM (n = 24) and GLCM (n = 19) features. The 
RLM mainly reflects the roughness and directional-
ity of the texture.The GLCM reflects the intensity of the 

spatial distribution[24].The histogram features (n = 6) 
and GLSZM texture feature (n = 1) were also played an 
important role in identifying pseudoprogression and true 
progression.The ninth important feature of low intensity 
small area emphasis indicated that hypointense zones 
were more likely to be present in pseudoprogression 
patients. Previous literature reports have shown that low 
intensity small area emphasis may reflect fibrinoid necro-
sis, oligodendroglial injury and glial cell hyperplasia [11, 
25]. The higher the valuewas the greater the probability of 
pseudoprogression, which appears as a low-signal region. 
On the contrast,recurrent GBM was characterized by 
vascular proliferation and a disrupted blood–brain bar-
rier, leading to the high signal intensity in the  T1CE image 

Table 2 (continued)
Feature relevance was assessed by using mean decrease in Gini index–based feature importance

P values are adjusted for false-discovery rate by using Benjamini–Hochberg method. 1–50 features are the same as in Fig. 4

Fig. 3 T1CE images showing pseudoprogression in a 45‑year‑old female patient with GBM. (a) Postoperative MRI (within 48 h after surgery) showing 
complete tumor resection. (b) Three days before CCRT, MRI showed mild enhancement of the cavity walls denoting surgical trauma‑related 
changes. (c) Two months after CCRT, enhancement markedly increased. After CCRT and at the (d) 6‑, (e) 8‑ and (f ) 11‑month follow‑ups, the 
follow‑up MR images demonstrated that the degree of lesion enhancement was reduced and the extent of enhancement was reduced. (CCRT: 
concurrent chemoradiotherapy)
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caused by contrast agent leakage [11, 26]. Above texture 
features mainly reflect the tumor heterogeneity and com-
plexity of components based on voxel-based changes in 
grayscale[27]. Specially, the Haralick features were not in 
the top 50 features, whichprobablysuggested that these 
two groups of features were not effective in distinguish-
ing pseudoprogression from true progression and needed 
to be verified in future research.

Moreover, it can be observed that, in our study, 92% 
(n = 46) of the key features in the radiomics model were 
Gabor filtered wavelet features.The use of high-dimen-
sional feature helps to improve the performance of the 
model.This finding demonstrates thatthe wavelet features 
can provide more information about the tumor invisible 
to the eye, so as to better assess treatment response [28, 
29].

Previous studies have used low-dimensional features 
coupled witha few pieces of information from multi-
parametric histograms[16]orSVM classification based on 
DCE MRI to differentiate pseudoprogression from true 
progression [30]. Although these studies achieved good 
results in differentiating pseudoprogression from true 
progression inGBM patients with standard treatment, 
there were still certain disadvantages. First, the sam-
ples and quantitative features in previous studies were 
relatively small, especially the relatively small number 
of pseudoprogression patientswithout proper handling, 
which might have overshadowed their statistical results 
[16]. Second, previous studies were mostly based on 
advanced MR sequences that were of much equipment 
dependent and may hamper its application in some pri-
mary hospitals.

To the best of our knowledge, there is no published 
study in the literature comparing the radiomics model 

with radiologists’ assessment for distinguishing pseu-
doprogression from true progression. In our study, the 
radiomics model demonstrated betterdiagnostic per-
formance than the radiologists’ assessment. It suggested 
that our radiomics model may have the potential to help 
clinicians make an earlier judgment for patients in whom 
a “wait and see” approach may be the most appropriate.

Study limitations
Several limitations of the current study should be 
addressed. First, the sample size was still small,so there 
may be a risk of overfitting. In order to solve the problem 
of small sample size and overfitting risk, we adopted the 
following methods: 1)25 times Gabor and wavelet trans-
formations were performed on the features extracted 
from the original images. 2) five-fold cross validation was 
employed for tuning the hyperparameter and was per-
formed 3 times to avoid bias and overfitting as much as 
possible.3) the SMOTE strategy was used to address the 
data imbalance issue, especially the sample size of pseu-
doprogression was relatively small. Moreover, Bum-Sup 
Jang et  al. built a radiomics model by machine learning 
algorithm differentiating pseudoprogression from true 
progression with the total amount of sample they used 
was 78 cases [31]. In the future, a much larger data-
set needs to be investigated to validate the robustness 
and reproducibility of the currently proposed radiomics 
model.Second, molecular alterations, such as isocitrate 
dehydrogenase (IDH) mutation and oxygen 6-methyl-
guanine-DNA methyltransferase (MGMT) promoter 
methylation status, were not included in this study. The 
recently published 2016 WHO classification of brain 
tumors incorporated genetic parameters into the classical 
histopathological findings. These genetic alterations have 

Fig. 4 T1CE images showing true progression in a 48‑year‑old male patient with GBM. (a) Postoperative MRI (within 24 h after surgery) showed that 
the tumor was completely resected. (b) Two months after CCRT, the new enhancement disappeared. After CCRT and at the (c) 6‑and (d) 9‑month 
follow‑ups, the follow‑up MR images demonstrated that the extension of the enhanced lesion increased. Recurrence was confirmed by second 
surgical pathology. (GBM: glioblastoma multiforme)
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Fig. 5 Feature importance plot showing the mean decrease in Gini impurity. Features that most reduced the Gini impurity were those that resulted 
in the least misclassifications

Table 3 Diagnostic performances of  the  radiomics model for  differentiating pseudoprogression from  true progression 
versus the radiologists’ assessment

ACC Sensitivity Specificity

Radiomics 72.78%(95% CI: 0.45,0.91) 78.36%(95% CI: 0.56,1.00) 61.33%(95% CI: 0.20,0.82)

Radiologist 1 66.23%(95% CI: 0.55,0.76) 61.50%(95% CI: 0.43,0.78) 68.62%(95% CI: 0.55,0.80)

Radiologist 2 55.84%(95% CI: 0.45,0.66) 69.25%(95% CI: 0.50,0.84) 49.13%(95% CI: 0.36,0.62)

Radiologist 3 55.84%(95% CI: 0.45,0.66) 69.23%(95% CI: 0.50,0.84) 47.06%(95% CI: 0.34,0.61)
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prognostic implications in terms of survival and response 
to therapies [32, 33]. These indicators will be included in 
future studies.

Conclusion
In conclusion, our study showed that theproposed radi-
omics model based on conventional  T1CE had stable 
diagnostic efficacy and performed better than the radi-
ologists’ assessment in the early differentiation ofpseu-
doprogression from true progressioninGBM patients 
after CCRT. The radiomics model may assist clinicians in 
the early, accurate judgment of recurrence and provide 
a novel tool to guide individual treatment strategies for 
GBM patients.
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