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Abstract

Background: Genotypes obtained with commercial SNP arrays have been extensively used in many large case-
control or population-based cohorts for SNP-based genome-wide association studies for a multitude of traits. Yet,
these genotypes capture only a small fraction of the variance of the studied traits. Genomic structural variants (GSV)
such as Copy Number Variation (CNV) may account for part of the missing heritability, but their comprehensive
detection requires either next-generation arrays or sequencing. Sophisticated algorithms that infer CNVs by
combining the intensities from SNP-probes for the two alleles can already be used to extract a partial view of such
GSV from existing data sets.

Results: Here we present several advances to facilitate the latter approach. First, we introduce a novel CNV
detection method based on a Gaussian Mixture Model. Second, we propose a new algorithm, PCA merge, for
combining copy-number profiles from many individuals into consensus regions. We applied both our new methods
as well as existing ones to data from 5612 individuals from the CoLaus study who were genotyped on Affymetrix
500K arrays. We developed a number of procedures in order to evaluate the performance of the different methods.
This includes comparison with previously published CNVs as well as using a replication sample of 239 individuals,
genotyped with Illumina 550K arrays. We also established a new evaluation procedure that employs the fact that
related individuals are expected to share their CNVs more frequently than randomly selected individuals. The ability
to detect both rare and common CNVs provides a valuable resource that will facilitate association studies exploring
potential phenotypic associations with CNVs.

Conclusion: Our new methodologies for CNV detection and their evaluation will help in extracting additional
information from the large amount of SNP-genotyping data on various cohorts and use this to explore structural
variants and their impact on complex traits.
Background
Genetic variation in the human genome takes many forms
ranging from large chromosome anomalies to single nu-
cleotide polymorphisms (SNPs). Deletion, insertion and
duplication events giving rise to copy number variations
(CNVs) are found genome-wide in humans [1-8] and
other species [9-12]. Genomic variants can impact both
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somatic and germ-line genetics. The link between CNVs
and inherited diseases is now solidly established (e.g.
[13-15]), and copy number plasticity is typical of cancer
cells [16]. Such genomic variability, which was identified
more than a decade ago using array-based comparative
hybridization [17,18], was known for much longer from
cytogenetic studies or Southern blots. It has been demon-
strated that CNVs near oncogenes or tumor suppressor
genes can affect gene expression levels or result in the ex-
pression of chimeric fusion genes [18,19]. However, the
number and positions of rare CNVs in the human genome
are still likely to be underestimated and their contribution
to common complex diseases such as diabetes or obesity
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is unclear. Very recent results demonstrate that rare
variants can have very high penetrance in the etiology
of morbid obesity [20,21].
The CoLaus (Cohorte Lausannoise) study is a

population-based survey started in 2003 to study risk
factors for hypertension and cardiovascular diseases [22].
6188 Caucasian individuals (35-75 years old) from the
Lausanne area in Switzerland participated in the study.
5612 individuals were genotyped on Affymetrix 500K
SNP chips, and a fraction of these were also genotyped
on the Illumina 550 K SNP chips [23]. A number of
SNP-based genome-wide association studies (GWAS) that
employed the CoLaus data have already been reported
[24-30]. Although many other large cohorts including
thousands of individuals have been genotyped for SNPs
[24,25,31], very few have reported CNV maps [32,33].
It is important to emphasize that most SNP arrays

used so far in GWAS of clinical cohorts were not
designed for CNV (dosage) detection, but only to call
the three possible genotypes of SNPs. Nevertheless, by
combining the intensities of the two alleles for a given
SNP, it is possible to obtain information also on the copy
number state of the SNP locus. However, this is challen-
ging for several reasons: First, when analyzing very large
datasets (with several thousands of individuals), it is
likely that experiments were conducted at different times
and/or by different laboratories, which often introduces
strong batch effects for the raw intensities. Thus the first
challenge in CNV calling is to ensure proper normalization
of these raw data. Second, due to the large noise in the
SNP probe intensities in these arrays (even after batch
effects have been corrected for), the estimates of copy
numbers for a given locus (SNP) are not very reliable.
Thus more reliable prediction can only be made by in-
tegration of intensities from several neighboring loci, a
strategy that is employed by many different CNV detec-
tion methods [34-40]. However, this approach makes
CNV detection difficult (and sometimes completely
fails) in regions with low SNP density. To overcome
this limitation, the Illumina (1M) and Affymetrix arrays
(Affymetrix 5.0 and 6.0) include more SNP markers
and non-polymorphic probes to cover CNV-rich
regions. These arrays also received considerable attention
from the community and now benefit from a variety of
freely available and efficient CNV detection methods
[41-47]. These methods also make use of the ratio of allelic
intensities which can improve CNV prediction [48]. Until
very recently [34], little has been done for Affymetrix
500 K arrays, which were analyzed with software such as
dChip [49], CNAG [40], GEMCA [38] and CNAT [39]. All
but CNAT are restricted to the Windows operating system
and thus are inappropriate for the analysis of large cohorts
and for distributed computing on UNIX-based clusters.
Software initially developed for Illumina arrays [45,47,50]
were modified to allow the analysis of Affymetrix arrays (in
particular Affymetrix 5.0 and 6.0 arrays). However the per-
formance of these software on Affymetrix 500 k data has
not been intensively tested and for some the software im-
plementation is tedious to use. For example, PennCNV
[50] is considered as a very efficient software for CNV ana-
lysis. However to analyse Affymetrix 500 K data, several
pre-processing steps are needed. These steps rely on exter-
nal applications (the Affymetrix APT tools) which in their
current release do not longer support the pre-processing.
While supporting dependencies is a very challenging work
in any software development project, it makes it difficult to
the user to decide which software to use. In addition,
whilst there are now several performance benchmarks for
the newest array generation [51-53], assessment of the
Affymetrix 500K arrays in large cohorts is still needed.
Finally, while some methods take advantage of the sig-

nals from a single or a group of SNPs across the popula-
tion to predict CNV regions for each individual [41,54,55],
there are very few methods to merge individual CNV pre-
dictions into regions at the population level: Redon et al.
[3] merged CNVs based on the extent of their overlap,
whereas Itsara et al. [32] manually annotated complex
regions.
In the current study we followed two main goals: First,

we performed an extensive survey of candidate CNVs in
the CoLaus study as detected by SNP genotyping micro-
arrays. We provide a large dataset that can serve as a re-
source for other studies elucidating human structural
variants, and for future association studies of CNVs with
the clinical phenotypes measured in CoLaus. Second,
since the methods for detecting individual CNV profiles
and merging those into consensus regions have not yet
been well established, we developed new algorithms for
CNV calling and merging, and devised novel techniques
to evaluate and compare them with existing methods.
Specifically, we compared three existing CNV detection
methods with our new method (GMM) that uses a
Gaussian Mixture Model to estimate the copy number
dosage at each SNP of each individual. GMM models
the signal intensity at each SNP across the entire popu-
lation (cohort) which differs from HMM approaches like
CNAT [39], CNAG [40], dChip [49], PennCNV [50] and
QuantiSNP [47] that model the signal sample by sample
along each chromosome. Other GMM implementations
have been successfully used in the past for BAC and CGH
array analyses [56-58], but all these different methods
(GMMs and HMMs) provide a discrete copy number
value (e.g. 0, 1, 2, 3 and 4). It was also proposed to inte-
grate in a single statistical model both the CNV classifica-
tion and the association with binary traits [59]. Their EM
algorithm estimates the copy number state probabilities,
but only to use them internally for the association testing.
Similar to their approach, our GMM implementation
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produces (continuous) copy number dosage values that
account for uncertainty in the prediction (e.g. due to sam-
ple contamination or tumor cell heterogeneity). However,
our algorithm couples the calling with CNV merging and
focuses explicitly on the copy number region (CNR) calls.
Our GMM was successfully applied to both Affymetrix

and Illumina arrays; and is not restricted to SNP array
analysis (i.e. is applicable to CGH and qPCR analyses).
We also developed two merging strategies, which were ap-
plied to create a map of CNV regions for each of the four
CNV detection methods. We studied how CNVs predicted
by the various algorithms coincided with previously
reported variants. We also investigated the concordance
in predicting CNVs in a subsample of individuals that
were additionally genotyped on the Illumina 550K SNP
chips. Finally we compared the sensitivity and specificity
of the different approaches using related CoLaus indivi-
duals which are expected to share more CNVs than unre-
lated individuals. Based on these criteria, we demonstrate
that our new method outperforms two established CNV
detection algorithms and has higher sensitivity than a
third method.

Results
Identification of copy number variants in Colaus
Detection
To detect CNVs in CoLaus, we applied four different CNV
detection algorithms to the data from 5612 Caucasians
generated with Affymetrix 500 K microarrays: two imple-
mentations of the Copy Number Analysis Tool (CNAT
[39]) that integrate the SNP intensities by summing their
raw (CNAT.total) or log-transformed (CNAT.allelic) values;
Circular Binary Segmentation (CBS [36,37]) and our own
algorithm based on a Gaussian Mixture Model, to which
we refer subsequently as GMM. We restricted our analysis
to autosomes allowing us to use a mixture of males and
females as the reference panel. Using these four methods,
we assigned copy number values to each probe and each
CoLaus individual. (The CBS method only returns seg-
ments and their mean signal intensity, which we used to
identify SNPs within candidate regions for CNVs if the cor-
responding ratio was below (loss) or above (gain) a certain
threshold, see Methods for more details.)

Merging
In the second step we attempted to reduce the complexity
of these CNV profiles by merging adjacent SNPs that con-
tained highly redundant information into CNV regions.
The first method (“simple merge”) joins neighboring SNPs
(on a same chromosome) that have identical copy number
values across all CoLaus participants (see Additional file 1:
Figure S1A for illustration). This simple approach already
significantly reduced the number of SNPs (for example, it
compresses 490K autosomal SNPs into 8000 regions for
CNAT.total and into 40K for CBS). However, by nature,
this simple scheme leaves the boundaries of CNVs frag-
mented. I.e. If two adjacent SNPs differ in copy number
for at least one subject, they will not be merged together
(see Additional file 1: Figure S1B). Thus we devised a
refined method, which is based on a principal component
analysis (PCA) and self-organizing maps (SOMs). The
PCA identifies orthogonal components explaining a sig-
nificant (e.g. 90%) fraction of the variance. Including these
components in clustering or multivariate analyses allows
us to remove components that are likely driven by noise
and to concentrate on those which, individually, explain a
significant fraction of the data variability (i.e. 90%). We
then used Self-Organizing Maps (SOMs) to cluster SNPs
with similar ‘eigen-value profiles’ in CNV regions (see
Methods for details, and Additional file 1: Figure S2 for il-
lustration). For convenience, we refer to this approach as
the ‘PCA merge’.

Post processing
Next, we excluded any CNV regions found in fewer than
five individuals, which roughly correspond to 0.1% fre-
quency. In this study, we considered all remaining CNVs
(with frequency >0.1%, refered as ‘all CNVs’) and we also
distinguished between Copy Number Polymorphisms
(‘CNPs’, CNVs with a frequency greater than 1% in the
population) and the remaining ones (i.e. CNVs with popu-
lation frequency between 0.1% and 1%) to which we refer
as Copy Number Variant Regions (‘CNVRs’). The num-
bers of CNPs and CNVRs predicted by the four different
methods and the two merging methods are shown in
Figure 1 (see Additional file 1: Figure S3 for detail per
chromosome). CNAT.total and CBS are conservative
methods that generate significantly fewer regions than
CNAT.allelic and GMM. The simple merging procedure
produces many small regions (<1 kb or single SNPs)
which are commonly integrated into fewer larger
regions with the PCA-based method (Figure 1, see
Additional file 1: Figure S4 for details per chromo-
some). The PCA-based merging method is able to re-
duce the total number of regions by 35%, 53%, 67% and
70% for GMM, CNAT.total, CNAT.allelic and, CBS,
respectively.
The fraction of the (autosomal) genome effectively

covered by these regions is reported in Additional file
1: Table S1 (details per chromosome are provided in
Additional file 1: Figure S5). Although GMM produces
many more CNPs than the other methods, they only cover
about 2.4% of the autosomes. CNAT.allelic predictions for
CNPs cover 12.4% of the autosomes, while CBS and
CNAT.total cover only 1.5% and 0.7% respectively. We
also checked the coverage with rare variants (CNVRs),
GMM had the lowest autosomal coverage of only 9.8%,
whereas CBS had the highest with 42.4%. CBS predictions
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Figure 1 Counts of CNVs identified with the different methods. Copy number variants (CNVs) were detected with four different algorithms
(see legend) using data generated by Affymetrix 500K SNP arrays for the Cohorte Lausanne (n� 5600). Adjacent SNPs with similar Copy Number
profiles were merged into CNV regions using two different approaches: one based on principal component analysis (PCA, bottom panel) and a
more simple approach that only merges SNPs with identical profiles (top panel). Copy number polymorphisms (CNPs, i.e. CNVs with population
frequency above 1%) are shown on the left. Copy number variant regions (CNVRs, i.e. CNVs with population frequency below 1% but seen for at
least five individuals) are shown on the right. In each plot, CNV counts are segregated according to their size.
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for CNPs are rather conservative in the sense that CNPs
found with other methods are found for fewer individuals
when using CBS (thus much higher genome coverage for
CNVRs). Additional file 1: Figure S6 shows the CNV profile
on chromosome 1 as predicted by the different methods.
This illustrates the dramatic differences between methods
and the limited ability of CBS to detect CNPs (despite using
optimized thresholds when classifying CBS segments; see
Methods for details).
To further investigate at the differences between the

four methods, we computed the intersection using CN
prediction from 60K independent autosomal SNPs
(SNPs that were not in LD in the CEU population, see
Supplementary Methods). Only 2.3% of the SNPs com-
posing CNPs were validated with at least three methods
(10% with at least two methods) (see Additional file 1:
Table S2 and Venn diagrams in Additional file 1: Figure
S7). By contrast, 23.5% of the SNPs in CNVRs were
found in at least three methods and this number reached
55.3% for at least two methods. Next, we checked pair-
wise comparison between the CNV methods (Additional
file 1: Table S3). The maximal intersection between two
methods is 47% and corresponds to the comparison be-
tween all CNVs from GMM and CBS. Such relatively
low overlaps are not uncommon with CNV analysis from
SNP genotyping arrays and underline the need for
proper replication of any CNV predictions [51,52,60].
In order to evaluate the different detection and mer-

ging algorithms, we used three different approaches: (i)
A comparison with known CNVs from a public database,
(ii) A cross-platform validation using a subset of samples
that were also genotyped on the Illumina platform, and
(iii) similarity of related individuals with respect to their
CNV profiles.
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Comparison with known CNVs
The Database of Genomic Variants (DGV [1]) is a
curated catalogue of structural variation in the human
genome. We downloaded its content (release 7) and kept
only CNVs discovered from SNP or CGH arrays (BAC
and ROMA arrays were excluded). We complemented
this dataset with predictions from Itsara et al. [32] and
predictions from the high resolution CNV project [61].
This dataset of “known” CNVs included 17804 autosomal
CNVs, whose size ranged from 1 kb to 3 Mb.
We then computed the overlap between this reference

dataset and all CNVs (i.e. CNPs and CNVRs pooled to-
gether) generated by each prediction method (Figure 2A).
The overlap is reported as the Jaccard coefficient, which is
the ratio between the the intersection and the union of
two CNVs. A ratio close to one implies that the two CNVs
have very similar boundaries; a ratio close to zero indi-
cates a negligible overlap (or no overlap at all if the ratio is
equal to zero) and intermediate values correspond to
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Figure 2 Overlap between CNVs identified from CoLaus and publishe
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partial overlap (including the case where a small CNV is
encompassed by a larger one). Since DGV contains CNVs
from much fewer individuals than the CoLaus dataset, it
was important to compare the distribution of overlaps
with the CNVs generated by the different methods in a
controlled setting. Therefore we computed for each
method the expected overlap using reshuffled data from
1000 permutations. Estimated P-values for observing
more or less than expected CNVs with a given overlap are
shown in Figure 2A (see Additional file 1: Table S4 for the
corresponding t-statistics), and the relative excess of
observed or expected counts is shown in Figure 2B. We
observed that all prediction methods were enriched with
respect to the controls for known CNVs (all Jaccard coeffi-
cient bins strictly above 50%) and depleted for novel CNVs
(Jaccard coefficient of zero). Analyses were also performed
for CNPs and CNVRs independently (see Additional file
1: Figure S8). Except for CNAT.allelic, all methods showed
significant depletion in novel CNPs. All methods showed
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significant depletion in novel CNVRs and significant
enriched in known CNPs and CNVRs.

Validation with Illumina arrays
DNA from a subset of 239 CoLaus individuals was assayed
on the Illumina SNP platform. In order to obtain a
validation set of CNVs, we applied GMM and the PCA-
based merging algorithm to these data. Note that CNAT
is specifically designed for Affymetrix data so it could not
be used here. To validate our CNV datasets as predicted
from the Affymetrix arrays, we selected those CNVs
containing at least one individual that had been assayed
on the Illumina arrays. Next, we computed for the overlap
between those selected Affymetrix CNVs and the valid-
ation CNV collection from the Illumina arrays (Figure 3).
From our overlap analysis, we found that CNAT.allelic

predictions were not significantly different from ran-
dom predictions (according to the controls using
reshuffled data). This indicates that CNAT.allelic is too
permissive and that the vast majority of its predictions
are likely to be false positives. In contrast, CNAT.total
had a better specificity than CNAT.allelic but identified
much fewer CNVs compared to other methods (CBS
and GMM). Both CBS and GMM performed well
(showing depletion of CNVs unique to the Affymetrix
data and enrichment of common CNVs). Interestingly,
GMM predicted many more CNVs than CBS and the
bias with respect to predictions from reshuffled data
was much stronger than for all the other methods
(Additional file 1: Table S5). We also performed the
above analyses independently for CNPs and CNVRs (both
against DGV and the Illumina data, see Additional file 1:
Figure S8) and arrived at the same conclusions.

Predicting relatedness between individuals based on their
CNV profile
Pairwise IBS analysis (see Methods and [62]) of the
CoLaus genotypes revealed that five individuals had been
genotyped twice and the study also included 157 pairs of
first-degree relatives (either sibling or parent-offspring
relationships). Using this information, we investigated
whether predicting the relationship between these indivi-
duals would be feasible using exclusively their inferred
CNP profiles. To this end we computed the Euclidean
distance between the CNV profiles individuals belonging
to 162 related pairs and between individuals in 162 ran-
domly selected pairs. Knowing the true relationship sta-
tus, we computed Precision-Recall (PR) curves for each
CNV prediction method and for each merging approach
(Figure 4). To evaluate the robustness of these PR curves
we reiterated the analysis 100 times with randomly
chosen pairs of unrelated individuals.
All methods had significant prediction power with

Precision-Recall Area Under the Curve (PR-AUC)
values >0.5. Only the relaxed CNV detection method
CNAT.allelic did not show a significant difference be-
tween the PCA-based and the simple merging approach
(both methods had a PR-AUC= 0.58). Interestingly, for
all other methods, there was a clear performance advan-
tage of the PCA-based over the simple merging method.
Also, these three CNV detection methods, post-processed
with the PCA merge, performed better than CNAT.allelic.
Interestingly, GMM and CNAT.total had the best PR-
AUCs (close to 0.70, see Figure 4). Rank sum analyses did
not identify significant difference between GMM and
CNAT.total PR-AUCs. (Additional file 1: Figures S9 and
S10). We checked whether changing the CNV frequency
filter and excluding small regions (<1 kb) would improve
the performance (Figure 5). For all methods, there was no
significant difference when excluding or keeping such
small regions. For CNAT.allelic, there was some small im-
provement when increasing the filter on the CNV fre-
quency, whereas there was no significant change for
CNAT.total and CBS. Apparently, the rather few CNV
predictions by CNAT.total are of good quality for pre-
dicting relatedness as reflected by the high PR-AUCs
(0.7). Indeed, GMM, which is less conservative, profits
from using a filter on CNV frequency significantly, im-
proving its AUC. This improvement is particularly
strong in combination with the PCA merge.

Discussion
In this work, we analyzed CNPs and rare CNV regions
within the CoLaus population using four different copy
number detection methods and applying two different
merging procedures. We also devised various validation
strategies to compare the performance of these methods.

Properties of the PCA merging technique
The simple merging approach is able to concatenate
about half a million SNPs into a few thousands regions.
Yet, this naïve technique requires discrete copy number
predictions and leaves CNV edges fragmented into regions
of few or even single SNPs. Therefore we developed a
novel merging method, based on a PCA and SOM which,
provides a strong improvement over the simple approach
as it significantly reduces the number of single SNPs by
re-attributing them to larger regions. Also, small regions
(<1 kb) were extended either by incorporating single
SNPs or by merging them with other small regions.
This new method provides a powerful alternative to

the so-called “merge by overlap” method (MbO), com-
monly used in CNV studies. An inherent limitation of
the MbO method is when the underlying CNV is pre-
dicted as two distinct regions (i.e. when the predicted
CNV locus is disrupted by few probes). Also the MbO
requires to discretize CNV predictions (i.e. to convert
any region with CN< 2 as a deletion and any region
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with CN> 2 as a duplication), which results in a signifi-
cant loss of information (especially in cancer studies
where homozygous deletion and focal amplification often
play a critical role in the tumorigenesis). Our PCA-
merging method allows 1) reconciliation of ‘disrupted’
CNVs, 2) to consider the predicted copy number value
without loss of information due to subsequent
discretization (i.e. use of continuous copy number predic-
tion) and 3) to ignore (outlier) variation likely induced by
noise in the measurement. Our PCA-merge can thus be
useful to process the copy number dosage data matrix (of
dimension #subjects by #SNPs) and obtain a smaller
matrix (#subjects by #CNV regions) for subsequent asso-
ciation studies with a given clinical trait.

Comparison of the different CNV prediction methods
We demonstrated that CNAT.allelic predicts a large
number of CNVs. Yet only a relatively small fraction of
these could be replicated, indicating that most of the
predicted CNVs are likely to be false positives. This is
also supported by the fact that CNV profiles generated
by CNAT.allelic performed worse in predicting kinship.
In contrast, CNAT.total appears to be overly conserva-
tive and is likely to miss subtle, but real CNV events.
HMMs are very popular for CNV analysis but our find-
ings underline the difficulty of using parameters that are
applicable to different datasets. Ideally, the HMM para-
meters would need re-evaluation with each novel data-
set, which can become tedious in the absence of a
ground truth. An obvious improvement of CNAT would
include refining HMM transition parameters with Bayesian
methods and to co-analyse multiple samples thus im-
proving parameter estimation by combining data across
individuals. In addition, summing allelic intensities in
the log space (as in CNAT.allelic) is adding considerable
noise to the CN ratios and thus should be avoided.
Based on our comparative analyses we find that CBS is a

robust segmentation algorithm, confirming reports by



Figure 4 Performance for predicting relatedness based on CNP profiles generated by different methods. Each plot shows the Receiver
Operator Characteristic (ROC) curve for predicting relatedness between individuals based on the similarity of their CNV profiles generated by
different methods (CNV detection algorithms are indicated above each plot and merging procedures by colors). The analysis employed 162 pairs
of individuals known to be related and 2000 pairs of unrelated individuals. Curves were made with the mean (solid lines) +/- one standard
deviation (light blue or light red surfaces) from 100 permutations. The Precision-Recall Area Under the Curve (AUC) values are shown in the
legends.
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several independent studies [35,63,64]. Although our
GMM method, does not explicitly account for probe auto-
correlation or allelic intensity ratios, it performs much
better than the two CNAT implementations: it recalls
more Illumina CNVs (CNPs and rare CNVs) while being
depleted in ‘novel CNVs’ with respect to the shuffled con-
trols. GMM and CNAT.total also perform equally well at
predicting relatedness between individuals. In addition,
GMM does not need pre-estimated parameters; the mean
and variance of each mixture component (i.e. CN class)
are updated from the data using constrained nonlinear
optimization [65]. Finally, we observed that our model
was able to detect many more CNPs than CBS, suggesting
higher sensitivity.
Currently our model only considers deletion, copy

neutral, single copy or multiple copies. Since very few
homozygous deletions were observed with other applied
algorithms, we did not use such a dedicated component
in our analysis. Nevertheless, our GMM implementation
allows for such an extension.
Validation of CNVs in a large clinical cohort
Validation is an essential part of any CNV discovery pro-
ject. PCR, Southern blot and many other targeted tech-
niques are useful to predict accurately the copy number
at a given locus, but low throughput is a severe limita-
tion when large numbers of CNVs need to be validated.
The Database of Genomic Variants is a valuable resource
and is useful to compare the ‘known’ (published) CNVs
that can be recalled in a large cohort using different
methods. However due to the high heterogeneity between
studies (e.g. different populations, methods and platforms,
unknown false positive rates etc..) and to the absence of
medical ascertainment of the subjects, DGV cannot be
used to ‘validate’ CNVs (in discovery studies) and must
not be used to assess the clinical impact of a given CNV.
Instead, for large-scale CNV discovery studies, replicating
a number of individuals (e.g. a few hundred) on an inde-
pendent array platform is a viable option. With the recent
reduction in the cost of microarrays, such large-scale rep-
lication now becomes affordable. In the context of CNV
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Figure 5 Performance for predicting relatedness based on CNV profiles generated by different methods. Each plot shows the Precision-
Recall Area Under the Curve (AUC) (Y axis) for predicting relatedness between individuals as a function of CNV frequency (X axis). CNV detection
algorithms are indicated on top and merging procedure by colors. Predictions made with all CNV regions irrespective of their length are shown
as straight lines and predictions using only CNV regions with length greater than 1 kb are represented with dashed line (both solid and dash
lines overlap each other). Curves were made with the mean from n= 100 permutations, +/- one standard deviation around the mean is shown
by the thickness of the square points. The analysis employed 162 pairs of individuals known to be related and 162 pairs of unrelated individuals.
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association with clinical traits, further validations are ne-
cessary and would include replication of the association
signal in independent cohort(s) (with appropriate clinical
ascertainment) as well as CNV validation (for e.g. with
MPLA or PCR approaches) in probands. As a comple-
ment to replication experiments, one can take advantage
of the relatedness between individuals. Deciphering re-
latedness (if not already known) can easily be achieved by
applying simple Method-of-Moments approaches [66-68]
to the SNP genotypes. We show that assessing how well
the relatedness can be predicted based on the CNV pro-
files is a powerful technique to gauge the quality of a CNV
calling and merging method.

Conclusions
The combination of our GMM and PCA merging algo-
rithms is a useful tool to identify CNVs. They have been
successfully applied to a large clinical cohort. The tech-
niques involved here are not limited to data from SNP
arrays, they require as input only a matrix of
hybridization ratios (for the former) or copy number
values (for the latter). Thus they can be applied to data
from other platforms such as CGH arrays. Although
GMM-like approaches are simplified versions of HMMs,
these are simpler to optimize (as opposed to apply pre-
trained HMM parameters on a new dataset) and remain
powerful tools for the analysis of both large cohort
(e.g. CoLaus) and complex dataset, as we recently
demonstrated with melanoma [56].
Despite significant improvements in CNV detection and

analysis when using the most recent SNP arrays (e.g. new
generation Affymetrix arrays [41,54]), there are still many
large medical cohorts where SNP data have been collected
but CNV analysis has not been reported. This concerns
both complex diseases (e.g. [28,69-71]) and cancer
(e.g. [72-74]). Hundreds of thousands of individuals
have already been genotyped on 500K Affymetrix or
550K Illumina SNP chips, but the corresponding
data have not been used for CNV analysis, simply
because it is a much more challenging task due to
the lack of well-established algorithms and protocols.
We hope that the present work will make it easier
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for researchers to make better use of their data for
CNV calling.
GWAS have demonstrated that the genetic variance

cannot fully be attributed to SNPs. For example, for
highly heritable traits such as height (with 13665 indivi-
duals), SNPs only explain 10% of the variance [30]. It
has also been shown that, for common traits, the large
fraction of heritability cannot be accounted for by CNPs
[75]. Thus the identification of rare CNVs with stronger
clinical impact, as we recently demonstrated for obesity
[20,21], can open up new avenues to explore. Meta-
analysis of existing cohorts for CNVs gives more power
to detect rare CNVs because unique CNVs in a single
cohort can then be supported by different cohorts. But such
meta-analyses cannot be used to identify small variants due
to the poor SNP density. In such cases, individuals with rare
variants should be investigated further with higher density
arrays or with genomic sequencing.
With the recent cost reduction in next generation se-

quencing (NGS), full-genome and exome sequencing be-
come possible even for large cohorts (a few hundred
subjects). Already data from several large studies can be
retrieved [76-80] and many different algorithms have
been developed to mine indels and CNVs [81-87]. Al-
though our GMM method might be applied to predict
copy number from sequencing read-depth, it was not
developed to this aim. The current Matlab implementa-
tion may not be optimal (i.e. not fast enough) and the
Gaussian modeling may not be the best option for such
analysis (detection methods based on Poisson distribu-
tion [81] would be more appropriate). Nevertheless, our
PCA merge could be useful for NGS data analyses.
These analyses generate massive amount of variants,
among which there can be a high number of false posi-
tives. Also the predicted variants differ greatly in size
(from small indels to larger CNVs) and their boundaries
(start and end positions) change between subjects. To
some extent, this is similar to the different challenges
that occurred in our CoLaus analyses. Therefore our
PCA-merge method that is designed to identify consen-
sus CNV regions in large and complex dataset could be
of use in the post-processing of NGS structural variants.

Methods
The implementation of the Gaussian Mixture Model is
publicly available at http://www2.unil.ch/cbg/index.php?
title=GMM. The algorithm has been implemented in
Matlab, both the source code and a compiled version for
UNIX 64-bit operating systems are available. The PCA-
merging algorithm has also been written in Matlab and
the source code is available at http://www2.unil.ch/cbg/
index.php?title=PCAmerge.
The source code of the PCA-merging algorithm

requires the Matlab Neural Network toolbox, whereas
the GMM source code requires the Optimization Tool-
box (the compiled GMM version does not have any pre-
requisites and can be run as a standalone). Both
methods require the Statistical Toolbox.
PCAmerge results can be retrieved from http://www2.

unil.ch/cbg/index.php?title=File:Colaus_PCAmerge_results.
zip.

Ethics statement
The CoLaus study was approved by the institutional re-
view boards of the University of Lausanne, and written
consent was obtained from all participants.

Samples
The CoLaus design has been previously described [88].
Nuclear DNA was extracted from whole blood and geno-
typing was performed using Affymetrix 500K SNP chips.
Genotype experiments were performed by Affymetrix,
Santa Clara CA, following their standard protocol.

CNV calling
Copy number analysis tool
We used the Affymetrix GeneChip Genotyping Analysis
Software (GTYPE, [23]) to extract, normalize and
summarize intensities for both alleles of each SNP. We
normalized our data using a sketch-quantile distribution
of 50k PM Probes and summarized the intensities using
the plier method in RMA mode. (Detailed information
can be found in the GTYPE manual.) We first normalized
the CoLaus samples versus 30 unrelated CEU Hapmap
[89] individuals. Then we used the Affymetrix Copy Num-
ber Analysis Tool (CNAT [39]) to attribute a copy number
(CN) state to each SNP of all CoLaus individuals with the
following encoding: 0 for homozygous deletion, 1 for
hemizygous deletion, 2 for copy neutral, 3 for simple gain
and 4 for multiple gains. It should be noted that such
discrete copy number classification is relative to the me-
dian CN in the references. CNAT performs additional
normalizations such as PCR bias correction; inter-array
normalization when combining NSP and STY arrays; a
(100 kb) smoothing function to increase the signal-to-
noise ratio; and combines allelic intensities into a CN ratio
(CNR). CNAT has two HMM implementations (CNAT.
total and CNAT.allelic), which mainly differ by the way
they compute the CN ratios (equation 1 and 2).

CNR CNAT :totalð Þ ¼ log2
SA þ SB
RA þ RB

� �
ð1Þ

CNR CNAT :allelicð Þ ¼ log2
SA
RA

� �
þ log2

SB
RB

� �
ð2Þ

In the above equations, S refers to the intensity of the
test sample (of an individual) and R to the (mean)

http://www2.unil.ch/cbg/index.php?title=GMM
http://www2.unil.ch/cbg/index.php?title=GMM
http://www2.unil.ch/cbg/index.php?title=PCAmerge
http://www2.unil.ch/cbg/index.php?title=PCAmerge
http://www2.unil.ch/cbg/index.php?title=File:Colaus_PCAmerge_results.zip
http://www2.unil.ch/cbg/index.php?title=File:Colaus_PCAmerge_results.zip
http://www2.unil.ch/cbg/index.php?title=File:Colaus_PCAmerge_results.zip
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intensity of the reference panel; A and B refer to the
SNP alleles.
The CNAT.allelic approach uses the sum of the logs of

the allelic signals and is more sensitive to subtle allelic
CN changes than CNAT.total.
Through QC analyses, we discovered an important batch

effect related to the fact that these samples were processed
by four distinct centers (respectively with 615, 1666, 1618
and 1736 samples). These batches differed in variance, as
revealed with a PCA analysis (Additional file 1: Figure
S11). Therefore we normalized data from each genotyping
center independently and tested the improvement as a
function of the number of references used (see Supple-
mentary Data and Additional file 1: Figure S12). Although
Affymetrix suggests that 25 samples are enough for
normalization (see CNAT manual www.affymetrix.com),
we established that in the presence of strong experimental
biases, using many more references performed signifi-
cantly better (see Supplementary Methods). Thus we
re-applied the two CNAT implementations to ratios
normalized within each genotyping center and using
280 references, producing much more reliable results
than the initial normalization (with 30 references). PCA
analysis of the renormalized ratios did not revealed sig-
nificant differences neither for the genotyping centers
(Additional file 1: Figure S13) nor the array set (NSP,
STY) (Additional file 1: Figure S14).

Aroma normalization
In parallel to the normalizations performed using
GTYPE, we normalized the CoLaus data with the
Aroma.Affymetrix framework [90]. Normalizations were
done independently for datasets from each genotyping
center with at least 336 individuals (since the Aroma.
Affymetrix requires a lot of I/O operations, which can
cause a severe drop of the computational performance
on shared-network discs, this number of references was
decided for optimal computational performances while
keeping this number large enough for batch effects cor-
rection (see Supplementary Methods). Normalization
steps included Allelic Cross-talk calibration [91,92] to
correct for differences between SNP alleles; intensity
summarization using Robust Median Average and cor-
rection for any PCR amplification bias inherent to the
Affymetrix SNP platform. To estimate the CNR for a
given sample at a given SNP probe, we computed the
log2 ratio of the normalized intensity of this probe
divided by the median across all the samples from the
same batch.

Circular binary segmentation
Circular Binary Segmentation (CBS) has been described
as a state-of-the-art segmentation algorithm [36,37]; it
identifies change points using maximal t-statistics and
assesses segment significance with permutations. We ap-
plied CBS, with its default parameters, on the CNRs as
obtained by the Aroma.Affymetrix framework. It should
be noted CBS only report segments of probes (with their
mean log2 ratios) and does not provide classification into
gains or losses. To this aim, we investigated the distribu-
tion of segments’ log2 ratios (Additional file 1: Figure
S15). This distribution revealed that segments with log2
ratios greater than 0.25 or lower than -0.25 were outliers
(i.e. ratios greater than 3rd quartile + 1.5 * interquartile
range or lower than 1st quartile - 1.5 * interquartile
range). A clustering using a three component Gaussian
Mixture Model confirmed such data separation. Thus
we decided to classify regions having a mean log2 ratio
greater than 0.25 as gains (CN=3) and regions with
mean log2 ratios lower than -0.25 as losses (CN= 1).

Gaussian mixture models
Raw copy number ratios were smoothed along physical
position using Loess filtering with a 41-probe window size
(producing the same resolution ~100 kb than the smooth-
ing done in CNAT). This Loess smoothing enables to cor-
rect for spatial autocorrelation artifacts due to GC effects
[57]. Next, a four component Gaussian mixture model
(one component for each of the following copy number
states: deletion, copy-neutral, 1 and 2 additional copies)
was fitted to the smoothed copy number ratios with a
constraint on the differences between the mixture means.
Separation between the mixture components is obtained
using the simplex search method from Lagarias et al [65].
The means of the mixture components were decided
not to be fixed as the population mean may not neces-
sarily be two copies. Then, for each individual we deter-
mined the probabilities for each of these copy number
states (see Additional file 1: Figure S16). The expected
copy number was finally assigned as the weighted sum
of individual dosage probabilities; for example a SNP
with probabilities: 1% for CN = 1, 9% for CN= 2, 85%
for CN= 3 and 5% for CN= 4, would have a CN dosage
value equal to 2.94 (1*0.1 + 2*0.9 + 3*0.85 + 4*0.05).
Evaluation of the GMM performance, using simulated
data, is detailed in the Supplementary Methods (see
also Additional file 1: Figures S17 and S18).

Illumina CNV analysis
A subset of 239 CoLaus individuals was analyzed on
Illumina arrays (550K version 1 & 3, 1 M [93]). Only
SNPs, from the 550K version 1 and 1 M arrays, that
could be remapped to the 550K version 3 array (genome
assembly build NCBI 36) were used for the analysis. In-
tensities were normalized within BeadStudio using 120
Hapmap samples. Then copy number ratios (LRR as
exported in the Final Report files) were smoothed using
Loess smoothing and copy number estimation was

http://www.affymetrix.com
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performed using GMM. Subsequently CNV predictions
were merged into CNVRs with the PCA approach (see
below). CNVRs found in only one sample were excluded.
CNV merging
Simple merge
Our raw CN data can be represented as a matrix where
each element represents the Copy Number status for all
individuals (rows) and all SNPs (columns). The “simple
merge procedure” consists of combining adjacent SNPs,
from a same chromosome, that share the same CN profile
across the whole population (see illustration in Additional
file 1: Figure S1). This is equivalent to merging strictly
identical SNP columns. I.e. to define a CNV region, all the
corresponding SNPs from the same subject must have the
same predicted copy number. However different subjects
can differ in copy number (profile). To avoid creating
CNV regions that would encompass long genomic regions
with low SNP density, we applied the requirement that
two SNPs in the same CNV region should not be further
away than 500Kb from each other. This rule did not apply
to regions where all SNPs were copy neutral. To perform
such merge with the GMM predictions, we rounded the
CN values to the nearest integer.
PCA merge
The PCA merge is a novel merging algorithm for CNV
profiles. It includes four steps: (1) each chromosome is
partitioned into CNV regions, whose boundaries are a
long stretch of SNPs (e.g. 1 Mb in size) that are in the
diploid state for all Colaus subjects. (2) For each of these
CNV regions, a principal component analysis is per-
formed by analyzing the regional (clipped) CNV profiles
(Additional file 1: Figure S2); (3) We then apply a princi-
pal component (PC) decomposition of the expected
CNV dosage matrix (of size #individuals by #probes).
Only the m largest components that explain at least 90%
of the total variance are then used to derive a (filtered)
matrix of SNP eigenvectors (of size m by SNPs) which is
subsequently used to cluster together SNPs with similar
eigenvector profiles. Clustering is done using Self-
Organizing Maps (see Supplementary Methods for
details about SOMs); (4) strictly adjacent SNPs within a
same SOM cluster are merged into final CNV regions.
Pairwise IBS analysis
Pairwise identity-by-state (IBS) analysis was performed
using Plink ([62]). We used a sliding window of 50
SNPs, sliding along in 5 SNP increments. SNPs with a
variance inflation factor (VIF) greater than 2 were
pruned from each window.
Availability
Gaussian Mixture Model: http://www2.unil.ch/cbg/
index.php?title=GMM
PCA merge algorithm: http://www2.unil.ch/cbg/index.
php?title=PCAmerge

Additional file

Additional file 1: Document containing supplementary methods,
Figures S1-S18 and Tables S1-S5.
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