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Passive symmetry breaking 
of the space–time propagation 
in cavity dissipative solitons
Idan Parshani1, Leon Bello1,2, Mallachi‑Elia Meller1 & Avi Pe’er1*

Dissipative solitons are fundamental wave-pulses that preserve their form in the presence of periodic 
loss and gain. The canonical realization of dissipative solitons is Kerr-lens mode locking in lasers, which 
delicately balance nonlinear and linear propagation in both time and space to generate ultrashort 
optical pulses. This linear-nonlinear balance dictates a unique pulse energy, which cannot be increased 
(say by elevated pumping), indicating that excess energy is expected to be radiated in the form of 
dispersive or diffractive waves. Here we show that Kerr-lens mode-locked lasers can overcome this 
expectation. Specifically, by breaking the spatial symmetry between the forward and backward halves 
of the round-trip in a linear cavity, the laser can modify the soliton in space to incorporate the excess 
energy. Increasing the pump power leads therefore to a different soliton solution, rather than to 
dispersive/diffractive loss. We predict this symmetry breaking by a complete numerical simulation of 
the spatio-temporal dynamics in the cavity, and confirm it experimentally in a Kerr-lens mode-locked 
Ti:Sapphire laser with quantitative agreement to the simulation. The simulation opens a window 
to directly observe the nonlinear space-time dynamics that molds the soliton pulse, and possibly to 
optimize it.

Solitons are waves with exceptional stability properties, which appear in many areas of physics. They are a fasci-
nating non-linear phenomenon where wave propagation becomes dispersion-less and diffraction-less. We focus 
on dissipative solitons, which develop in cavities with both gain and loss, that preserve their spatio-temporal 
shape from one round trip to the next, but not within the round trip.

Solitons are ubiquitous in all areas of physics, ranging from hydrodynamics through condensed matter to 
optics1. Specifically, optical solitons have important implications to fiber optics and communications2,3, ultra-
fast optics and mode-locked lasers4–7. In the field of ultrafast optics, solitons have been harnessed for the gen-
eration of ultrashort pulses and frequency combs in mode-locked lasers8,9, passive fiber resonators10–13, and 
micro-resonators14–18.

In optics, Kerr-lens mode-locking (KLM) is considered the canonical example of soliton generation, which 
is widely explored4. Specifically, KLM is a passive mode-locking technique for producing ultra-short pulses6,19,20, 
where a third-order (Kerr) non-linear lensing effect, where the gradient of the spatial profile, together with the 
intensity-dependent self-phase modulation effect, create an effective non-linear lens. Combined with an effective 
hard-aperture in the cavity, this acts to overcome the diffraction losses from the hard-aperture that low-power 
CW experiences. This nonlinear lens stabilizes pulses of high peak power by focusing them through the aperture, 
thereby reducing the loss for pulses5,21,22. These stable Kerr pulses are solitons, and are only stable for the specific 
intra-cavity pulse power that generates the required focal length for the Kerr-lens to precisely counteract the 
diffraction loss of the cavity19,23–28, as illustrated in Fig. 1. In this work, we show that this strict power condition 
can be alleviated by taking advantage of a new effect in lasers with multiple Kerr-lens interactions.

The spatial profile of a laser beam across the cavity is normally dictated by cavity-stability analysis, by requir-
ing the cavity mode to reproduce its shape after every round trip. In a linear cavity, the propagation in the 
forward and backward directions through the cavity is inherently symmetric, due to the inversion symmetry 
of all optical elements and the exact inversion of the phase-front on the end mirrors29. The standard model of 
KLM in a linear cavity assumes this symmetry also for the nonlinear Kerr-lens that stabilizes the cavity mode 
for pulsed operation (see Fig. 1), which requires a specific peak-power and pulse shape to form the required 
focal length of the Kerr lens, and hence—a soliton. Once formed, the pulse energy is fixed, and any additional 
power in the cavity (due to elevated pumping, for example) cannot increase the circulating energy, but rather be 
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lost to amplified-spontaneous emission (ASE), or lead to additional continuous-wave (CW) lasing, or additional 
pulses in the oscillation30,31.

In a linear cavity the beam interacts with the Kerr medium twice per round-trip, once in the forward direc-
tion and once backwards (as opposed to a single interaction in a ring cavity). This dual nonlinearity opens an 
additional freedom to optimize the soliton solution. We show quite generally, that the pulses in a linear cavity 
exploit this freedom to mitigate the diffraction losses by breaking the cavity symmetry between forward and 
backwards propagation, which is a major difference from KLM in ring cavities32,33. As outlined in Fig. 2, the pulse 
generates a stronger non-linear lens in the forward half of the round trip, which leads to over-focusing in the 
forward direction at the expense of a weaker focus in the backwards half (due to a larger beam area and lower 
intensity). Consequently, only after a complete round-trip will the pulse repeat its shape and spatial profile, but 
not between the halves of the round-trip. Note that this is purely a spatial effect and not temporal (as one may 

Figure 1.   The soliton model of KLM: The Kerr effect in the gain medium acts to focus the beam (red) inside 
the cavity, mitigating diffraction losses for pulses with high peak power. (top) Linear beam propagation inside 
the cavity (bottom) Beam propagation with the Kerr lens for pulsed operation. d12 are the distances in the free 
propagation arms of the cavity, between the end mirrors (denoted by OC and HR) and the focusing elements 
(denoted L1,2 ) with focal lengths f1,2 , respectively. The total distance between the focusing elements deviates 
from the imaging condition by δ , which quantifies the cavity stability (or deviation from it). The aperture, which 
illustrates the role of the diffraction losses in the cavity, can be an actual element or an effective aperture induced 
by the overlap between the cavity mode and the pump beam in the gain medium.

Figure 2.   Symmetry-breaking between the forward and backwards halves of the cavity round trip (simulation): 
The oscillator breaks the propagation symmetry in order to employ higher pulse power and energy. The figure 
shows the numerically simulated beam width during the entire round-trip in the cavity, where the forward 
half (blue) is different from the backwards half (red), exhibiting different focusing power through each. Inset: 
zoom-in on the beam profile within the nonlinear Kerr medium.
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assume). Specifically, the symmetry breaking is not due to the different chromatic dispersion elements between 
the two interactions, but rather a power-dependent variation of the spatial beam that allows the soliton solution 
to accommodate more energy.

We identified this effect theoretically and then confirmed it experimentally with a home-brewed KLM 
Ti:Sapphire cavity. The theoretical prediction originated from a numerical simulation tool that we developed 
to observe the complete spatio-temporal dynamics and evolution of a pulse in the cavity, under rather general 
assumptions. Previously, this tool was used for demonstrating the dynamical loss mechanism in KLM lasers34.

It is known that Kerr nonlinearity can break the symmetry between different oscillation modes that are 
originally symmetric. For example, the symmetry between the two polarizations in micro-ring cavities is broken 
by Kerr35, and the clockwise and counter-clockwise oscillations modes cannot co-exist in ring fibers with Kerr 
nonlinearity35–37. Here we show that the symmetry can be broken even within a single mode of oscillation, when 
the Kerr-lens is localized in more than a single point. We emphasize that the symmetry breaking here is different 
from the spontaneous symmetry breaking of a Hopf bifrucation38–41. We are not concerned with the appearance 
of two different modes of operation that break the system symmetries, or a change in the system’s stability like a 
Hopf bifurcation, but rather the evolution of a single mode, whose symmetry evolves as we change the excitation 
parameters. Specifically, the two propagation directions in the cavity, which are symmetric at low pump power 
become asymmetric as the pump power is increased. These two directions are not modes of the laser, but rather 
two halves of one round-trip mode. Consequently, this symmetry breaking is not “spontaneous”, but rather a 
continuous deterministic modification of the oscillator mode (which is not bi-stable).

Our simulation offers a powerful utility for nonlinear optical dynamics with KLM, since it exposes the 
complete spatio-temporal propagation of the pulse within the nonlinear medium, where experimental probes do 
not exist. It simulates the evolution of the ultrafast laser oscillation on both fast and slow time-scales. The fast 
time-scale captures the dynamics within a single round-trip, inflicted by the Kerr lens on the temporal envelope 
of the pulse and the temporal beam profile (the time dependent waist and phase front). The slow time-scale 
represents the evolution from one round-trip to the next, simulating the convergence towards steady state due 
to the nonlinear gain dynamics in the laser. This provides the critical capability to observe the nonlinear dynami-
cal evolution on all relevant time-scales, allowing us to quantitatively explore novel concepts of KLM prior to 
experimental implementation.

Since Kerr-lens mode-locked lasers operate in a single spatial mode that is nearly Gaussian, and since the 
Kerr-lens mechanism strongly drives the oscillation towards single-mode operation, our simulation assumes a 
Gaussian beam profile. Specifically, for the KLM rto generate an effective nonlinear lens, the gradient of the spatial 
power has to mimic a lens, i.e. a single-mode, which is strongly peaked around the center, well approximated 
by a Gaussian profile. In addition, the Gaussian approximation has the added benefit of simplifying the calcula-
tions greatly, since it enables to employ ABCD propagation, which is a standard procedure in cavity analysis. 
ABCD propagation of Gaussian beams, which is derived directly from the paraxial Maxwell-Bloch equations, 
is well-established and widely used. It allows us to propagate the complex beam parameter through the cavity 
using only the ABCD matrix of the cavit.

Since our system is dynamic and nonlinear, our non-linear optical elements are changing in time together 
with the beam profile and beam power. We employ a time-dependent ABCD matrix Mn(t) to represent the cavity 
propagation of round-trip n for every time-bin t of the pulse. Repeating the propagation from one round-trip 
to the next, while updating the ABCD matrix according to the laser evolution allows to observe the complete 
cavity dynamics from initiation to steady state oscillation. Although other numerical analyses of KLM have used 
the temporal ABCD formalism before6,30,42–47, they all assumed a Kerr interaction localized at a single point and 
were all aimed directly at finding the steady state oscillation, not at the dynamical cavity evolution.

In section below details the experimental observations of symmetry breaking within the cavity for output 
power, beam profile and laser-threshold, and highlights the quantitative agreement of the experimental results 
with the numerical predictions. A review of the numerical simulation is provided in section.

Results
In our experiment, we employ a standard Ti:Sapphire oscillator in an X-folded cavity48,49, as shown in Fig. 3. 
In order to observe the intra-cavity beam in both forward and backwards directions, a planar output coupler 
(reflectivity R = 0.98 ) folds the cavity configuration near one of the focusing mirrors and couples out a fraction 
of the intra-cavity beam in both directions to be imaged on a CCD camera. The results show symmetry break-
ing with quantitative agreement to the numerical simulation. As illustrated in Fig. 4A,B the symmetry breaking 
allows the pulse power to increase with the pump power beyond the soliton level.

The distance between the mirrors is offset by δ from the geometrical imaging condition, corresponding to dif-
ferent stable or unstable ray configurations. Our cavity operates slightly outside the stability zone, which induces 
diffraction losses for CW operation, while for high peak-intensity pulses, the Kerr-lens counteracts the diffraction 
losses and pushes the cavity back into spatial stability. The strength of the effective fast saturable absorber that 
is induced by the Kerr-lens can be controlled by adjusting δ , i.e. moving further away from the stability zone.

Our analysis (Fig. 2) shows a broad regime outside the stability zone and above the oscillation threshold, 
where the laser changes its temporal profile such that it induces different optical powers in the Kerr medium 
through the two otherwise identical halves of the round-trip. This asymmetry shows a quantifiable signature—the 
beam waist at the same location changes considerably between the forward and backwards direction. All of these 
findings were first predicted by the numerical simulation and only later verified experimentally.

Figure 4A shows the ratio between the measured widths (FWHM) of the forward and backward beams on 
the CCD, while scanning the pump power. Clearly the beam size asymmetry increases linearly with the pump, 
in good agreement with the numerical predictions. In accordance, the output power of the laser (Fig. 4B) also 
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Figure 3.   Experimental configuration: We employ a standard X-folded four-mirror cavity. M1,2 are spherical 
mirrors with focus f =75mm . HR1,2 are the highly reflecting end mirrors (flat). OC is the output coupler used 
to probe the beam twice in each round-trip. A pair of BK7 prisms is deployed to compensate for intra-cavity 
dispersion (not shown). The gain medium (and Kerr medium) is a Brewster-cut 3mm long Ti:Sapphire crystal 
(0.25% doped), pumped by a 4W–6W laser at 532 nm (Verdi V18 by Coherent). The generated pulses have a 
repetition rate of 67 MHz and a duration of roughly 50 fs.

Figure 4.   Results: (A) Ratio of intra-cavity beam width between the forward and backwards directions. 
Blue rectangles-measured, as captured on the two cameras (CCD1 and CCD2). Orange circles—numerical 
simulation. the asymmetry ratio increases with the pump power in accordance with the increase of the total 
output power and with the deviation from the soliton assumption. (B) Output power as function of input pump 
power, measured experimentally (blue). We observe three regions. (1) Below the lasing threshold, where the 
output power is low. (2) Above the CW lasing threshold, where the output power varies linearly with the pump. 
(3) Above the ML lasing threshold, where a linear increase is still observed, but with a lower slope, deviating 
from the soliton assumption. For comparison, we also show the simulation predicted output power (orange, 
fitted only for the ML threshold), which predicts nearly the same power slope as the measurement. (C) Optimal 
crystal position for ML efficiency—experiment and numerical simulation. Blue—the numerically calculated ML 
peak-power, and orange—the experimental ML threshold, as a function of the crystal offset from the focal point 
of the short arm’s lens towards the long arm of the cavity (see Fig. 1 for definition). Interestingly, the optimal 
crystal position is offset in the opposite direction from the conventional expectation assuming a soliton mode.
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shows a linear increase with pump power, demonstrating that the laser find an efficient soliton solution as the 
pump power is increased and the diffractive/dispersive losses are mitigated. The measured disagreement between 
our (rather simple) model and the full experiment in 4A+B is well within the experimental and numerical error-
range, and amounts to 12% at most. We emphasize that this rather quantitative agreement relies on a single fit 
parameter for all results (the ML threshold). The small discrepancies between the experiment and the model can 
be accounted for by additional parameters, such as the total cavity GVD, intrinsic losses, etc, but these parameters 
are quite hard to measure accurately.

It is interesting to note that the simulation directly contradict a symmetric cavity assumption. Specifically, 
the simulation predicts that the maximum output power (at a fixed pump) is achieved when the crystal is off-
set from the focal point towards the short arm by ∼ 1mm44. This optimal offset cannot be reconciled with the 
assumption of symmetric propagation in both directions in the cavity, which would infer that the lens position 
can only be offset in the opposite direction towards the long arm. The experimental measurement of the pump 
threshold for ML at different crystal positions shows a clear optimum with a width that agrees well with the 
simulation (see Fig. 4C). Although the experimental uncertainty in the exact offset position of the crystal ( ∼1

mm) prevents unequivocal verification of the optimum location, this agreement is an additional support for the 
validity of the simulation.

Conclusions
In summary, we uncovered through numerical analysis, and verified experimentally, a passive symmetry breaking 
effect in KLM lasers that mitigates the diffractive losses when multiple Kerr-lens interaction exist in the cavity. 
Namely, the spatial symmetry between identical parts of the cavity can be broken when the Kerr lens interaction 
occurs more than once during the round-trip, as is the case in a linear cavity for the forward and backwards 
propagation. This symmetry breaking is a fundamental freedom for dissipative solitons in space that was not 
explored before. It allows the laser to optimize the soliton solution in space, and enhance its power efficiency 
beyond a single soliton solution19. It is attractive to explore cavities with even more Kerr-lens interactions31, 
where this freedom may modify the soliton solution much further.

In addition to understanding the internal dynamics of KLM lasers, which may be surprising and non-intuitive, 
our work has important implications to the design of KLM oscillators. Specifically, the inclusion of several non-
linear lensing locations in the cavity provides the soliton with an additional degree of freedom that can lead to 
efficient utilization of the pump-power, while preserving its soliton nature. In standard soliton theory, the soliton 
solution exists only for a limited range of pulse powers, and driving more power into the system (for example, 
by increasing the pump-power), would normally not increase the soliton power but would rather excite other, 
often unwanted, modes—such as CW, or additional parasitic pulses. The additional non-linear lens allows the 
soliton solution to exist in a much wider range of pulse powers.

Methods
The concept and operation procedure of the numerical simulation is reviewed hereon. A thorough detail of the 
simulation, along with additional verification tests will be provided in a future publication.

Our simulation calculates the dynamical evolution of the pulse in the cavity in both space and time, and 
shows its dynamical properties as well as its final steady-state. We focus on the hard-aperture KLM regime, 
where diffraction losses are the dominant effect. We approximate the spatial mode of the laser to be a single 
transverse Gaussian TEM00 mode, whose waist is intensity-dependent and varies in time due to the Kerr-lens 
(which is time-dependent). 

where � is the wavelength inside the element, z is the propagation distance, w(z) is the beam width at point z and 
R is the beam’s radius of curvature. Under this Gaussian approximation, the spatial amplitude profile of the beam 
during the n-th round trip is fully represented by a time-dependent complex beam parameter qn(t).

Following the derivation in Siegman29, we solve the Huygens’ integral for a Gaussian mode impinging on an 
element whose paraxial evolution is described by an ABCD matrix. Solving the resulting Gaussian integral, gives 
yet another Gaussian mode. This directly relates the input and output Gaussian beams according to,

Following that discussion, we employ a lumped-element, discrete-time approach, which lends itself naturally to 
free-space laser analysis, like the system we study in this work. In that approach, the beam in the output plane 
of each element is related to the beam in the input plane by an ABCD matrix.
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which follows the standard cavity propagation using ABCD analysis29. The total scattering matrix for the cavity 
is obtained by multiplying the matrices of all constituting elements in the cavity, relating the complex beam-
parameter between one roundtrip and the next one.

This assumption of a single spatial-mode is legitimate for KLM oscillators in free-space, which are strongly 
driven by the hard aperture towards a single spatial mode49. Specifically, higher transverse modes are not able to 
properly induce the Kerr lens and are strongly suppressed by the diffraction losses.

Note that the ABCD matrix Mn(t) of the n-th round-trip is time dependent as well, since it includes the 
intensity-dependent Kerr-lens, which varies according to the temporal intensity of the intra-cavity pulse, as well 
as from one round-trip to the next (due to the gain evolution). We calculate therefore the complex field envelope 
on two time-scales, a “slow” time-scale, which accounts for the variations from one round-trip to the next, and 
a “fast” time-scale, which measures the intra-cavity evolution within the round-trip due to the Kerr-lens effect. 
Our simulation makes no explicit definition of the carrier frequency, which is completely arbitrary, and simulates 
only the complex temporal envelope of the pulse. The simulation flow is outlined in Fig. 5, applying dispersion 
and linear gain/loss in frequency-domain, while saturation and the Kerr-effect are applied in the time-domain, 
where they are more naturally described.

The simulation accepts several parameters that reflect the known (or measured) properties of the laser in 
question—the nonlinear Kerr coefficient, the net dispersion of the cavity, the gain bandwidth (assuming for now 
a Gaussian gain spectrum), the small-signal gain and loss, gain saturation parameter, gain spatial profile (pump-
mode width at the gain medium) and the loss function. The aperture can be located anywhere in the cavity. For 
example, placing the aperture near one of the end mirrors will simulate a hard aperture, whereas an aperture near 
the gain crystal simulates a soft aperture, where the diffraction losses are due to the spatial mismatch between 
the cavity mode and the gain-profile (the pump spot size in the crystal).

In each step, we update two major vectors: the pulse field envelope En(t) and the complex beam parameter 
qn(t) in each round trip n. Initially, the field envelope and complex beam parameter are taken as low-intensity 
random noise (E0(t), q0(t)) , that represent the spontaneous emission seed. They are then propagated repeat-
edly through four modules (see Fig. 5), simulating the important steps in the pulse evolution: Kerr lensing and 
self-phase modulation, cavity propagation, diffraction losses (hard aperture), gain and dispersion. This process 
is repeated until the intra-cavity pulse profile stabilizes. The simulation parameters were matched to our experi-
mental apparatus like the distance between the mirrors and the lenses and the thickness of the gain medium, 
but clearly the parameters can be matched to other systems as well.

Figure 5.   Flow diagram of the simulation. In each round-trip n, the simulation maintains two vectors-En(t) , 
the instantaneous field envelope of the pulse and qn(t) , the instantaneous complex beam parameter. Using 
those two vectors, we can calculate the instantaneous non-linear lens based on the instantaneous intensity 
distribution, which can then be combined into the complete ABCD matrix Mn(t) of the cavity round-trip, 
which allows to propagate the beam and calculate the new complex beam parameter qn+1(t) . The instantaneous 
diffraction losses during the round-trip can then be calculated based on the new complex beam parameter and 
the assumed aperture function. Finally, gain saturation, finite gain bandwidth and cavity dispersion are applied 
in frequency domain to the field, providing the field envelope En+1(t) for the next round-trip.
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The cavity propagation employs a time-dependent ABCD matrix Mn(t) that incorporates the non-linear 
lens along with the other linear optical elements in the cavity. The focal power of the non-linear Kerr-lens is 
calculated according to

based on the intra-cavity power Pn(t) , the beam width wn(t) (from the complex beam parameter qn(t) ), the 
non-linear refractive index n2 and and the thickness of the Kerr medium d.

Finally, we calculate the the field envelope for the next round trip En+1(t) by calculating the time dependent 
gain, loss and group-velocity dispersion. The time-dependent diffraction losses due to the aperture are calculated 
in time domain, whereas the gain bandwidth, dispersion and linear losses are computed in frequency domain, 
where they are efficiently represented with a transfer function of the spectral gain and dispersion profile. To 
account for gain saturation, we calculate the mean power over the roundtrip P̄n and compute the gain saturation 
gn = 1/(1+ P̄n/Pss) , where Pss = 2.6W is the saturation power, calculated from the transition cross section and 
the upper-state lifetime of Ti:Sapphire50. The gain dynamics is assumed to be slow compared to the pulse time 
scale, which is well validated for femtosecond pulses in a CW-pumped Ti:Sapphire oscillator. Specifically, our 
simulation incorporates gain depletion in each round-trip that is proportional to the total pulse energy of that 
round-trip. We assume that gain replenish occurs slowly between cavity round-trips, but neglect the dynamics 
within the ultrashort pulse itself, which is well-justified on the femtosecond time-scale of the pulse.

Data availability
All data generated or analysed during this study are included in this published article.
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