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Abstract
Previously, we demonstrated that the highly pathogenic porcine reproductive and respirato-

ry syndrome virus (HP-PRRSV) HuN4 strain causes obvious thymic atrophy and thymo-

cytes apoptosis in infected piglets after birth, which is more severe than that induced by

classical PRRSV. In this study, we investigated apoptosis and autophagy in the thymus of

piglets infected with the HP-PRRSV HuN4 strain, and found that both apoptosis and autop-

hagy occurred in the thymus of piglets infected with HP-PRRSV. In addition to a few virus-

infected cells, CD14+ cells, the main autophagic cells in the thymus were thymic epithelial

cells. These findings demonstrated that HP-PRRSV induces apoptosis in bystander cells,

and induces autophagy in both infected and bystander cells in the thymus of infected pig-

lets. Herein, we first present new data on the thymic lesions induced by HP-PRRSV, and

show that apoptosis and autophagy are key mechanisms involved in cell survival and deter-

minants of the severity of thymic atrophy in infected piglets. Finally, future studies of the

mechanism underlying immune responses are proposed based on our current understand-

ing of PRRSV-host interactions.

Introduction
Porcine reproductive and respiratory syndrome virus (PRRSV), a small, enveloped, positive
single-stranded RNA virus that belongs to the family Arterivirus, is the causative agent of
PRRS [1,2]. PRRS causes significant economic losses in the swine industry worldwide, and is
characterized by acute respiratory disease in piglets and severe reproductive failure in sows.
PRRS and highly pathogenic PRRS (HP-PRRS) emerged in China in 1996 and 2006,
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respectively [3–6]. Currently, PRRS and HP-PRRS still present health problems to the swine
industry worldwide.

Apoptosis, a physiological mechanism of type I programmed cell death, which is important
for the development and tissue homeostasis [7,8]. The apoptosis process is controlled by a se-
ries of caspases which are regulated through several steps by different mechanisms, and gener-
ally, the activation of caspases-3 and -8 are considered to be hallmarks of apoptosis [9–11].
Apoptosis also occurs during viral infections and there is mounting evidence that it can con-
tribute directly to viral pathogenesis [12]. The apoptosis induced by PRRSV has been thought
to be a general phenomenon, which can be observed in different organs (thymus, lymph nodes,
lungs, and testes) in vivo and in various cell lines in vitro [13–18]. Previously, we demonstrated
that HP-PRRSV HuN4 induced the apoptosis of various types of cells in the thymus and pe-
ripheral immune organs, and that the apoptosis induced by HP-PRRSV is more severe than
that induced by classical PRRSV [19,20]. In the thymus of HP-PRRSV-infected piglets, apopto-
tic cells were not infected by HP-PRRSV, and most were CD3+ T cells. No apoptosis could be
observed in epithelial cells, and only a few CD14+ cells were apoptotic [21].

Autophagy, a process described as type II programmed cell death, is a series of biochemical
events that involve the degradation of unnecessary or dysfunctional cellular components
through the actions of lysosomes [22,23]. Autophagy and apoptosis each have distinct mecha-
nisms and pathways. In addition to cellular homeostasis, autophagy is also important for physi-
ological and pathological processes. A hallmark of autophagy is the formation and maturation
of autophagosomes, which requires the activities of two ubiquitin-like molecules, microtubule-
associated protein 1 light chain 3 (LC3) and Atg12p. LC3 is the most widely used molecular
marker to monitor autophagy [22–24]. Recent studies have reported that some viruses can es-
cape host cell autophagy or utilize autophagy for their own replication. For PRRSV, studies
have shown that autophagy can be induced in permissive MARC-145 cells and primary pulmo-
nary alveolar macrophages (PAMs) upon PRRSV infection, which can enhance virus replica-
tion in vitro [25–27]. However, whether autophagy occurs in PRRSV-infected piglet host cells
remains unclear.

Apoptosis involves a series of caspases activity, which leads to cellular structures and organ-
elles demolition in a few minutes [28,29]. Autophagy occurs independently of caspases activity
and may be induced when apoptosis pathway is inhibited, thereby eliminating supernumerary
or damaged organelles [30–32]. Autophagy and apoptosis might be triggered by common up-
stream signals, which sometimes results in a combined autophagy and apoptosis. PRRSV
HuN4 strain (GenBank accession no. EF635006) is one of the highly pathogenic PRRSV
strains, which can cause high morbidity (50–100%), high mortality (20–100%) and the serious
injuries in organs in infected-pigs of all ages [6]. Herein, we characterized apoptosis and autop-
hagy in the thymus of piglets infected by the HP-PRRSV HuN4 strain. We found that most
autophagic cells are thymus epithelial cells. Our findings demonstrated that both apoptosis and
autophagy occurred in the thymi of piglets infected with HP-PRRSV. In contrast to a previous
report that PRRSV only induced infected cells to undergo autophagy to facilitate viral replica-
tion in vitro, HP-PRRSV can induce autophagy in both infected cells and bystander cells in the
thymus of infected piglets.

Material and Methods

Animal experiments
A total of twelve 28-day-old PRRSV-negative piglets (Duroc× Landrace× Yorkshire× cross-
bred) were randomly divided into two groups and were housed separately in isolated rooms.
Animals were given commercial feed and water at libitum throughout the experiment. After
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allowing one week for acclimation, one group of piglets was inoculated with 3 mL HP-PRRSV
HuN4 (105.5 TCID50 in 3 mL DMEMmedium), the other group of piglets was sham-inoculated
with 3 mL DMEMmedium. Three piglets were humanely euthanized at 7 and 10 days post-
inoculation (dpi) from each group. Animal experiments were approved by Animal Ethics
Committee of Harbin Veterinary Research Institute of the Chinese Academy of Agricultural
Sciences (CAAS) and performed in accordance with animal ethics guidelines and approved
protocols. The Animal Ethics Committee approval number was SYXK (Hei) 2014015.

Analysis of apoptotic changes in thymus
Thymic cells apoptosis and necrosis were evaluated by flow cytometry analysis, as described
previously [33], using the Annexin V-FITC Apoptosis Detection Kit I (BD Biosciences; Frank-
lin Lakes, NJ, USA) according to the manufacturer’s instructions.

Western blotting
Thymus samples were washed with PBS three times, incubated on ice with cell lysis buffer (50
mM Tris-HCl, pH 7.4, 150 mMNaCl, 1% Triton X-100, 2 mM EDTA, 0.1% SDS, and 5 mM
sodium orthovanadate) containing a protease inhibitor cocktail (04693132001; Roche, Bern,
Switzerland) and 0.1 mM PMSF for 2 h. Cell lysates were centrifuged at 13,000×g for 20 min at
4°C. Protein concentrations were determined using the Bradford assay (ThermoScientific,
Waltham, MA, USA). Equal amounts of protein samples were loaded on 12% (w/v) SDS—
PAGE gels. Proteins were transferred from the gels to polyvinylidene fluoride (PVDF) mem-
branes (ISEQ00010, Millipore, Billerica, MA, USA) and then were blocked with 5% dry milk
dissolved in PBS-T (PBS in 0.05% Tween 20, pH 7.4) at 4°C overnight. Membranes were incu-
bated with primary antibodies (anti-LC3 antibody and anti-P62 antibody, 1:1000, Sigma; anti-
caspase-3 antibody and anti-caspase-8 antibody, 1:500, Cell Signaling; anti-β-actin antibody,
1:1000, TransGen Biotech) for 1 h at room temperature (RT) and then were incubated at 4°C
overnight. After washing with PBS-T, either DyLight 800-labeled goat anti-rabbit antibody or
DyLight 800-labeled goat anti-mouse antibody (1:5000, Kirkegaard & Perry Laboratories, Gai-
thersburg, MD, USA) was added and incubated for 2h at RT. Blots were developed at an appro-
priate excitation wavelength using a digital imaging system (Odyssey infrared imaging system;
LI-COR Biosciences, Lincoln, NE, USA).

Confocal microscopy
During necropsy, thymus samples were collected and sectioned (8 μm) on a cryostat. The cryo-
stat sections were used for double-immunofluorescence staining. To examine whether PRRSV
colocalized with apoptotic or autophagic cells, thymus sections were stained with SR30F (1:50,
RTI, SD) against the PRRSV N protein along with anti-LC3 antibody (1:100, Sigma), SR30F, or
anti-LC3 antibody, respectively. Sections were stained with anti-rabbit secondary antibodies
conjugated to tetraethyl rhodamine isothiocyanate (TRITC) or fluorescein isocyanate (FITC)
(1:100, ZSGB-BIO, Beijing, China), or were subjected TUNEL staining following the In Situ
Cell Death Detection Kit manufacturer’s instructions (Roche). Finally, nuclei were stained with
40-6-diamidino-2-phenylindole (DAPI, Invitrogen, Carlsbad, CA, USA). To characterize the
types of cells that underwent autophagy, thymus sections were stained with anti-LC3 antibod-
ies followed by anti-rabbit secondary antibodies conjugated to TRITC or FITC. Thymus sec-
tions were stained with FITC-conjugated mouse anti-pig CD14 antibody (1:50, AbD Serotec,
Oxford, UK) to detect CD14+ cells, or spectral red (SPRD)-conjugated mouse anti-pig CD3 an-
tibody (1:50, Southern Biotech, Birmingham, AL, USA) to detect CD3+ cells, or mouse anti-
pan-cytokeratin (P-CK) antibodies (1:25, Gene Tech, China) and FITC-conjugated goat anti-
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mouse antibody (1:100, ZSGB-BIO, Beijing, China) to detect thymic epithelial cells. Finally,
nuclei were strained with DAPI. Sections were observed using a laser-scanning confocal
microscope.

Statistical analysis
Statistical analysis was carried out using the Student’s t-test.

Results

HuN4 induces apoptosis in thymic cells from HuN4-infected piglets
Apoptotic changes in thymi from experimental piglets were investigated using flow cytometry.
The frequency of apoptotic cells in thymi from the HuN4-infected group was ~50% and ~45%
at 7 or 10 dpi, respectively (Fig 1). During the experiment, the percentage of apoptotic cells in
the thymi of control group piglets was ~14%.

Fig 1. The kinetics of thymocytes apoptosis at different days post-infection (dpi). The percentages of
apoptotic cells in the thymus of one representative HuN4-infected piglet at 7 (A) and 10 (C) dpi, and apoptotic
cells in the thymus of a representative age-matched control piglet at 7 (B) and 10 (D) dpi. Apoptotic cells were
quantified by flow cytometry using FITC-labeled Annexin V. Q1, necrotic or another cell population that was
FITC-Annexin V-negative and PI-positive; Q2, end stage apoptotic or a dead cell population that was
FITC-Annexin V- and PI-positive; Q3, a viable cell population that was not undergoing apoptosis and was
both FITC-Annexin-V- and PI-negative; Q4, an early apoptotic cell population that was FITC-Annexin V-
positive and PI-negative.

doi:10.1371/journal.pone.0128292.g001
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HuN4 induces caspase-dependent apoptosis in thymic cells from
infected piglets
The activation of caspases-3 and -8 are considered to be hallmarks of apoptosis, so we investi-
gated the cleavage of caspases-3 and -8 in thymic cells by western blot. We found that HuN4
viral infection induced the cleavage of caspase-3 and caspase-8 from 7 dpi (Fig 2A), which per-
sisted at 10 dpi (Fig 2B). In thymi from control piglets, one of three piglets showed caspase-8
bands similar to the infected piglets at 10dpi. Because thymocytes apoptosis also happens in
the thymi of control piglets, compared to 7 dpi, the percent of the early apoptotic cell in the
thymi of infected piglets become lower (Fig 1C), and the activation of caspase-8 pathway mild
and may have the similar result with the thymi of control piglets. These findings further indi-
cated the occurrence of apoptosis in thymi from HP-PRRSV-infected piglets.

HuN4 induces autophagy in thymic cells from infected piglets
Whether PRRSV infection triggers autophagy in thymi was investigated by detecting modified
LC3. Thymi from infected and control piglets were collected at 7 and 10 dpi and western blot-
ting was performed using an anti-LC3 polyclonal antibody that recognizes both LC3-I and
LC3-II. We found that LC3-I was converted to its lipidated form LC3-II, in thymi from
HuN4-infected piglets from 7 dpi (Fig 2A), and densitometric analysis using Gene Tools also
showed that the LC3-II/LC3-I ratio significantly increased at 7 and 10 dpi. Changes in an
LC3-dependent ubiquitinated substrate, p62, were also detected by western blotting. In thymi
from HuN4-infected piglets, only one of three piglets showed reductions in ubiquitinated p62
at 7 dpi (Fig 2A); however, thymi from all three HuN4-infected piglets showed obviously re-
duced levels at 10 dpi (Fig 2B).

Associations between HuN4-infected cells, apoptotic cells, and
autophagic cells
Double immunofluorescence staining was used to examine whether PRRSV colocalized with
autophagic or apoptotic cells. We found that HuN4-infected cells did not undergo apoptosis,
which correspond to our previous study [21], only a few apoptotic cells underwent autophagy
(Fig 3A), and some HuN4-infected cells underwent autophagy (Fig 3B). These findings demon-
strated that HP-PRRSV induces apoptosis in bystander cells, and can induce autophagy in
both infected and bystander cells in thymi of infected piglets.

Characterization of cells undergoing autophagy
Previously, we characterized HuN4-infected cells, which were CD14+ cells, and apoptotic cells,
which were mainly CD3+ cells [21]. Here, to characterize the types of thymic cells undergoing
autophagy, CD14+ cells were also stained with FITC-conjugated mouse anti-pig CD14 antibod-
ies, CD3+ cells were stained with spectral red (SPRD)-conjugated mouse anti-pig CD3 antibod-
ies, and thymic epithelial cells were stained with mouse anti-pan-cytokeratin (P-CK)
antibodies and FITC-conjugated goat anti-mouse antibodies. LC3 was strained using both
anti-LC3 polyclonal antibody and FITC/TRITC-conjugated goat anti-rabbit antibodies. We
found that no CD3+ cells underwent autophagy (Fig 4A), most autophagic cells colocalized
with thymic epithelial cells (Fig 4C), and only some cells that underwent autophagy colocalized
with CD14+ cells (Fig 4B).
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Fig 2. Apoptosis and autophagy are induced by HuN4 infection in the thymus of infected piglets. Levels of proteins related to apoptosis or autophagy
in the thymus of piglets at 7 (A) and 10 (B) dpi. Thymus tissues were lysed and western blots were performed. Western blotting results were analyzed digitally
and the optical density ratio was calculated, and the bands which were in use for densitometry marked by the arrows; the ratio representatives the mean of
measurements for piglets at different time points and the Student’s t-test were carried for the statistical analysis. (n = 3 per time point).

doi:10.1371/journal.pone.0128292.g002
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Fig 3. Colocalization of PRRSV-infected cells, autophagic cells, and nuclei. Autophagic cells were stained with anti-LC3 antibodies and anti-rabbit
secondary antibodies conjugated to FITC, and apoptotic cells were detected according to the manufacturer’s instructions for the In Situ Cell Death Detection
Kit, only a few apoptotic cells underwent autophagy (arrows) (A); Autophagic cells were stained with anti-LC3 antibodies and tetramethylrhodamine-
isothiocyanate (TRITC)-conjugated goat anti-mouse antibodies, and HuN4-infected cells were strained with fluorescein isothiocyanate (FITC)-conjugated
monoclonal antibodies (mAbs) against PRRSV N protein, and some HuN4-infected cells underwent autophagy (arrows) (B). Nuclei were stained with 4-
6-diamidino-2-phenylindole (DAPI).

doi:10.1371/journal.pone.0128292.g003
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Fig 4. Colocalization of CD3+ cells, CD14+ cells, thymic epithelial cells, and autophagic cells. CD3+

cells were stained with spectral red (SPRD)-conjugated mouse anti-pig CD3 antibodies, and autophagic cells
were stained with anti-LC3 primary antibodies and anti-rabbit secondary antibodies conjugated to FITC, no
CD3+ cells underwent autophagy (A); CD14+ cells were stained with FITC-conjugated mouse anti-pig CD14
antibodies and autophagic cells were stained with anti-LC3 primary antibodies and TRITC-conjugated goat
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Discussion
The HP-PRRSV HuN4 strain can cause severe thymic atrophy in infected piglets after birth
[19,34]. The number of apoptotic thymocytes might be one factor that leads to thymic atrophy.
Herein, we investigated whether thymocytes also underwent autophagy during HuN4 infec-
tion, which might be another factor related to thymus atrophy induced by HP-PRRSV.

As an important primary lymphoid organ, the thymus contains thymocytes at various stages
of T cell differentiation and maturation [35]. Upon HP-PRRSV infection, viruses induce the ap-
optosis of uninfected bystander CD3+ thymocytes, a mechanism that likely contributes to the
loss of CD3+ thymocytes and affects immature T cell development. To date, little is known
about the role of apoptosis in uninfected bystander cells in the thymus of infected piglets. In thy-
mus of HuN4 infected-piglets, infected cells maybe secrete proapoptotic cytokines or deliver ap-
optotic signals to thymocytes undergoing selection for self-recognition, as HP-PRRSV induced
the robust production of proinflammatory cytokines, especially IL-1β, IL-6, and TNF-α [36,37].

Previous studies showed that PRRSV can induce autophagy in permissive MARC-145 cells
and primary pulmonary alveolar macrophages (PAMs) upon PRRSV infection in vitro [25–27].
Those findings showed that PRRSV induced infected cells to undergo autophagy in order to en-
hance replication. In this present study, in addition to virus-infected CD14+ cells, many
HP-PRRSV-negative thymic epithelial cells also underwent autophagy (Fig 4). This finding is
different from previous reports that PRRSV only induced infected cells to undergo autophagy to
allow viral replication in vitro [25–27]. The reason maybe the role of autophagy in vivo is more
complex than in vitro, the autophagy pathway serves the main function of degrading large pro-
tein complexes, it also has additional functions in the innate and adaptive immune response
[38] in vivo. In thymus, thymic epithelial cells play an important role in the positive and nega-
tive selection of thymocytes, which occurs via interactions with antigens presented by MHC
complexes on the cell surface [35]. Autophagy has been proposed to have an essential function
in the thymic epithelium, which compartmentalizes access to the MHC class II complexes in the
thymus, and consequently plays an important role in presenting self-Ags to developing/imma-
ture thymocytes by intersecting with the MHC class II presentation pathway [39]. In this pres-
ent study, during the course of HP-PRRSV infection in the thymus, complex crosstalk between
autophagy and apoptosis occurs. Autophagy can represent a stress adaptation that allows cells
to avoid death, or in other cellular settings can constitute an alternative cell-death pathway
[40,41]. Autophagy and apoptosis can sometimes be triggered by common upstream signals,
which can result in both autophagy and apoptosis. The functional relationship between autop-
hagy and apoptosis can be complex under certain circumstances. In other instances, cells can
switch between the two responses in a mutually exclusive manner [42]. Apoptotic cell death can
be induced by inhibiting the accumulation of autophagosomes in various carcinoma cells [43],
suggesting that autophagy prevents apoptotic cell death. In this present study, whether autop-
hagy occurs during conditions of severe thymus atrophy to ‘educate’ thymocytes and regenerate
the T cell compartment with immunocompetent cells-to compensate for the decreased number
of CD3+ cells—remains unclear. The relationship between autophagy and the many apoptotic
thymocytes in thymi of HP-PRRSV-infected piglets remains to be investigated.

anti-mouse antibodies, some CD14+ cells underwent autophagy (arrows) (B). Thymic epithelial cells were
stained with mouse anti-pan-cytokeratin (P-CK) antibodies and FITC-conjugated goat anti-mouse antibodies,
and autophagic cells were stained with anti-LC3 primary antibodies and TRITC-conjugated goat anti-mouse
antibodies, most autophagic cells colocalized with thymic epithelial cells (arrows) (C). Nuclei were stained
with DAPI.

doi:10.1371/journal.pone.0128292.g004
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In conclusion, the HP-PRRSV HuN4 strain caused severe thymic atrophy in infected piglets
after birth, which was related to a high frequency of thymocyte apoptosis and autophagy.
HP-PRRSV induces apoptosis in CD3+ cells, and induces autophagy in both infected CD14+

cells and bystander cells- thymic epithelial cells in the thymus of infected piglets.
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