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G R A P H I C A L A B S T R A C T
� Implementation of RF for assessing
seismic hazard.

� Implementation of AHP for assessing
seismic vulnerability.

� The hazard level in Pisco is similar and
constant in the short term.

� High and very-high risk zones have been
identified in the city of Pisco.

� Pisco’s seismic risk level is sensitive to
the vulnerability of its population.
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As Peru is subject to large seismic movements owing to its geographic condition, determining seismic risk levels is
a priority task for designing appropriate management plans. These actions become especially relevant when
analyzing Pisco, a Peruvian city which has been heavily affected by various seismic events through the years.
Hence, this project aims at estimating the associated seismic risk level and its previous requirements, such as
hazard and vulnerability. To this end, a hybrid approach of machine learning (i.e., Random Forest) and hierar-
chical analysis (i.e., the Saaty matrix) was used. Risk levels were calculated through a double-entry table that
establishes the relation between hazard and vulnerability levels. Results suggest that the city of Pisco exhibits
both medium (lower city areas) and high (higher city areas) hazard levels in similar proportion. In addition, the
coast area is considered a very-high hazard zone. Regarding vulnerability, the central area of the city exhibits a
medium vulnerability level, whereas the periphery denotes high and very-high vulnerability levels. The inter-
relation of these components results in overall high-risk levels, with very-high levels in some central areas of the
city. Finally, the results from this research study are expected to be useful for the authorities in charge of fostering
specific activities in each sector and, simultaneously, as a motivator for future studies within this field.
1. Introduction

Seismic events are natural phenomena caused by the Earth's inner
geodynamics, which are recurrent in some American countries (e.g.,
Argentina, Bolivia, Canada, Peru, etc.) owing to their geographic location
(i.e., the Pacific Ring of Fire) (Tavera and Buforn, 1998). The occurrence
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of these events leads to material damage, loss of human lives, and the
interruption of social, economic and other activities, among others (Lee,
2014). Table 1 denotes information on earthquakes with a magnitude of
7.5 and higher in the Richter scale recorded during the 21st Century in
the American continent. This table also denotes losses and damages in the
affected regions. According to this record, the earthquakes with the
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highest magnitude were reported in the United States (2020), 7.8;
Mexico (2017), 8.1; Chile (2010), 8.8; and Peru (2001), 8.4. Further-
more, Peru reports highly recurrent seismic activity owing to its location
in the subduction of the Nazca oceanic plate and the South American
plates (Tavera et al., 2016).

In Peru, some areas have reported seismic events more frequently
than the rest of the country. For instance, the departments with frequent
earthquakes over a magnitude of 5.0 in the Richter scale are Arequipa (16
events), Ica (12 events), Tacna (9 events) and Ucayali (8 events) (Hayes
et al., 2017; Tavera et al., 2016). Specifically, some cities in Ica are
among the most affected by these events (e.g., Chincha, Ica and Pisco)
(Elnashai et al., 2008). In fact, one of the most important occurrences
took place in Pisco on August 15th, 2007 (8.0 Mw) (Hayes et al., 2017).
According to Elnashai et al. (2008), this earthquake left 600 dead, several
hundred injured, 50,000 buildings destroyed, and more than 20,000
buildings damaged. However, the Instituto Nacional de Defensa Civil
(INDECI) (2008) reported a 7.9 Mw magnitude, leaving 519 deaths and
1844 injured, and affecting 60% of the city structures (55,010 destroyed
and 21,583 damaged). However, Tavera and Bernal (2008) state that the
same earthquake affected 80% of all local structures (230,000 damaged
and 52,150 destroyed), and left 595 dead and 318 people missing.
D'Ercole et al. (2009) state that this earthquake had a magnitude of 8.1
Mw, left 596 deaths and 1292 injured, and affected 192,700 homes and
buildings. Besides the different estimates reported, these data evidence
the importance of implementing seismic risk mitigation plans and
fostering strategies aimed at building resilient communities.

According to the United Nations (UN) (2006), risk is the probability
of harmful consequences, or expected loss of lives, people injured,
property, livelihoods, economic activity disrupted (or environment
damaged) resulting from interactions between natural or human-induced
hazards and vulnerability conditions. In this sense, the Centro Nacional
de Estimaci�on, Prevenci�on y Reducci�on del Riesgo de Desastres (CEN-
EPRED) aiming at finding probable effects and social, economic and
environmental consequences for a community, determines that risk is the
result of relating hazard with the vulnerability of said elements (CEN-
EPRED, 2014). In addition, INDECI (2001) states that risk is the result of
assessing the impacts of the hazards that an element is exposed to, and
their degree of vulnerability. This proves the need for a joint analysis of
hazard and vulnerability to obtain consistent results that provide valu-
able information in the decision-making process (Koks et al., 2015).

Hence, aiming at assessing the risk level, several studies were per-
formed implementing different techniques. For example, in Aceh
(Indonesia), risk was estimated integrating hierarchical assessment
techniques (e.g., Hierarchical Cluster Analysis (HCA) and Analytic Hi-
erarchy Process (AHP)) with machine learning methods (e.g., neuronal
networks, Random Forest). Here, the former measure vulnerability,
whereas the latter assess probabilistic risk (Jena et al., 2020a,b). This
hybrid risk analysis model is flexible and reliable since it integrates both
Table 1. Record of earthquakes with a magnitude 7.5 and higher and in the Richter

Year Magnitude Region Country Consequences of the event

2021 7.5 Loreto Peru 1 dead, 17 injured, and 5689 homes an

2020 7.8 Alaska United States A few homes and buildings damaged

2019 8.0 Loreto Peru 2 dead, 30 injured, and 1010 homes an

2019 7.5 Pastaza Ecuador 1 dead, 9 injured, and 22 homes and b

2017 8.1 Chiapas Mexico 94 dead and 250 injured

2016 7.8 Esmeraldas Ecuador 668 dead, 27,735 injured, and 7000 ho

2014 8.2 Tarapac�a Chile 6 dead and 1 damaged building

2010 8.8 Bio-Bio Chile 523 dead, 12,000 injured, and 374,092

2007 8.0 Ica Peru 514 dead, 1090 injured, and 39,700 ho

2005 7.5 Loreto Peru 5 dead, 60 injured, and 200 homes and

2001 8.4 Arequipa Peru 74 dead, 2689 injured, 35,601 homes a

2001 7.6 Moquegua Peru 1 dead, 30 injured, and 100 homes and
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analysis techniques (Yariyan et al., 2020). Currently, machine learning
(i.e., neuronal networks, random forest, regressions) has become popular
as a probabilistic model building tool (Jena et al., 2020a,b). Simulta-
neously, these studies are complemented by a Geographical Information
System (GIS) environment. For example, in Coimbra (Portugal) seismic
risk was assessed by systematizing building characteristics as qualitative
information (e.g., structure building system, irregularities and interac-
tion, among others) integrating them in a GIS platform, and quickly
identifying specific characteristics of the study area (Vicente et al., 2011),
as well as people and buildings at risk to implement specific impact
mitigation strategies (Yariyan et al., 2020).

Nevertheless, risk cannot be established without prior determination
of hazard and vulnerability. On one hand, to determine hazard, the
occurrence of a phenomena must be estimated based on its origin, re-
cords through time and location (CENEPRED, 2014). In this sense, the
Centro Peruano Japon�es de Investigaciones Sísmicas y Mitigaci�on de
Desastres (CISMID) (2017) states that, to define seismic hazard, we must
consider variables associated to the event and study area (e.g., seismic
demand acceleration, speed of movement, predominant material). For
example, some studies assess seismic hazard via machine learning (i.e.,
neuronal networks) using parameters such as Peak Ground Acceleration
(PGA), intensity variation, slope, distance from fault lines, epicenter
density, among others (Jena et al., 2020a,b). Seismic hazard can also be
assessed through a hierarchical process oriented toward GIS using
geological, geodesic, geotechnical and geophysical parameters (Kar-
imzadeh et al., 2014), or information related to area characteristics (e.g.,
past earthquake epicenters, active fault lines) (Ahmad et al., 2017;
Funning et al., 2005). Another widely used alternative for assessing
hazard level is using satellite images (Maruyama et al., 2012), and in-
formation from surveys performed at the study area (Matsuoka et al.,
2014).

However, to assess vulnerability, we need to use practical tools that
integrate quantitative and qualitative criteria with wider assessment
approaches to provide results with a higher validity level (Birkmann and
Wisner, 2006). The above mentioned approaches must guarantee a
transversal vision of the study area, so once they are integrated to the
action plans, they can contribute to mitigating damages after a disaster
occurs (Cutter et al., 2003; Izquierdo-Horna and Kahhat, 2020). A rep-
resentation of the study area can be performed through physical, social,
economic and environmental indicators (United Nations, 2005). In this
sense, indicators based on geographical environment, preexisting social,
economic and political conditions, exposure degree, among others, were
used as vulnerability analysis factors (Rufat et al., 2015). Depending on
information availability, certain indicators and methods are more rele-
vant than others. For example, in Iran (S. Lee et al., 2019) and Malaysia
(Suhaiza Sauti et al., 2020), machine learning techniques (e.g., neuronal
networks) were implemented in GIS environments for assessing seismic
vulnerability. Similarly, in Portugal (Fernandez et al., 2016) and
scale.

Source

d buildings damaged (USGS, 2022)

(USGS, 2022)

d buildings damaged (USGS, 2022)

uildings damaged (USGS, 2022)

(GFZ, 2022)

mes and buildings destroyed (USGS, 2022)

(Hayes et al., 2017)

homes and buildings damaged/destroyed (Hayes et al., 2017)

mes and buildings damaged (Hayes et al., 2017)

buildings damaged (Hayes et al., 2017)

nd buildings damaged, and 17,584 homes and buildings destroyed (Hayes et al., 2017)

buildings destroyed (Hayes et al., 2017)
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Romania (Albulescu et al., 2020), seismic vulnerability was analyzed via
social and physical factors through a multicriteria decision analysis.

This research study integrates assessment methods based on machine
learning (i.e., Random Forest) and hierarchical methods (i.e., AHP) for
assessing seismic risk. The first will assess hazard in several hypothetical
scenarios and predict their associated level through a collection of in-
dependent, random vectors distributed identically in a tree structure
(Breiman, 2001), wherein one single vote will be casted to precisely
determine its importance (Cutler et al., 2007). The latter are used to
assign numerical values to what are essentially abstract concepts in order
to create easy-to-interpret instruments (Saaty, 1988). The vulnerability
analysis shall follow the proposal by Izquierdo-Horna and Kahhat (2020),
a bidimensional, social and physical analysis. As a methodological
implementation, the city of Pisco (Peru) was selected due to its history of
earthquakes of significant magnitude (Hayes et al., 2017), and its pro-
pensity to new high-magnitude events (Tavera et al., 2016). The appli-
cation of these results is expected to contribute positively to disaster risk
management in the region.

2. Methodological framework

Aiming at determining the seismic risk level in the city of Pisco,
Figure 1 denotes the methodological framework implemented for this
research.

2.1. Case study information

2.1.1. Study area
The city of Pisco is located in the Peruvian central coast, at

13�4203500S, 76�1201100O. It is the capital of the Pisco province and part of
the Ica region, and its population is approximately 67,467 (INEI, 2018).
Pisco is one of the Peruvian cities that is most affected by earthquakes
owing to their high recurrence and magnitude. This is largely owing to
the city's geographical location as it is situated on fluvial deposits that
belong to the old alluvial fan of the Pisco river, so its surface is covered by
silty sand and poorly graded gravel (INDECI, 2008). The city is also
exposed to soil liquefaction, loss of bearing capacity and flooding owing
to tsunamis (INDECI, 2008).

2.1.2. Data acquisition
This research project uses several free access data sources for

analyzing seismic risk. On one hand, for hazard assessment, parameters,
such as slope, digital elevation model (DEM), soil type, land use, and
bearing capacity were considered. DEM was obtained from shuttle radar
topography mission (SRTM) (https://srtm.csi.cgiar.org/srtmdata/) with
a spatial resolution of 30 m � 30 m. Then, slope spatial distribution was
Figure 1. Methodological framework – G
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estimated based on DEM. Soil types were obtained from the Geocatmin
site (https://geocatmin.ingemmet.gob.pe/geocatmin/). Land use is a
MODIS MCD12Q1 product with a spatial resolution of 500 m � 500 m
(https://earthexplorer.usgs.gov/). Finally, bearing capacity and data
required for model implementation were obtained from INDECI (2001)
and CISMID (2011). Figure 2 denotes the parameters used in this study.

On the other hand, for assessing vulnerability, considering its bidi-
mensional analysis (i.e., social and physical), and the availability of in-
formation, the following parameters were considered: age, per capita
income, predominant material in outer building walls, and number of
floors. To this end, images from the National Georeferenced Data Plat-
form (GEO Peru, https://visor.geoperu.gob.pe/) were used together with
microdata from censuses and surveys obtained from the Instituto
Nacional de Estadística e Inform�atica (INEI, http://iinei.inei.gob.pe/mi
crodatos/) and microzonification maps provided by CISMID (2012).
Finally, this information was processed and incorporated for analysis in
the QGis 3.16 software, obtaining information layers according to the
required descriptors. Table 2 below denotes the parameters used in this
research.

2.2. Integrated approach: random forest and AHP–Saaty

To determine the seismic risk level, we proposed a methodology that
combines machine learning with hierarchic learning techniques. In this
sense, to determine seismic hazard level, Random Forest (RF) will be
used because it is efficient in finding frequent, nonlinear patterns inmany
classification problems, and, at the same time, facilitates working with
numerical and categorical data without requiring additional treatments
(e.g., normalization of numerical data) (Breiman, 2001; Lawler et al.,
2006).

However, an AHP–Saaty will be applied to determine the corre-
sponding vulnerability level. One of the advantages of this hierarchical
process is that it solves diverse criteria problems with multiple values
(Mendoza et al., 2019). It is also the method proposed by the executing
public body, CENEPRED, subscribed to the Peruvian Defense Ministry, to
solve complex problems through a visually structured model, which fa-
cilitates the identification and weighing of decision-making parameters
(CENEPRED, 2014).

2.2.1. RF: considerations and assumptions
RF is a supervised machine learning algorithm that can be used for

classification or regression. It is a collection of decision trees, in which
each tree is trained with a random subsample replacing the original
sample (bootstrapping) and a subsample of available predictors. The final
prediction is the result of the majority of the votes from the predictions of
each trained tree (Cutler et al., 2007). This modeling diagram reduces the
IS: Geographical Information System.

https://srtm.csi.cgiar.org/srtmdata/
https://geocatmin.ingemmet.gob.pe/geocatmin/
https://earthexplorer.usgs.gov/
https://visor.geoperu.gob.pe/
http://iinei.inei.gob.pe/microdatos/
http://iinei.inei.gob.pe/microdatos/
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possibility of overtraining, since trees that form the scheme have low
correlations and high variance (Costa et al., 2018).

2.2.2. AHP–Saaty: considerations and assumptions
The Saaty AHP is a multicriteria technique used for making decisions

that identifies and organizes goals within a hierarchy, and fosters pair
comparisons among the relevant elements being compared (Saaty,
Table 2. Parameters used for analyzing seismic vulnerability.

Dimension Variable Descriptor

Social Age (years old) 30 to 49

18 to 29

13 to 18 and 50 to 59

4 to 12 and 60 to 64

0 to 3 and over 65

Per capita income (USD) Over USD 1000

USD 700–1000

USD 300–700

Minimum salary, USD 300

Under USD 300

Physical Predominant material in outer walls Brick

Wood

Adobe

Quincha

Other precarious materials

Number of floors 1

2

3

4

5 or more

4

1988). For their implementation, we first arrange the descriptors in hi-
erarchical order from the category assessed. Then, these descriptors are
categorized according to the assessment scale to build value judgment
and normalization matrixes. Finally, priority and consistency vectors are
calculated to interpret results (Mendoza et al., 2019).
2.3. Hazard, vulnerability and risk assessment

2.3.1. Seismic hazard assessment
For this study, hazard is defined as the probability that a natural

phenomenon occurs in a specific place within a determined time, with a
certain intensity and defined frequency (CENEPRED, 2014). As the last
precedent of this assessment in Pisco, in 2001 INDECI performed a
seismic hazard assessment identifying four hazard levels (i.e., very high,
high, medium and low) (INDECI, 2001); however, for the purposes here,
we considered the more representative hazards in the area since there
was more information available on their predictors. Site conditions used
to characterize hazard levels do not remain constant as they experiment
modifications after each seismic event (INDECI, 2008).

To assess the seismic hazard level for different scenarios, we devel-
oped and validated a RF model with the following predicting variables:
soil type, DEM, land use, land slope and bearing capacity. The predicted
variable was the hazard level recorded in 2001. Since this data had a
different spatial resolution, 10 m � 10 mmaps were resampled. To avoid
overcompensation, we divided the data in 80% to train the model and
20% to test it. RF hyperparameters were optimized by a randomized grid
search with crossed validations. Optimization refined the number of trees
(estimators) and the maximum depth for each tree. The former facilitate
variability and decorrelation among trees, whereas the latter reduce the
possible overcompensation in each trained tree (Zevallos and
Lavado-Casimiro, 2022). The optimized metric is accuracy, using a 5-fold
crossed validation.
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As a result of total hyperparameter optimization, 250 classification
trees were built using Gini criteria with a maximum depth of 10. To
assess the model's performance, we used the 20% data we had previously
separated to build a confusion matrix to check the accuracy and classi-
fication mistakes of the model.

2.3.2. Seismic vulnerability assessment
Considering that the assessment of seismic vulnerability requires not

only quantitative approaches but also qualitative approximations (Birk-
mann and Wisner, 2006), some researchers state that an adequate way to
assess vulnerability is via social, demographical and socioeconomic fac-
tors (Cutter et al., 2003). This research will be guided by the analysis
proposed by Izquierdo-Horna and Kahhat (2020) since they promote the
need of a comprehensive approach via a bidimensional analysis wherein
the physical dimension (i.e., built environment) is as relevant as the so-
cial dimension (i.e., final user). Here, social characteristics (e.g., age and
per capita income) tend to change more rapidly over time than physical
characteristics (e.g., predominant material in outer building walls and
number of floors).

To treat data and build hierarchically, we followed the recommen-
dations by CENEPRED (2014). This technique determines the importance
of the selected parameters according to the Saaty scale by pair compar-
ison in a 4 � 4 matrix. Therefore, rows are compared against columns. In
addition, the matrix diagonal will be equal to 1 since it is a parameter of
equal importance. Then, the normalization matrix is defined; it denotes
the prioritization vector given by the weight related to the parameters
being analyzed. Finally, the consistency ratio is calculated. Its value must
be under 10% (RC < 0.1) to guarantee an acceptable consistency level in
pair comparison. If this value is not achieved; the matrix criteria must be
reassessed. We also considered a random index of 0.882 because this is a
matrix that depends on four parameters in comparison to the 100,000
same-order matrixes simulated (Aguar�on and Moreno-Jim�enez, 2003).

2.3.3. Seismic risk assessment: holistic perspective
Seismic risk analysis corresponds to an analysis of hazard probability

and vulnerability levels of the element exposed within a determined area
(INDECI, 2006); however, CENEPRED (2014) states that it is possible to
assess the risk level via a double-entry matrix: a hazard level matrix and a
vulnerability level matrix. To understand this graphically, we will
analyze a matrix wherein, to estimate risk, we intersect (e.g., Cartesian
plane) the Y axis (hazard levels) and the X axis (vulnerability levels).

For assessing the accuracy in the risk map, we performed a visual
identification of the area to study via Google Street View. The identifi-
cation consisted in revising areas with high and moderate risk level and
verifying the structure quality of the surrounding buildings.

3. Results

3.1. Seismic hazard level

From the obtained results, we can see that the most relevant param-
eter identified in the implemented model is the soil type with 62.3%,
while the parameter with the least impact on the classifications made is
land use with less than 1% (Table 3). Bearing capacity has a 4.5%
importance in the general classification.
Table 3. Feature of importance for RF.

Variable Importance

Soil type 0.623

DEM 0.301

Bearing capacity 0.045

Slope 0.027

Land use 0.004

5

Figure 3 denotes spatial distribution for the 2001 situation and the
four scenarios built. There are some erroneous zones that indicate a
moderate level of hazard to the northwest and west of the map, instead of
a high level. Scenarios considered were predicted by penalizing the
bearing capacity predictor because out of all factors used, this is the one
that may change over the years with each event occurrence. Assigned
penalizations were 20%, 80%, 85% and 90% of the values reported in
2001. As it may be observed, there is no substantial difference among the
results for the different scenarios. This is likely because bearing capacity
only has a 4.5% influence in hazard classifications.

3.2. Seismic vulnerability level

After performing the hierarchical analysis with the relevant param-
eters, we georeferenced using block to be able to visualize the distribu-
tion of vulnerability in the terrain. Hence, we obtained the earthquake
vulnerability map for the city of Pisco (Figure 4), which evidences three
out of the four levels considered: medium, high, and very high. Here
zones with high and very-high vulnerability are in the district periphery.
As for the social dimension, INEI (2018) points out that the elder popu-
lation has increased considerably in the city of Pisco: in 1993, they
represented 5.0%; in 2007, 6.8%; and in 2017, 8.2%. The population
under 15 represented 28.8% of the whole population in 2017. However,
the population percentage in medium, medium-low and low socioeco-
nomic layers diminished: in 2013, they represented 83.30% and, in 2017,
58.40% reported less than USD 300 in income (Ministerio de Trabajo y
Promoci�on del Empleo, 2022), which is considered very low according to
minimum life conditions. Regarding the physical dimension, INEI (2018)
states that, in 2017, 25.49% of all existing homes and buildings were
made with precarious materials (e.g., adobe, quincha, plywood, straw
mat). Moreover, according to the micro-zonification map issued by CIS-
MID (2012), around 40% of buildings (regardless of number of floors) are
not in good conditions owing to lack of technical supervision before and
after its construction or an earthquake event. However, these buildings
must be considered since 81% are used as homes and 8.1% as educational
centers.

3.3. Seismic risk level

Finally, after the hazard and vulnerability analysis in the study area
was finished, seismic risk level was determined using the double-entry
table (CENEPRED, 2014). Based on the risk levels defined, the risk
level map was drafted, denoting high and very-high levels (Figure 5). The
identification of these risk levels facilitates the structure and design of
focalized plans aimed at avoiding damage and loss. Likewise, being able
to locate them spatially fosters the proposal of structural and
non-structural risk mitigating solutions, such as injections via compac-
tion to deeply densify mainly sandy soils, thus preventing the liquefac-
tion effect. Moreover, we noted that very-high risk zones are commonly
further away from the city center and closer to the coast. However, via
visual inspection, we analyzed some sectors identified as very-high risk
using Google Street View in order to further validate the results.

4. Discussion

The seismic risk level identified in Pisco based on the information
collected was high and very high. These levels suggest that it is a priority
action area for implementing strategies to mitigate risk and promoting
the construction of resilient cities. However, development to this date is
scarce. This research used a machine learning and a hierarchical analysis
approach to assess hazard and vulnerability levels, respectively. For the
former, hazard level was built based on the information proposed by
INDECI (2001). Due to geographic location and terrain distribution, the
coast has not been added in the analysis since it is an area with inade-
quate construction characteristics (e.g., low bearing capacity, prone to
liquefaction) (INDECI, 2008).



Figure 3. Reproduced hazard level for 2001 and predicted levels for different scenarios of bearing capacity.

Figure 4. Seismic vulnerability map for Pisco.
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On the other hand, it can also be observed that the scenarios gener-
ated from the variation in bearing capacity maintain a fairly constant
hazard (Figure 3). This is probably due to the fact that bearing capacity
has only a 4.5% influence on the hazard level classifications.
6

Furthermore, we note that the seismic hazard level predicted for the year
2001 is very similar to the soil type map, with few differences probably
caused by the influence of the other most important variable: elevation
(Figure 2). Likewise, it is important to mention that in spite of all the



Figure 5. Seismic risk map for Pisco.
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variability contributed by slope, this factor is not very relevant and has a
2.7% importance in the predictions, causing that its variability is not
reflected when classifying the level of seismic hazard. Thus, it can be
inferred that the level of seismic hazard remains almost constant in short
periods of time considering that other scenarios with variations of other
predictors are less probable since the time horizons are shorter: a change
in the composition of the soil type or a modification of the topography
and slope would require the passing of geologic time.

However, the vulnerability results obtained were compared to the
studies performed by the Science and Technology Research Partnership
for Sustainable Development (SATREPS), which is sponsored by the
Japan Science and Technology Agency (JST) and the Japan International
Cooperation Agency (JICA). These previous studies mainly consist of
assessing area weaknesses by simulating its seismic response and damage
level (Zavala et al., 2011), monitoring maximum resilience between
2007 and 2011 (Hoshi et al., 2014), and assessing resilience after urban
recovery processes through field interviews (Murao et al., 2013). Still,
these studies were based on information after the 2007 earthquake, and
therefore, when comparing said results against the results obtained in
this research (whose source is the 2017 census), certain differences arise.

The most notable change was found in the city center. Previous
studies state that the most vulnerable areas were those closer to down-
town; however, this research study found the opposite–vulnerable areas
were further away at the periphery. Still, this difference can be explained:
in the past, homes and buildings were located in the downtown area and,
for the most part, built with precarious materials; dwelling density was
also lower than currently. Hence, the time variation in sources of avail-
able information becomes a relevant factor for the identification process.

The importance of this research stems from the constructed envi-
ronment–final user concept; that is, the growth level experienced in Pisco
during the last 15 years denotes how variable and dynamic this area is.
Such disorderly growth is coupled with an increase in population density
and resource demand. The changes in its constructed area and social
characteristics (e.g., age, economic income, etc.) make it necessary to
constantly update the level of exposure and degree of potential losses
caused by the occurrence of an event. On the other hand, having current
and reliable information that reflects the study case situation gives au-
thorities, and those with decision-making power, the possibility to better
7

assign resources and foster resilience in areas that are potentially more
affected.

Finally, one of the most relevant limitations for the design and
implementation of this methodological proposal lies in the absence of
continuous measurements for the case study (e.g., soil studies, surveys,
etc.). This is due to the fact that the time lag between current conditions
and the reported reference conditions is greater than 5 years approxi-
mately, which has repercussions not only on urban development and
territorial planning, but also on the livelihoods and living conditions of
the population.

5. Conclusions

The results from this research suggest high and very-high risk areas
distributed throughout the Pisco territory. These results are coherent
with the city's precedents, the anthropogenic characteristics of the pop-
ulation, and the level of exposure to seismic events. Hazard, vulnera-
bility, and risk maps may be considered as reference instruments to
design strategies aimed at preventing losses. The methods implemented
to design these maps revealed an accuracy level of 0.99 for RF and
consistency indexes lower than 0.04 for hierarchical analysis. The pa-
rameters that support these results refer to the most determining pa-
rameters for the area and were selected by their intrinsic characteristics
and based on literature reviews. This study applied RF to classify hazard
in the year 2001, and then to project hazard scenarios changing bearing
capacity conditions. For vulnerability, we used AHP. One of the most
relevant limitations for implementing these models was the number of
observations, and the availability and quality of information.

This project used open access data and official government sources,
which allowed for rapid validation and implementation. Some data
clusters were compiled from the USGS, GEOCATMIN, GEO PERU, INEI
and SIGRID platforms. The project also includes the implementation of a
GIS system, which makes result visualization and communication more
efficient. As these data clusters provided the information required for
hazard characterization, the factors considered for these purposes were
DEM, slope, land use, soil type and bearing capacity. Likewise, vulnera-
bility is characterized by age, socioeconomic level, predominant con-
struction material used in outer walls, and number of floors. Hence,
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depending on information access, we can work with additional param-
eters such as liquefaction, fault lines, etc. Still, hazard remained almost
constant since relevant changes in stratigraphy and topography are
related to geological time variations. Similarly, vulnerability may also be
supplemented with information on education, access to health insurance,
access to basic services, etc. In consequence, the validity, adequacy, and
prediction or classification capacity of each parameter will largely
depend on the study approach used and the type of research performed.

Finally, considering that the source of information used for the
vulnerability analysis is dated 2017 and, as a reference, one of the rele-
vant studies for soil characterization of Pisco dates back to 1999 it is to be
expected that the results obtained have associated uncertainties. This
scenario leads to limited applicability given that the input information
presents a time lag with the current time; however, we consider that as a
methodological proposal, this study is representative and can be vali-
dated through visual inspections of the sector. Thus rendering this
methodology reproducible if considering the corresponding assumptions
against conditioning, triggering and anthropogenic factors. We hope this
approach contributes to prospective risk management and facilitates an
optimal design of mitigation and emergency response plans. We also
hope that this study is complemented by the implementation of more
efficient auditing methods that may restrict empirical self-building ac-
tivities within the assessed area.
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