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ABSTRACT

Objective: To develop a framework for identifying temporal clinical event trajectories from Observational Medi-

cal Outcomes Partnership-formatted observational healthcare data.

Materials and Methods: A 4-step framework based on significant temporal event pair detection is described

and implemented as an open-source R package. It is used on a population-based Estonian dataset to first repli-

cate a large Danish population-based study and second, to conduct a disease trajectory detection study for type

2 diabetes patients in the Estonian and Dutch databases as an example.

Results: As a proof of concept, we apply the methods in the Estonian database and provide a detailed break-

down of our findings. All Estonian population-based event pairs are shown. We compare the event pairs identi-

fied from Estonia to Danish and Dutch data and discuss the causes of the differences. The overlap in the results

was only 2.4%, which highlights the need for running similar studies in different populations.

Conclusions: For the first time, there is a complete software package for detecting disease trajectories in health

data.
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LAY SUMMARY

Modern principles for comorbidity studies that take time dimension into account and identify temporal disease trajectories

from the data were published in 2014 by Jensen et al. However, the absolute number of such studies has remained small.

We believe this is because these principles were not described sufficiently to allow exact replication and have led to varia-

tions in the methods of such studies.

Based on the previous publications and best practices of that field, this article proposes a 4-step framework for clinical

event trajectory studies and introduces an open-source R package that implements this approach. As a proof of concept, we

apply the framework for replicating the largest published trajectory study (Danish population) on Estonian population-based

data. In addition, we conducted a type 2 diabetes trajectory study on Estonian and Integrated Primary Care Information

(IPCI) databases from the Netherlands. To the best of our knowledge, this is the first framework for assessing disease trajec-

tories that can be applied to any data source standardized to the Observational Medical Outcomes Partnership Common

Data Model.

We show that the results are highly dependent on the dataset. By comparing the results from different datasets, we highlight

the opportunities and challenges of these kinds of trajectory studies. These issues have not been thoroughly described before.

INTRODUCTION

Electronic health records are increasingly used for research. They

provide a great opportunity for conducting large-scale studies of dif-

ferent diseases and populations that would not be feasible in classi-

cal clinical trials or cohort studies. One topic of interest in recent

times has been the hypothesis-free identification of temporal disease

sequences (trajectories) where one event leads to another.1–4 An im-

pressive number of temporal relations have been published in vari-

ous studies on whole databases1,3,4 and specific cohorts5,6 since

Jensen et al1 published the general principles of trajectory studies in

2014. While the results provide a good characterization of these

datasets, it is difficult to estimate which of these trajectories reflect

local healthcare factors such as diagnosis and treatment practices

unique to the local or regional healthcare system and which are gen-

eralizable globally. In order to find clinically relevant information

about disease trajectories that are independent of a particular data-

base and could potentially improve patient care, trajectory studies

need to be replicated across a wider database network. The absolute

number of large-scale disease trajectory studies has remained

small.4,7 We think this is because of 2 reasons—first, there is a lack

of syntactic and semantic interoperability of health data8,9 which

makes network studies a challenge, and second, there has not been

an open-source standardized implementation of an analytical frame-

work for performing this type of analysis.

The first issue is currently being tackled by various research com-

munities. The open-science Observational Health Data Sciences and

Informatics (OHDSI) network has put a tremendous amount of ef-

fort into building an open community standard Observational Medi-

cal Outcomes Partnership (OMOP) Common Data Model (CDM).

OMOP CDM uses standardized vocabulary that transforms data

from disparate observational health databases into a common for-

mat. This allows the development and wider use of standardized

tools for the analysis of electronic medical records regardless of the

original formatting of the data.10 As of today, it is estimated that ob-

servational health data of 810 million distinct patients in over 330

databases are partially mapped to the OMOP model,11 and a wide

range of studies have already been conducted on these datasets by a

large OHDSI community.12 Using the same network for investigat-

ing temporal health event sequences would enable us to conduct tra-

jectory studies on an unprecedented scale.

Common principles for disease trajectory studies are needed to

standardize such studies. While most of the recent publications rely on

the main principles published by Jensen et al1 in 2014 (see “Methods”

section), we have found that the methods are described insufficiently

for adequate replication in other datasets, making it almost impossible

to verify the results or conduct a similar analysis in other settings.

In this article, we propose a standardized framework for detect-

ing temporal clinical event trajectories in the observational health

dataset, based on the previous publications and best practices of

that field. It is a stepwise process starting with identifying the sim-

plest elements of the trajectories, followed by building longer trajec-

tories of these elements and counting the actual event sequences on

that graph. We also introduce the implementation of the framework

as open-source software trajectories that utilize the OMOP CDM

and standardized vocabularies.

MATERIALS AND METHODS

Previous work
Only a few large-scale disease trajectory studies have been published

so far. They mostly refer to the paper by Jensen et al1 published in

2014, where the general principles for modern large-scale hypothe-

ses-free temporal trajectory analysis were described and used on a

large Danish National Patient Registry. Many later studies have re-

lied on the same dataset. For example, Siggaard et al3 published a

browser of the results and Jørgensen and Brunak13 studied chronic

obstructive pulmonary disease. Hu et al2 linked the data to the can-

cer registry and investigated trajectories prior to the cancer diagno-

sis. These principles with certain modifications have been applied to

other populations as well. For instance, Han et al5 studied patients

after depression diagnosis in UK Biobank and Paik and Kim6 investi-

gated trajectories towards death in California. In 2018, Giannoula

et al4,7 proposed a framework for detecting and clustering disease

pairs in a Spanish dataset, and later extended this to include genetic

information in the clustering step.

In Table 1, we have summarized the methods described in these

publications. Although this is not a systematic review of trajectory

studies, we believe it gives a good overview of the similarities and

differences of the methods used in these works.

As it can be seen from the table, the first step in all studies is to

identify the disease pairs and then build longer trajectories from

these. Diseases in these publications use different hierarchical classi-

fication systems and are generalized to different levels. Only the first

disease occurrence is taken into account. None of the studies used
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drugs or procedures as the trajectory events. Almost all publications

used relative risk as the measurement of the strength of the disease

pair. Many studies also cluster the resulting trajectories, but there is

no clear agreement on the best clustering method. The visualization

techniques of the results also vary across studies. None of the studies

claim that identified trajectories are causal. None of the studies have

published a complete ready-to-use software code either, making it

difficult not only to determine exact implementation details but also

to validate their methods and findings in other settings. For exam-

ple, there seem to be differences in the way the group matching and

clustering are conducted by different researchers, but it is hard to

make an exact comparison without seeing and testing the software

code. Therefore, based on these principles and our best understand-

ing, we propose a standardized framework for future trajectory

studies with the concrete implementation as a software package.

Framework for detecting temporal health event

trajectories
The proposed framework for detecting temporal health event trajec-

tories consists of the following steps (Figure 1):

1. Define a study cohort

2. Specify study parameters

3. Identify temporal clinical event pairs

4. Count trajectories consisting of temporal clinical event pairs

Define a study cohort
Depending on the research question, disease trajectories can be in-

vestigated either in the whole dataset or within a more specific co-

hort. For example, one may be interested in revealing specific

treatment patterns used within a specific cohort such as type 2 dia-

betes (T2D), depression5 or deaths,6 ignoring clinical events related

to any other patient group, or investigating trajectories separately

among men and women5,14 or different age groups.6 Therefore, it is

vital to clearly define the study cohort at the beginning of any dis-

ease trajectory analysis. In our framework, we use flexible and pow-

erful cohort definition principles from OHDSI/OMOP network,

where a cohort is a set of persons who satisfy one or more inclusion

criteria for a duration of time.15 These principles have been effec-

tively used in a number of studies across the world,11,16 allowing for

detailed descriptions of the cohorts by using basically any kind of

recorded health information. Note that a full database can also form

a cohort. Identifying underlying disease pathways from a full data-

base can discover unknown relationships in individuals and time-

frames not excluded by the cohort definition.

Specify study parameters
Within the cohort, there are many additional criteria for the

trajectories that need to be specified according to the exact research

question.

Figure 1. Illustration of the framework.
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First, the investigator has to decide which types of clinical events

are included in the analysis. While previous trajectory studies have

mainly focused on diseases, we extend this approach to any event

type that is recorded in observational data. Particularly, a clinical

event in the context of our framework is any condition, observation,

drug era, or procedure as determined by the investigator. Within

OMOP CDM, all the events are coded using standardized OMOP

vocabularies.

For discovering ordered temporal sequences where one event

leads to another, only the first occurrence of any event for every pa-

tient within the cohort is considered, allowing us to avoid repeatedly

counting the records with the same (potentially chronic) conditions.

This could be a limiting factor for some studies where repetitions of

the events play a role—for instance, if one is investigating the se-

quence of the same type of events or dynamics of numerical meas-

urements associated to same terms. However, taking into account

all occurrences of each event when conducting a study is often an

impractical approach. For studying diseases that could indepen-

dently occur several times (eg, seasonal influenza), shorter time

frames when defining the cohort should be used, allowing the pa-

tient to be represented in the cohort with several time periods.

For each patient in the cohort, the selected events form a se-

quence of events. Any event along that sequence (E1) can be consid-

ered as a potential risk factor for future events (E2) where the

strength of the association of the event pair can be described by rela-

tive risk (RR) as follows:

RR ¼ Pr ðE2 with prior E1Þ
Pr ðE2 without prior E1Þ :

While some events increase the risk of future events (relative

risk: RR>1), others may decrease it (RR<1). For many event pairs,

the effect can be very small (RR close to 1) and provide little practi-

cal interest. Therefore, depending on the research question, the in-

vestigator can specify the range of relative risk of interest, leaving

the event pairs that do not satisfy the RR range criteria out of the

analysis.

Finally, there are a few parameters that can be used for fine-

tuning the analysis. To focus on the most prevalent event sequences,

the investigator can set a minimum prevalence for event pairs in or-

der to include them in the analysis. Sometimes it can be useful to

limit the minimum and maximum temporal distance in days be-

tween the events, preventing events that are either too close or too

far apart to be included in the analysis.

Identify temporal clinical event pairs
Although each individual sequence consists of a number of events,

only a few of them have a significant effect on the following events

and provide interest for the trajectory studies. The aim of this step is

to identify the building blocks for creating longer trajectories. We

identify event pairs where the first event tends to not only occur be-

fore the other but also alter the risk of the following event. This ap-

proach is similar to what has been used by Jensen et al1 and

Siggaard et al.3

We perform extensive statistical significance testing of event co-

occurrence in event sequences. First, events of each individual se-

quence are arranged into event pairs; every 2 events occurring in a

specific order (may have intermediate events between) within a time-

frame specified in the study parameters form an event pair E1 !
E2. Next, for each pair that satisfies all other study parameters

described in the previous section, it is assessed whether the first

event alters RR of the following event and whether they have a sig-

nificant temporal order.

For the first task, an exposed (patients having prior E1) and

background group (matched patients from the whole cohort) are

composed, and the prevalence of E2 in both groups is assessed. For

example, Jensen et al1,3 matched exposed and background groups

by gender, age group, type of hospital, and week of the E1 occur-

rence in the Danish dataset. The number of matching patients will

quickly become very small with high levels of stratification, espe-

cially for rare events. This would require an initial database of enor-

mous size, as was the case in Denmark.1 Therefore, our proposed

framework requires exact matching by gender, age group and calen-

dar year of E1 only. Calendar year is included to take into account

underlying shifts in delivering treatment over time. Other compo-

nents are combined into propensity scores and matched. Next, sta-

tistical testing is performed. The framework uses Fisher’s exact test

to first assess whether the prevalence of E2 in the exposed group is

significantly different from the background group.

For all event pairs that demonstrate a significant association, we

assess whether there is a significant temporal order (direction) be-

tween E1 and E2 in the data using a binomial test (similar to Jensen

et al1).

For both tests, the multiple testing corrected P-value below .05 is

considered statistically significant. We propose to use the false dis-

covery rate correction for discovery studies and the more conserva-

tive Bonferroni correction for validation studies.

Count trajectory patterns consisting of temporal clinical

event pairs
In the previous step, significant temporal event pairs—the building

blocks of longer event trajectories—were identified. These can be

further used to form a directed graph where each event is repre-

sented as a node and directional edges represent the temporal order

between events. The graph is useful for illustrating the main trajec-

tories within the database, especially when less frequent pairs are fil-

tered out (Figure 2). The significant temporal event pairs are

combined into all possible longer trajectories (eg, E1 ! E2 and

E2! E3, producing the trajectory E1! E2! E3) and their actual

occurrences are counted by evaluating them against the database.

Trajectories may contain other intermediate events, the process is

described in detail by Jensen et al.1 As a result, the list of all trajecto-

ries together with their occurrence counts is obtained. The list can

be later filtered to answer questions such as how many patients have

a trajectory from A to B to C.

Implementation of the clinical event pair detection

framework
The framework described above is implemented as an open-source

R package freely available in GitHub,17 and is open for the commu-

nity to add further improvements and additional features in the fu-

ture. It can be run in 2 modes—either to discover event trajectories

from the dataset without any prior knowledge or to validate the

event pairs that were discovered in some other dataset. The only dif-

ference is that in the validation mode, the exact event pairs for test-

ing are given as input. Detailed information on how to run the R

package is described in the vignette located in the repository.

Optimal pair matching was performed using the “MatchIt” pack-

age, which calls functions from the “optmatch” package.18,19 For

large databases, one can also use faster nearest neighbor matching.
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We demonstrate the framework and the package by replicat-

ing the largest published trajectory study3 (Danish population) on

Estonian population-based data. In addition, we conducted a

T2D trajectory study on Estonian and Integrated Primary Care In-

formation (IPCI) databases from the Netherlands. The Estonian

dataset contains health data of a 10% random sample of the Esto-

nian population (n¼147K patients). For each individual in the

dataset, all insurance claims, digital prescriptions, and in- and

outpatient electronic health records from the period 2012 to 2019

were first converted to OMOP CDM. Mortality rates in the data-

set are not complete, covering approximately only two-thirds of

all deaths. IPCI is a Dutch database containing the complete med-

ical record of more than 2.8 million patients provided by more

than 450 general practitioners (GPs) geographically spread over

the Netherlands. In the Netherlands, all citizens are registered

with a GP practice which acts as a gatekeeper in a 2-way ex-

change of information with secondary care. The medical records

can therefore be assumed to contain all relevant medical informa-

tion, including medical findings and diagnosis from secondary

care. The International Classification of Primary Care (ICPC) is

the coding system, but diagnoses and complaints can also be en-

tered as free text. Prescription data contain information on prod-

uct name, quantity prescribed, dosage regimens, strength,

indication, and ATC codes.

RESULTS

Internal validation of the methods
To ensure the validity of the framework, we have equipped the

package with 78 built-in tests that check various steps in the pack-

age. In addition, we designed a synthetic event pair E1! E2 where

the probability of observing E2 after E1 was 50%, and added it into

random data of 1000 patients. We tested how well the package was

able to detect the synthetic pair depending on selected RR (varying

from 1.2 to 5), the count of the pair (10–100) and the count of other

random events per patient (1–30). We also assessed whether the

framework identifies any pair from random data without any syn-

thetic trajectory. The corresponding test results are given in Supple-

mentary Material. In general, the ability to detect the event pair was

very good—the added event pair was successfully detected in 55 out

of 62 tests. Difficulties with the trajectory detection were observed

when the number of trajectories and the number of other events in

the data were both small (�20 and up to 6 additional random events

Figure 2. Twenty most frequent event pairs in type 2 diabetes cohort in Estonian dataset. Node size indicates the number of patients of that event record, relative

risk of the future event is shown on edges. All pairs were also validated as significant in the IPCI database.
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per patient accordingly). In addition to true event pair, especially

when the true pair occurred frequently (�50 times), and the number

of other random events was large (�17), the framework identified

other event pairs as directional (15 pairs is an extreme example).

However, no directional pairs were detected in random data without

the synthetic pair added, no matter how many random events were

added. We also tested that if we added synthetic 3-event trajectory

for 100 patients in random data (n¼400 patients), it was detected

and counted correctly.

Validation of Danish temporal event pairs in the

Estonian population
We analyzed 40 711 temporal event pairs reported by Siggaard et

al3 as having significant temporal order in the Danish population

and tried to confirm or reject these in Estonian data. Both datasets

use The International Classification of Diseases version 10 (ICD-10)

codes, the Danish dataset being much larger with 7.2 million

patients and spanning 24 years (1994–2018). While the Estonian

dataset contained data of all healthcare services, the Danish dataset

was missing data from GPs.2 Here we present only the summary of

the results while full details are given in Supplementary Material.

Out of all pairs tested, 13.5% did not occur in Estonian data at all

(Figure 3). For instance, code “K64” (hemorrhoids and perianal ve-

nous thrombosis) is one of the events in 147 temporal pairs in Den-

mark, but the code is never used in Estonia. There, physicians still

record “I84” instead (Haemorrhoids), although the particular code

was removed from ICD-10 in 2010 already.

For the majority of the pairs tested (78.4%), RR of the future

event was not found significantly different from 1 in Estonia. How-

ever, such a high number was not a surprise as the Estonian dataset

was 49� smaller in patient count and 3� in the time range. The

mean counts of these nonsignificant pairs were 835 in Danish and

46 in the Estonian dataset. Differences in event frequencies play a

role here. For example, code “O83” (other assisted single delivery)

is frequently used in Danish data (n¼59 868 patients) and produced

Figure 3. Process flow of testing Danish directional event pairs in Estonian dataset.

JAMIA Open, 2022, Vol. 5, No. 1 7

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooac021#supplementary-data


185 significant temporal event pairs as a result (most prevalent pair

“E66” overweight and obesity ! “O83” occurred on 10 927

patients). However, in Estonia, the usage of “O83” is extremely rare

(n¼12) and only 29 of the pairs tested containing that code oc-

curred at least once, which is far from being sufficient for observing

any statistical significance.

For many pairs where the preceding event altered the RR of the

future event, the effect of the first event (increased vs decreased the

risk of the second event) or the order of the 2 events was opposite of

what had been reported in Denmark (4% and 1.7% of the cases re-

spectively). All these pairs had an increased risk in the Estonian

data, while a decreased effect was reported in Denmark. An extreme

example is “J35” (chronic diseases of tonsils and adenoids) which

had a protective effect against future “K83” (other diseases of bili-

ary tract) in Denmark (RR¼0.30) but increases the same risk signif-

icantly in Estonia (RR¼4.5; 95% CI, 2.41–8.40).

As a result, we were able to confirm significantly altered RR and

temporal order of 976 pairs (2.4%) (Figure 3).

Discovering event pairs in Estonian data
To discover all temporal event pairs in Estonian data, we ran our

package on the whole data without any prior knowledge of Danish

findings. We used similar parameters to get comparable results (re-

quired pair count �20). In total, 130 137 event pairs were tested in

the Estonian dataset. Out of these, 22 618 pairs in between 797 indi-

vidual events were found directional and significant (Figure 4), but

only 4937 pairs of them (22%) overlapped with the Danish direc-

tional pairs. What is more, for 2290 pairs (10%), the effect direction

of the first event of the pair was similar to the Danish study.

Again, differences in the frequencies of the ICD-10 codes play an

important role here (Figure 5). For example, code “J06” (acute up-

per respiratory infections of multiple and unspecified sites) is exten-

sively used in Estonia—recorded for 36% of the patients—leading

to 432 temporal event pairs containing “J06” either as the first or

the second event. In contrast, only 1.2% of Danish people have a

“J06” record and just 15 temporal event pairs are found. Another

example is “I11” (hypertensive heart disease) which has a frequency

in Estonia 24% versus 0.5% in Denmark and temporal pair counts

425 versus 44. Such big discrepancies in individual codes may imme-

diately affect many temporal pairs of events.

All tested and discovered event pairs are given in Supplementary

Material. For privacy reasons, event counts less than 20 are hidden.

Type 2 diabetes event trajectories in Estonia and IPCI
To illustrate a cohort-based approach, we ran a discovery study of

event trajectories for T2D cohort in the Estonian database

(n¼11 009 patients) to identify temporal event pairs that occur in

at least 1% of the cohort and where the preceding event increases

the risk of the second one at least 1.2 times. This particular thresh-

old was chosen for practical reasons to eliminate event pairs where

the first event increases the risk of the second event less than 20%.

The discovery run on Estonian data revealed 943 significant event

pairs. To validate the findings, we ran a validation study of these

pairs on an independent IPCI database from the Netherlands. The

validation confirmed 177 of the tested pairs (19%) while 61% of

the pairs never occurred in the IPCI database, highlighting the issue

of different source codes and/or OMOP CDM mappings used in

these databases. In particular, IPCI uses ICPC coding system while

Estonian data are based on ICD-10. The latter differentiates T2D

with and without complication whereas the IPCI database has a sin-

gle source code for both conditions (“Type 2 diabetes mellitus”).

Therefore, pairs with “Type 2 diabetes mellitus without

complication” do not occur there at all. This, of course, alters the

RR values—in IPCI, the sole T2D diagnosis code increases the risk

of future metformin 32 times (95% CI, 28.37), while in Estonia, the

Figure 4. Attrition diagram of identifying directional event pairs in Estonian dataset.
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risk is much smaller (RR¼2.8) as there are other T2D diagnosis

codes that precede metformin treatment.

As expected, “Type 2 diabetes mellitus” ! “metformin” is the

most prevalent trajectory within Estonian data as metformin is the

main medication for T2D. Out of longer trajectories, “Essential

hypertension” ! “Type 2 diabetes mellitus” ! “metformin” is the

second most prevalent one. This is a somewhat expected result as

high blood pressure is a previously shown risk factor for diabetes,

especially when the blood pressure is uncontrolled while the order

of these conditions also varies in different studies.20–24 The first

most prevalent 3-event trajectory is “Type 2 diabetes mellitus” !
“metformin” ! “metoprolol,” supporting the recent findings of

T2D being likely causal to hypertension.24 T2D damages blood ves-

sels and increases the risk of various cardiovascular diseases,25 for

which metoprolol was the first-line treatment until 2019 in Estonia.

In the Netherlands, the most prevalent trajectory is “Cystitis” !
“Urinary tract infectious disease,” supporting the previous findings

that infectious diseases, including cystitis, are more prevalent among

T2D patients when compared to others.26

All confirmed event pairs of this study, as well as the trajectories

with their counts in the Estonian dataset, are given in Supplementary

Material. These pairs are also available as a built-in preset in the

Trajectories package so that everyone can validate those on their

own database with only a few clicks. The 20 most frequent pairs are

shown in Figure 2.

DISCUSSION

In this article, we have introduced a framework and implemented an

open-source software for detecting event trajectories in OMOP-

formatted health data. We evaluated the framework by replicating a

Danish study to identify all significant event pairs in Estonia and

also conducted a T2D study on 2 different datasets.

As the results in different datasets vary considerably, it is impor-

tant to understand whether the discrepancies resulted from popula-

tion, the data mapping, or the framework itself. To eliminate the

risk of a faulty framework, the R package is covered with 78 built-in

tests, as mentioned in the “Methods” section. However, we believe

that testing the whole framework in various conditions as well as

testing the methods published in independent trajectory studies de-

serve more attention and a separate work. Due to the complexity of

case–control matching, it requires a systematic approach to design

good test cases and identify possible bottlenecks that are not fore-

seen as of today. From a population perspective, it can be seen from

the results that differences in the frequencies of used event concepts

(codes) play an important role in trajectory analysis. There is a

strong correlation between the frequency of the event and the num-

ber of significant temporal event pairs containing that event (corre-

lation coefficient is 0.88 in Estonia and approximately 0.99 in

Denmark). Therefore, when the baseline frequencies vary in differ-

ent datasets or populations, we will get different sets of significant

event pairs. The reasons behind these variations in frequencies can

be attributed to several factors. First, the true prevalence of the dis-

eases can be different in different populations or datasets. Second, as

we saw above, different concepts can be used in different cultures or

healthcare environments to record the same underlying condition.

Third, differences in source coding systems and their granularity

lead to different mappings and concepts used in OMOP CDM, mak-

ing them challenging to compare across several databases.27 If con-

cepts were automatically generalized at a higher level, we might be

able to replicate findings more effectively. This would not only re-

solve the problem of using different concepts but also the issue of

low statistical power as the numbers in the case of generalized con-

cepts would be higher. However, as OMOP CDM uses SNOMED

Clinical Terms ontology as the underlying vocabulary, moving up-

wards towards the root of the ontology is a challenging task due to

the multiple parent concept principle. Finding common parent con-

cepts in various datasets would require prior analysis of these data-

sets. Mapping errors when transforming the original concepts to

OMOP CDM vocabularies can also cause discrepancies in the

event frequencies. Therefore, it is extremely important to assess the

mapping quality before any trajectory study. Finally, the time span

Figure 5. Event frequency is correlated with the number of identified significant event pairs (example on Estonian data). Diagnosis codes mentioned in this article

are highlighted.
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of the dataset also has its implications—the longer the observation

period, the more conditions occur (such as chronic diseases or

deaths, for example), increasing the frequencies of the events and

leading to more event pairs with these events as a result. On the

other hand, the longer the observation periods grow, the more age-

dependent temporal relationships we can start observing in the data.

Another aspect that needs to be kept in mind is that event trajec-

tories happening in the data and picked up by the software package

may not be causative. For instance, confounding effects can cause

spurious associations, and it is not easy to distinguish them from the

causative event trajectories. The proposed framework does not yet

contain any causality checks and the results characterize only the

associations in the dataset. However, a temporal trend is a prerequi-

site for causality,14 and the findings could be used as hypotheses for

further causality studies.

One of the weaknesses of the package is that in its current ap-

proach, it is limited to discrete or binary events only. Future exten-

sions of the framework can also include numerical values such as

laboratory measurements as events. However, as many of the meas-

urements can vary during the same disease episode, it might become

necessary to add support for repeated events into the framework,

which will have a larger impact on the current principles as well.

There are a number of strengths to our approach as well. While

following the principles of previously published studies, it is to our

best knowledge the first open-source analysis package for investigat-

ing clinical event trajectories. Anyone can now use, examine, vali-

date, and modify it as the source code is publicly available. It can be

automatically run on any database in OMOP format, not only to

characterize the data via trajectories but also to validate event pairs

from other studies. The package is not limited to disease codes only

as it considers other health-related events such as drug exposures,

observations, and procedures, also. The whole analysis process is

implemented in a single software package, making each step trans-

parent, and as a whole, stands as a basis for reproducible science.

We believe this package can greatly boost scientific studies on the

analysis of temporal health events globally and will open new ave-

nues for extending it with additional features in the future.

In the Supplementary Material, we publish event pairs and dis-

ease trajectories from the Estonian population. These can be used as

comparison data for any population-level trajectory study in the fu-

ture. Alternatively, we believe that there is room for improving the

visualization techniques of the identified trajectories, and even with-

out having access to any dataset, one can work on this issue by using

our results.

Finally, we aimed to compare our package results to the output

of another disease trajectory tool, recently published by Giannoula

et al.4 This tool detects temporal event pairs and then clusters the

trajectories using a dynamic time warping algorithm. We found the

guidelines for using the tool insufficient as we were not able to run

the scripts without altering them. Part of the analysis was also miss-

ing, such as the code for calculating RR. Attempts to contact the

authors have been unsuccessful, and therefore, we were unable to

compare the performance of these tools. We think this clearly illus-

trates why open-source pipelines are important.

CONCLUSION

The proposed framework allows for the identification of significant

clinical event progression patterns in health data standardized to the

OMOP CDM. We have implemented all of this as an easy-to-use R

package Trajectories that enables users to extract and visualize tem-

poral event trajectories from OMOP-formatted observational health

data and compare the results across databases.
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