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Abstract

Haemolytic uraemic syndrome (HUS) remains a leading cause of paediatric acute kidney injury (AKI). Haemolytic uraemic
syndrome is characterised by the triad of microangiopathic haemolytic anaemia, thrombocytopenia and AKI. In ~90% of cases,
HUS is a consequence of infection with Shiga toxin-producing E. coli (STEC), most commonly serotype O157:H7. Acute
mortality from STEC-HUS is now less than 5%; however, there is significant long-term renal morbidity in one third of survivors.
Currently, no specific treatment exists for STEC-HUS. There is growing interest in the role of complement in the pathogenesis of
STEC-HUS due to the discovery of inherited and acquired dysregulation of the alternative complement system in the closely
related disorder, atypical HUS (aHUS). The treatment of aHUS has been revolutionised by the introduction of the anti-C5
monoclonal antibody, eculizumab. However, the role of complement and anti-complement therapy in STEC-HUS remains unclear.
Herein, we review the current evidence of the role of complement in STEC-HUS focusing on the use of eculizumab in this disease.
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Haemolytic uraemic syndrome

Shiga toxin-producing E. coli (STEC) infection, most com-
monly serotype O157:H7 [1], results in haemorrhagic colitis
in the majority of children infected. In 85-90% of cases, this
resolves with no further sequelae within 1 week of onset. In
10-15% of infected children, haemolytic uraemic syndrome
(HUS) develops, most commonly 2 weeks after the onset of
the colitis [2]. The hallmark features of HUS are a triad of
microangiopathic haemolytic anaemia, thrombocytopenia
and acute kidney injury (AKI) [3]. This clinical presentation
occurs due to acute thrombotic microangiopathy (TMA), most
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commonly in the renal microvasculature. The characteristic
histological features in the renal microvasculature include
mesangiolysis, endothelial swelling and fibrin-rich thrombi
(often with fragmented erythrocytes) within the glomeruli
[4]. In addition to the renal involvement, extra-renal manifes-
tations occur in approximately 20% of cases [5]; the most
devastating of these is neurological involvement. While not
as common as renal involvement, neurological dysfunction
represents the major cause of mortality in HUS [6-8]. The
majority of children with HUS recover with best supportive
care; this includes temporary dialysis in approximately 50—
75% and red cell transfusion in 80% [9-12].

Pathophysiology

Shiga toxin-producing E.coli are highly infectious organisms,
with an estimated infective dose as low as ten organisms [13],
compared to > 10° organisms required for infection from other
E. coli species [14]. Most commonly, STEC infection occurs as
a result of ingestion of contaminated food or water [15]. Shiga
toxin-producing E.coli possesses a number of properties that
increase its virulence; firstly, intrinsic acid resistance enables
survival through the acidic environment of the stomach [16].
Once through the stomach, STEC must colonise the intestinal
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mucosa; this is achieved through a number of specialised pro-
teins encoded on the locus of enterocyte effacement and ulti-
mately result in attaching and effacing (A/E) lesions [17]. These
lesions result in loss of microvilli and accumulation of actin
within the host cell, anchoring the bacteria to the surface.
Once adhered to the intestinal mucosa, STEC begin producing
Shiga toxin (stx.) [18]. Shiga toxin is a member of the ribosome
inactivating protein (RIP) family, made up of one A chain,
responsible for inactivating ribosomal activity, and five identi-
cal B chains that aid binding to the target receptor [19]. Shiga
toxin-producing E.coli is capable of producing two stx. (stx!
and stx2); while structurally similar, individuals infected with
stx2 are more likely to develop HUS [20]. Once secreted, stx.
transverses the intestinal wall and enters the bloodstream,
a process which is not yet fully understood [21]. Within
the bloodstream, szx. binds to circulating polymorphonu-
clear leukocytes and is transported to distal sites [22]. The
main cellular target for szx. is the globotriaosylceramide
(GDb3) receptor located on the microvascular endothelium
within the brain, gut and kidney [21]. Within the kidney,
in addition to the endothelium, Gb3 is expressed on the
surface of tubular cells, mesangial cells and, in primates,
podocytes [23]. Once bound to Gb3, stx. enters the cell
via endocytosis and is trafficked through the Golgi appa-
ratus and endoplasmic reticulum, before being released
into the cytosol [18]. Once in the cytosol, stx. exerts its
effect via inhibition of the ribosomal activity and subse-
quent blockage of protein transcription. These events lead
to activation of apoptotic pathways, induction of inflam-
matory cytokines and cellular necrosis [21] (Fig. 1). All
these processes lead to the generation of a pro-
inflammatory environment within the microvasculature.
The role of the complement system in this process is
discussed hereafter.

The complement cascade

The complement system is a complex cascade of over 30
proteins that together forms part of the innate immune sys-
tem [24]. It is composed of three pathways, namely the
classical, alternative and lectin-binding. The alternative
pathway is constitutively active at a low level via sponta-
neous hydrolysis of circulating C3 molecules generating
C3(H,0) (a process known as C3 tick-over) [25]. This
hydrolysis results in a conformational change in C3, which
permits its interaction with factor D, the resulting complex
cleaves factor B (CFB) to Ba and Bb. C3(H,O) and Bb
complex to generate the C3 convertase (C3bBb), which
binds to the cell surface and forms the basis of the C3
amplification loop, whereby the C3 convertase is able to
cleave further C3 to C3a (anaphylatoxin) and C3b. C3b
generated by this process binds to the C3 convertase,
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forming the C5 convertase (C3BbC3b) [26]. The C5
convertase cleaves circulating C5 to C5a (anaphylatoxin)
and C5b. Finally, C5b complexes with C6, C7, C8 and C9
forming the membrane attack complex (MAC). This struc-
ture forms a permeable pore in the cell membrane leading
to massive fluid and electrolyte shift resulting in cell lysis.
To prevent over-activity of the pathway and to protect host
cells from damage by complement, a number of fluid phase
(Complement Factors H (CFH), I (CFI)) and membrane-
bound (CD46, DAF and CD59) regulators exist.

The role of complement in STEC-HUS

Complement activation was first observed in STEC-HUS
over 30 years ago, when it was demonstrated that children
with STEC-HUS had higher plasma levels of the alterna-
tive complement activation products, C3b, C3c, C3d and
factor B [27, 28]. These findings have been reproduced
and extended more recently with evidence of increased
levels of C5 convertase and the common endpoint of
complement activation soluble C5b-C9 (or terminal com-
plement complex, TCC), a fluid phase form of MAC
[29-31]. Further evidence of complement involvement
in STEC-HUS is supported by the presence of circulating
complement-containing microvesicles from platelets, leu-
kocytes and erythrocytes in individuals with STEC-HUS
[32, 33], suggesting a direct interaction between these
cells and complement. Together, these observations indi-
cate the alternative complement cascade is activated dur-
ing STEC-HUS. The centrality of stx. in the pathogenesis
of STEC-HUS is evident, but the extent to which the
observed alternate complement pathway activation con-
tributes to the morbidity and mortality of this disease
remains unclear.

Possible mechanisms of complement
activation in STEC-HUS

Perhaps the most direct evidence of complement activa-
tion by stx2 has been provided by Orth et al. [34]. In this
study, incubation of stx. with normal human serum result-
ed in increased TCC, indicating activation of the final
common complement pathway. This increased activation
was seen with co-incubation with EGTA (a classical path-
way blocker), but not with EDTA (which blocks comple-
ment activation completely), signifying stx2 activates
complement via the alternative pathway. In the same
study, stx2 was shown to bind CFH. Complement factor
H is composed of 20 homologous short consensus repeat
(SCR) units; these units are highly conserved containing
approximately 60 amino acids that are arranged in a ‘bead
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Fig. 1 Proposed mechanism of Shiga toxin resulting in thrombotic
microangiopathy (TMA). On binding to the Gb3 receptor, stx. is
internalised and trafficked through the Golgi apparatus where it is
released in to the cytoplasm; szx. then binds to the ribosome and blocks
transcription resulting in activation of apoptotic pathways. Ultimately,
this results in activation of platelet and the endothelium. As this process
continues thrombi fill and occlude the capillary lumen resulting in
mechanical haemolysis as erythrocytes are forced through these fibrin-
rich thrombi. The role of complement activation in this process is unclear.
Observational data from patients with Shiga toxin-producing E.coli

on string’ orientation. s¢x2. binds specifically to SCR 6-8
and 18-20, the regions responsible for host surface recog-
nition; binding to these regions was shown to reduce sur-
face complement regulation, while fluid phase regulation
was preserved [34]. In a separate study, levels of CD59, a
regulator of the MAC, were shown to be lower in glomer-
ular endothelial cells treated with szx2 but not in tubular
cells, due to reduced mRNA [35]. These results indicate
that stx2 may result in increased susceptibility to
complement-mediated damage in patients with STEC-
HUS through a reduction in complement regulation by
CFH and CD59.

In addition to the loss of complement regulation, there is
evidence of increased microvascular endothelial complement
activation after incubation with s#x2. Following incubation
with stx2, there is significant upregulation of P-selectin on
the surface of an immortalised endothelial cell line, human
microvascular endothelial cells (HMEC-1). P-selectin is able
to bind and activate C3, leading to increased thrombus forma-
tion [36]. Supporting the role of P-selectin in thrombus for-
mation is the finding that an anti-P-selectin antibody reduced
both the C3 deposition and thrombus burden in this HMEC-1
model. Interestingly, the use of a C3a receptor (C3aR) antag-
onist also reduced the thrombus formation and podocyte loss
[36, 37], suggesting a role for C3a in the pathogenesis of
STEC-HUS.

(STEC-HUS) demonstrates increased plasma levels of the complement
component C3Db, factor B and the C5 convertase (C3bBbC3b) as well as
C3 breakdown products C3c and C3d. Further to this, stx. is able to bind
to complement factor H (CFH), which leads to impaired complement
regulation on the cell surface. Evidence of terminal complement pathway
dysregulation is evidenced by the increased circulating membrane attack
complex and decreased CD59 mRNA, a regulator of the membrane attack
complex. Stx. has been shown to upregulate surface expression of P-
selectin; this receptor is able to capture circulating C3 and promotes
thrombus formation

Taken together, the evidence from both clinical and labo-
ratory studies points to complement activation during STEC-
HUS pathogenesis.

Eculizumab

Eculizumab is a humanised monoclonal 1gG2/4 that binds C5,
preventing its conversion to C5a and C5b [38]. Prevention of
this step effectively blocks the formation of the terminal com-
plement pathway and the MAC. Eculizumab was first approved
in 2007 for use in paroxysmal nocturnal haemoglobinuria and
subsequently in 2011 for aHUS. Available safety data suggests
that eculizumab is effective and safe for the treatment of aHUS
in both adults and children [39—41] although there is a signifi-
cantly increased risk of meningococcal disease due to terminal
complement blockade.

Eculizumab in STEC-HUS

There is no controlled data investigating the use of eculizumab
in STEC-HUS; consequently, the only available data on its
efficacy comes from small cases series and uncontrolled ob-
servational data. In 2011, the first reported use of eculizumab
in STEC-HUS was published [42] in which three young
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children with STEC-HUS, complicated by dialysis-dependent
AKI and severe neurological involvement, were treated with
eculizumab after deterioration on conventional treatment. All
three patients showed dramatic improvement in their neurologi-
cal symptoms within 24 h of the first dose and normalisation of
their haematological parameters within 5 days. These outcomes
are impressive, but it is possible the recovery in these patients
was unrelated to the use of eculizumab. This report was pub-
lished just prior to a large outbreak of STEC 0104 in Germany
[43]. On the basis of this report, Deutsche Gesellschaft fiir
Nephrologie (German Society of Nephrology) recommended
eculizumab for the most severely affected patients; this included
patients with AKI stage III [44] (serum creatinine three times
baseline or greater than 353 pmol/l and/or urine output <

0.3 ml/kg/h or anuria for 12 h), neurological symptoms or throm-
boembolic events [45]. In a rapidly convened, industry-spon-
sored, open-label non-randomised trial, 193/491 (39%) adult pa-
tients were treated with eculizumab after failure to respond to
plasma exchange [46]. The outcomes for some of these patients
have been reported [46, 47]. No benefit of eculizumab over best
supportive care or plasma exchange was found even after adjust-
ment for potential confounding factors. A parallel observational
study was conducted in children affected by O104 HUS [48]. In
contrast to the adult study, only 13/90 (14%) children were treat-
ed with eculizumab, seven after plasma exchange and six as first
line management. Data for sub-groups (eculizumab versus plas-
ma exchange and eculizumab) were not reported separately due
to the small number of children treated with eculizumab.
However, short-term and intermediate analysis of both this and
a separate German cohort has demonstrated no benefit of
eculizumab compared to standard care in previous outbreaks
[49]. 1t is difficult to draw any concrete conclusions from these
studies. Firstly, in the adult study, patients treated with supportive
care alone were significantly older (54.5 vs. 44 years old) and
less likely to have neurological symptoms (45% vs. 89%) than
the group treated with eculizumab. Secondly, there was a delay
of 11 days between presentation and commencing eculizumab
treatment; available data from patients with aHUS suggests that
early initiation of eculizumab is associated with a better progno-
sis [41]. It is possible that this delay resulted in reduced efficacy
of eculizumab; in fact, it has previously been demonstrated that
evidence of complement activation returns to baseline, in patients
with STEC-HUS, after approximately 1 week [31]. All patients
in the adult study were treated with plasma exchange prior to
eculizumab. Plasma exchange has previously been used in pa-
tients with STEC-HUS with the rationale of removing circulating
bacterial toxin, inflammatory mediators and pro-thrombotic fac-
tors. This practice may also have been influenced by the efficacy
of plasma exchange in some patients with aHUS. While there is
no data supporting any benefit of plasma exchange in STEC-
HUS [50], it may be that plasma exchange in these patients
reduced the effectiveness of eculizumab, for example by remov-
ing complement regulators. One concern about the use of
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eculizumab is an increased risk of bacterial infection due to loss
of the terminal complement pathway [51]. While this risk ap-
pears to be most significant for Neisserial infection, there is a
theoretical risk that blocking the terminal complement pathway
in active STEC infection may increase the risk of invasive sepsis
from E. coli still bound to the intestinal wall. In the absence of a
controlled comparison of eculizumab in STEC-HUS, it is diffi-
cult to draw any certain conclusions about the safety or efficacy
of eculizumab in STEC-HUS.

During this German outbreak, a group of nine patients in
France contracted O104:H4 HUS [52]. All nine were treated
with eculizumab, the three index patients received plasma ex-
change as first line, followed by eculizumab, while the remain-
ing six were treated with eculizumab on presentation. The data
presented suggests the group treated with eculizumab at presen-
tation had a milder degree of AKI, lower peak lactate dehydro-
genase (LDH) and less thrombocytopenia compared to the pa-
tients initially treated with plasmapheresis. It is difficult to judge
whether these effects are due to the early initiation of eculizumab
or simply that these patients had milder disease. Analysis of the
data reveals that while the platelet count improved within 48 h
and normalised by 1 week of eculizumab; both the haemoglobin
and creatinine were slower to recover. The median haemoglobin
continued to fall for 1 week post-eculizumab, while more pa-
tients had AKI stage III 7 days after eculizumab. This clinical
trajectory could be considered the natural history and variability
of the condition. The follow-up data available from this study,
10 weeks post-eculizumab, demonstrates impaired renal func-
tion (¢€GFR 60-90 ml/min/1.73m?) in 3/9 patients, new hyper-
tension in 2/9 and albuminuria in one patient. Again, these re-
sults are comparable to those seen in patients treated with best
supportive care in other cohorts [53].

With the lack of available controlled data on the role of
eculizumab in STEC-HUS, there have been a number of case
reports and small case series reporting the use of eculizumab in
STEC-HUS with neurological involvement [54-56]. Despite
the potentially devastating consequences of neurological in-
volvement in STEC-HUS, there is scant evidence regarding
the short- and long-term prognosis following this complication.
The largest cohort describing the outcomes of children with
severe neurological involvement reported 52 children and dem-
onstrated a 17% acute mortality rate. At follow-up, 23% had
severe residual impairment; only 50% recovered fully [57].
With these poor outcomes and lack of proven treatment, inves-
tigators have been keen to study the potential of anti-
complement therapy in these cases. Gitiaux et al. [54] reported
seven children with STEC-HUS complicated by neurological
involvement who were treated with eculizumab. Brain magnet-
ic resonance imaging (MRI) performed at presentation demon-
strated reversible changes. At 6 months, these changes had
resolved and neurological testing was normal in the surviving
patients (5/7); however, renal function remained impaired in 3/5
children. Pape et al. [56] described 11 children with confirmed
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* CKD at 1 year (a composite endpoint of the presence

* Renal sequelae including blood pressure, creatinine clearance,

of hypertension, albuminuria or <GFR <90 ml/min/

ionogram, proteinuria and microalbuminuria
* Parameters of complement activation: C3 and CD46

« Inhibition of TCC

1.73 m?)
* Number of packed red blood cell transfusions required

and volume (ml/kg)
» Markers of inflammation (number of days until normal

* Neurological involvement (seizures, coma, focal deficit)

* Cardiac involvement (cardiac failure, ischemic myocarditis,

total white cell count and CRP)
* Persistent neurological defect at 1 year

* Health-related quality of life

conduction or rhythm troubles)
* Digestive involvement (pancreatitis, hepatitis, haemorrhagic

colitis, bowel perforation, rectal prolapse)

LDH lactate dehydrogenase; AKI acute kidney injury; aHUS atypical haemolytic uraemic syndrome; pRIFLE paediatric risk, injury, failure, loss, end stage renal disease criteria; Stx Shiga toxin; HUS

haemolytic uraemic syndrome; PCR polymerase chain reaction; STEC Shiga toxin producing E. coli; HIV human immunodeficiency virus; eGFR estimated glomerular filtration rate; MRI magnetic

resonance imagining; ULN upper limit of normal; 7CC terminal complement complex; CKD chronic kidney disease; CRP C reactive protein

STEC and neurological symptoms (seizures 11/11 and stupor/
coma 10/11) who received eculizumab. All children required
dialysis and one child died from multi-organ failure. Magnetic
resonance imaging during the acute presentation was abnormal
in 8/10 patients. Dialysis was continued for a median of
15.5 days (4-23) and normalisation of platelet count occurred
at 4 days (0-20) after eculizumab. At discharge, one child had
severe neurological impairment and three demonstrated mild
impairment. At 6 months, 9/10 patients had normal neurologi-
cal examination, with the remaining child showing substantial
improvement. No renal outcomes were reported in these chil-
dren. These two reports show resolution of neurological symp-
toms after eculizumab and offer a potentially promising treat-
ment for children with of neurological involvement in STEC-
HUS. In the absence of controlled studies, it is not possible to
determine whether this effect is due to eculizumab or the highly
variable natural history of STEC-HUS.

Conclusion

A specific treatment for STEC-HUS has remained elusive, de-
spite many attempts [50]. The discovery that complement block-
ade effectively controls TMA in aHUS, coupled with evidence
that complement activation during STEC-HUS, has led to the ad
hoc use of eculizumab in adults and children with STEC-HUS,
with no systematic assessment of its efficacy or safety. In the
absence of randomised controlled trials, it is impossible to con-
clude if there is truly a beneficial effect from eculizumab in
STEC-HUS. Two double-blinded placebo controlled trials
(Table 1) [ECULISHU in France looking at renal outcome
(NCT02205541) and ECUSTEC in the UK looking at overall
disease severity (ISRCTN89553116)] seek to provide evidence
to guide use of this therapy in STEC-HUS.
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