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ABSTRACT We report the genome sequences of two Erysipelothrix isolates from fatal
cases of sepsis in bottlenose dolphins (Tursiops truncatus). The genomes were found to
be most closely related to Erysipelothrix rhusiopathiae and Erysipelothrix piscisicarius. This
information expands our knowledge of the genetic characteristics of this pathogen, which
can affect free-ranging marine mammals.

In February and March 2020, two bottlenose dolphin (Tursiops truncatus) carcasses (identified
as 10DISL and 19DISL, respectively) were stranded off Orange Beach, Alabama. Necropsies

were conducted by the Alabama Marine Mammal Stranding Network at Dauphin Island Sea
Lab according to standard protocols, and paired tissue samples were collected for histological
evaluation by the University of Illinois Zoological Pathology Program and for280°C archiving.
Findings indicated that both animals died of bacterial sepsis. Gram-stained tissue sections
showed intracellular, rod-shaped, Gram-positive bacteria consistent with Erysipelothrix spp.
Erysipelothrixmay cause disease in multiple species, including humans. Sources of infection
in dolphins may include environmental contamination of wounds and ingestion of fish harbor-
ing the bacteria in their mucus layer (1).

Samples of cerebrum of carcass 10DISL and spleen of carcass 19DISL, chosen because
of intracellular bacteria identified during histopathology, were shipped to the National
Veterinary Services Laboratories, where they were inoculated onto blood agar (R01202; Remel
Products), chocolate agar (R01302; Remel Products), and MacConkey agar made in-house.
Plates were incubated at 37°C in 5% CO2 for 18 to 24 h. Single colonies of different colony
types were streaked on blood agar and incubated under the same conditions. The original
plates were also reincubated. Identification was performed using a Bruker Biotyper on an
Autoflex Speed matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass
spectrometer. DNA was extracted using the Promega Maxwell RSC whole-blood DNA kit.
Whole-genome sequencing was performed according to established protocols using 2 �
250-bp paired-end chemistry and the Nextera XT library preparation kit on an Illumina
MiSeq system, which generated 1.38 million reads for 10DISL and 1.36 million reads
for 19DISL. Sequences were merged with FLASH v.2.2.0 (2), trimmed with Trim Galore
v.0.6.5 (3), assembled with SPAdes v.3.15.3 (4), and annotated with Prokka v.1.11.1
within PATRIC v.3.6.12 comprehensive genome analysis (5–8). A phylogenetic tree was created
in ezTree v.0.1 (9) using Prodigal (10). The amino acid sequences were compared to Pfam hid-
den Markov model profiles (11) using HMMER3 (12). Pfam profiles identified once were con-
catenated and aligned using MUSCLE (13). The alignment was used to construct a maximum
likelihood tree (FastTree, JTT model, with 1,000 bootstraps) (14). Default parameters were used
for all software. Average nucleotide identity (ANI) values were calculated using the JSpeciesWS
webserver (15).
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Isolate 10DISL contained 96 contigs, with a G1C content of 34.46%; the N50 value was
72,029 bp, the L50 value was 7, and the genome length was 1,718,626 bp, with 1,225 protein-
coding sequences, 450 hypothetical proteins, and 160� sequence coverage (Table 1). Isolate
10DISL included genes for metabolism processes (160 genes), protein processing (184 genes),
energy processes (93 genes), DNA processing (66 genes), RNA processing (40 genes), stress
response, defense, and virulence (53 genes), and cellular processes (51 genes). Isolate 19DISL
contained 112 contigs, with a G1C content of 36.31%; the N50 value was 42,844 bp, the L50
value was 13, and the genome length was 1,807,374 bp, with 1,229 protein-coding sequen-
ces, 546 hypothetical proteins, and 146.9� sequence coverage. Isolate 19DISL included genes
for metabolism processes (160 genes), protein processing (184 genes), energy processes
(94 genes), DNA processing (67 genes), RNA processing (40 genes), stress response, defense,
and virulence (53 genes), and cellular processes (52 genes). All annotated genes in these cat-
egories were verified as homologues using the annotation output from PATRIC, thus indicat-
ing that the gene contents across these two isolates are highly conserved. The genomes from
isolates 10DISL and 19DISL were related to both Erysipelothrix rhusiopathiae and Erysipelothrix
piscisicarius with 86% ANI and were related to Erysipelothrix tonsillarum with 79% ANI (Fig. 1).
The isolates from this study were related to each other with 99.6% ANI, indicating that the
two genomes represented a novel species.

Data availability. These whole-genome assemblies have been deposited in GenBank
under the accession numbers listed in Table 1. The assembled sequences for each isolate
were deposited in the Sequence Read Archive (SRA) under BioSample accession numbers
SAMN23594042 (10DISL) and SAMN23594043 (19DISL).

TABLE 1 Assembly metrics for the two isolates

Strain
identification

Isolate
name

BioSample
accession no.

No. of
contigs

G+C
content
(%)

N50

(bp) L50

Genome
length
(bp)

No. of
protein-coding
sequences

No. of
hypothetical
proteins

Sequence
coverage
(×)

Erysipelothrix sp. 10DISL SAMN23594042 96 36.46 72,029 7 1,718,626 1,225 450 160
Erysipelothrix sp. 19DISL SAMN23594043 112 36.31 42,844 13 1,807,374 1,229 546 146.9

FIG 1 Phylogenetic tree using single-copy marker genes for whole genomes to confirm bacterial species. The purple dots represent bootstrap values
greater than 70%. Numbers in parentheses are GenBank accession numbers.
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