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The effort, focus, and time to collect data and train EMG pattern recognition systems is

one of the largest barriers to their widespread adoption in commercial applications. In

addition to multiple repetitions of motions, including exemplars of confounding factors

during the training protocol has been shown to be critical for robust machine learning

models. This added training burden is prohibitive for most regular use cases, so

cross-user models have been proposed that could leverage inter-repetition variability

supplied by other users. Existing cross-user models have not yet achieved performance

levels sufficient for commercialization and require users to closely adhere to a training

protocol that is impractical without expert guidance. In this work, we extend a previously

reported adaptive domain adversarial neural network (ADANN) to a cross-subject

framework that requires very little training data from the end-user. We compare its

performance to single-repetition within-user training and the previous state-of-the-art

cross-subject technique, canonical correlation analysis (CCA). ADANN significantly

outperformed CCA for both intact-limb (86.8–96.2%) and amputee (64.1–84.2%)

populations. Moreover, the ADANN adaptation computation time was substantially lower

than the time otherwise devoted to conducting a full within-subject training protocol. This

study shows that cross-user models, enabled by deep-learned adaptations, may be a

viable option for improved generalized pattern recognition-based myoelectric control.

Keywords: EMG, gesture recognition, deep learning, domain adaptation, cross-user, training burden

1. INTRODUCTION

Electromyography (EMG) pattern recognition has been pursued as a way to control prosthetic
devices for decades; however, there is a growing interest in its use for a wider range of commercial
applications (Jiang et al., 2018). In particular, EMG is well-suited for hands-free interaction with
virtual and augmented reality in consumer and industrial settings (Qian et al., 2020). This rise in
interest is because EMG provides a highly intuitive control signal for motor tasks via the electrical
potentials generated as muscles contract. When multiple electrodes are used, the decoded signals
may be used to infer the gesture performed by the user with the help of a pattern recognition
model (Oskoei and Hu, 2008). Typically, these systems require collecting EMG data from the
end-user through a guided training protocol before the device is used to configure the pattern
recognition model. Following this procedure, high gesture recognition accuracy can be obtained
under controlled settings, as was demonstrated by Côté-Allard et al., who obtained 98.3% for a 7
class system (Côté-Allard et al., 2019). When systems are used in real-world conditions, however,
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performance tends to degrade substantially due to confounding
factors, such as limb position, contraction intensity, and electrode
shift (Scheme and Englehart, 2011; Campbell et al., 2020c;
Phinyomark et al., 2020).

The most common approach to improving robustness to
these confounding factors is to include these variable conditions
within the training protocol. For instance, Fougner et al. (2011)
demonstrated the degradation when systems are trained in a
single position, but used across five different positions. By
repeating the training protocol in each of those five positions, the
resulting error decreased from 18 to 5.7%. Moreover, extending
the training protocol to include variable conditions has been
similarly validated as an solution for the effects of contraction
intensity and electrode shift. When at least two contractions
intensities (20 and 80% maximum contraction intensity) were
supplied in the training protocol, Scheme and Englehart (2011)
decreased error from 45 to 20% across a wide spectrum of
intensities. Likewise, Hargrove et al. (2006) decreased error
from 30 to 10% when electrodes were shifted by repeating
the training protocol in five electrode locations. While these
solutions enable myoelectric control to be robust to numerous
sources of variability encountered in real-world conditions,
extending the training protocol to all foreseeable conditions is
infeasible due to the tremendous burden of time, focus, and effort
for the user.

What’s worse, is that this training burden is experienced
each time the user puts on the device because EMG signals
vary between-users (Saponas et al., 2008) and within-user across
sessions and over time (Zia ur Rehman et al., 2018). EMG signals
have been shown to vary with a number of factors like age
(Theou et al., 2013) and physiological factors (Reaz et al., 2006)
(e.g., fiber composition, blood flow, etc.). Some user groups,
like amputees, have even larger inter-subject variability due to
different muscle geometry and tissue filter effects (Campbell
et al., 2019a). Nevertheless, these sources of variability do not
completely destroy all EMG signal similarities between users
(Barona López et al., 2020). This was demonstrated by Saponas
et al. (2008) who achieved accuracies above chance when they
pooled data from 11 able-bodied subjects to predict gestures
of a different end-user. Campbell et al. (2020b) further noted
that different groups of subjects were indistinguishable from
one another from short windows of EMG (<300 ms) alone.
Because some common information exists, cross-user models
have been proposed as a method to alleviate training burden
by supplementing a user’s training data with added sources of
variability supplied by other users.

After Saponas et al. (2008) demonstrated that pooling data
from a bank of users yielded a classifier that performed
better than chance for a new test user, other researchers have
endeavored to adapt the pooled data to be better suited for
the end-user. Matsubara and Morimoto (2013) isolated the
component of feature vectors associated with gesture-variability
using a bilinear transform and decreased error from 47 to 17%.
Similarly, Khushaba (2014) introduced canonical correlation
analysis (CCA) for gesture recognition, where each of the pooled
users were first projected to the domain of an expert user
to train a classifier. The mapping from an end-user to this

domain was then learned using only a single repetition of each
gesture. Xue et al. (2021) has further improved upon CCA by
integrating optimal transport within the cross-user framework.
CCA has achieved high performance for both intact-limb and
amputee populations, requiring minimal data supplied by the
end-user, and has improved performance when in the presence
of multiple confounding factors (Cheng et al., 2018). Through
these works, CCA has been established as a state-of-the-art
technique for cross-user gesture recognition. Although CCA has
yielded impressive results in EMG pattern recognition studies,
it requires tightly controlled training protocols to ensure that
an appropriate weight matrix is learned to map between end-
user and expert user. This requirement limits the applicability
to real-world applications, where end-users receive no researcher
guidance and are unlikely to adhere perfectly to prescribed timing
and progression of gestures.

A growing trend in the EMG gesture recognition literature is
to employ deep learning techniques to derive features directly
from data instead of using handcrafted features. Ameri et al.
(2018) demonstrated that convolutional neural networks (CNN)
outperformed support vector machines using existing feature sets
in a functional test. Similarly, for simultaneous control of wrist
motions, a CNN-based regressor again outperformed a support
vector regressor in the same functional test (Ameri et al., 2019).
Xia et al. (2018) introduced recurrent layers into CNNs to better
leverage the time series nature of the EMG signal, resulting
in a significant improvement in accuracy over the support
vector regressor and standard CNN. Recurrent neural networks
also inspired the recurrent and temporal fusion approaches
for handcrafted feature extraction by Al Taee et al. (2020)
and Khushaba et al. (2020). Similar long-short term memory
networks have also provided a competitive alternative to CNN
networks. He et al. (2018) found that long-short term memory
networks were better suited for grasping motions, a task with
strong temporal structure, than the CNN. Campbell et al. (2020a)
used generative adversarial networks to simulate synthetic EMG
signals to augment data sets with limited user-supplied data and
better inform decision boundaries. Despite the growing body of
deep learning approaches for EMG gesture recognition, very few
studies have focused on cross-subject gesture recognition.

CNNs have been used for cross-subject EMG studies; however,
without an adaptation strategy, cross-subject performance
remains suboptimal (Park and Lee, 2016; Côté-Allard et al., 2019;
Kim et al., 2020). More generally, adaptation strategies, such as
transfer learning (Côté-Allard et al., 2019), supportive model
selection (Kim et al., 2020), adaptive instance normalization
(Li et al., 2016), and adversarial training (Ganin et al.,
2016), have improved cross-user performance across a variety
of applications. Although these adaptation strategies have
been investigated in only a few EMG studies, they show
great promise to improve cross-subject gesture recognition.
For instance, Kim et al. (2020) proposed supportive model
selection and demonstrated an increase in end-user accuracy
over training a model with pooled training subjects by
using majority vote over models trained using training
subjects independently. Consequently, our objective was to
develop an adaptation approach that would outperform the
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cross-user state-of-the-art CCA model without its inherent
training restrictions.

Adaptive domain adversarial neural networks (ADANN) have
recently been proposed as a powerful subject independent model
(Côté-Allard et al., 2020a). In our prior work, the pooled-variance
of subjects was used to create a subject-general model (one model
trained and used by many subjects) that exceeded the accuracy of
traditional within-subject models (one model for each subject).
We have also validated it in the presence of confounding factors,
such as inter-session and across day variations, using self-
calibration (Côté-Allard et al., 2020b). In these works, however,
each of the test users supplied a full training set, resulting in
little benefit to the training burden. In contrast, the potential
for ADANN to solve the cross-user problem, wherein the end-
user supplies only minimal data to learn the adaptation, has not
been explored.

Consequently, in this study, we explore whether ADANN can
be configured as a novel cross-subject classification model that
requires minimal training data from an end-user, thus alleviating
training burden. The results of this work are particularly
important for EMG gesture recognition in emerging consumer
markets. Whereas amputee users may be sufficiently motivated
to adopt myoelectric devices because of their ability to restore
lost motor function, the current training burden is a substantial
barrier to adoption of general consumer myoelectric devices.
To improve the “out-of-the-box” experience, and facilitate
widespread commercialization of EMG control systems for
commercial and industrial settings, the training burden must
be addressed. This work is therefore meaningful in reducing
training burden, improving adoption, and growing the potential
user-base of EMG gesture recognition.

2. METHODS

The code for offline gesture recognition and statistical
analyses are available at github.com/ECEEvanCampbell/
TBMUDCUMFMC.

2.1. EMG Data
Intact-limb and amputee datasets, previously collected at the
University of New Brunswick and the Shirley Ryan Lab, were
adopted for this study (Hargrove et al., 2008; Scheme et al., 2011).
Readers are encouraged to consult the associated manuscripts for
the supplementary details of each dataset. The intact-limb dataset
contained 10 subjects, and the amputee dataset contained five
subjects. All subjects followed a screen-guided training protocol
consisting of 16 trials of 10 gestures, where a trial consisted of a
repetition of each gesture. Subjects provided the onset of motion
and maintained the gesture throughout the recording period;
therefore, gestures contained both the ramp-up and steady state
phases of motion. As suggested by Xiang et al. (2009), data
from only seven gesture classes were adopted (no movement,
wrist flexion, wrist extension, wrist pronation, wrist supination,
power grip, and hand open) to provide a more realistic use
case for the amputee population, as amputee subjects often
have difficulty producing distinct muscle patterns for classes
requiring dexterous finger control (e.g., chuck grip, key grip, or

pinch grip). Moreover, this gesture set may represent a more
clinically-realistic or commercially-viable configuration, as it is
more similar to gesture sets adopted with current devices (e.g.,
Myo Armband, COAPT).

Both datasets were collected using the same hardware. Ten
duotrode electrodes (Myotronics, Inc.) were recorded each at
1,000 Hz using a 16-bit analog-to-digital converter. Signals
were preprocessed using an analog 5th-order anti-aliasing filter
with cut-off frequency of 500 Hz. For intact-limb subjects,
electrodes were placed around the circumference of the forearm
at the widest area with positions being as similar as possible
across subjects. A similar approach was taken with amputee
subjects, although electrode positions deviated slightly to best
cover the residual muscle. Data were further processed using
digital filters to minimize powerline interference (60 Hz notch
filter) and motion artifacts (20 Hz high-pass filter). Finally,
overlapping windows were extracted with window size and
window increment of 151 and 50 ms, respectively.

2.2. Conventional Classification Using CCA
CCA is a statistical method appropriate for domain adaptation
because its objective is to maximize correlation between two
paired datasets: {(xi, ti)}ni=1, where xi is the ith d-dimensional
sample of the expert subject dataset, and ti is the ith k-
dimensional sample of the target subject dataset. Within our
study, k and d are the same since CCA always was performed
between pairs of subjects using the same feature set. Features
within the datasets are standardized to zero-mean and unit-
variance to ensure that the dataset is centered and avoid the
need to learn a bias term. The datasets are considered paired by
organizing the datasets to have an identical progression of class
labels. In modern implementations of CCA (Sun et al., 2010),
a least squares regression is applied to learn an optimal linear
projection W ∈ R

d×k that minimizes the cost function given in
Equation (1).

min
W

f (W) =
n∑

i=1

||WT ti − xi||22 (1)

Regularization is introduced in Equation (2) to penalize large
parameter values of W through an additional term λwj, where
λ is a small positive scalar (0.04 in this study) and wj is the jth
eigenvector ofW.

L2(W, λ) =
k∑

j=1

(
n∑

i=1

(wT
j ti − xi)

2 + λ||wj||22) (2)

After the linear projection has converged to a solution, the data
from a test user can be mapped to the space of the expert subject
using Equation (3).

tx,i = WT ti (3)

Following the convention proposed by Khushaba (2014), CCA
was applied to learn the projections between each subject in a
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training set and a single expert subject, so as to minimize inter-
subject variability. Once mapped, the aggregate multi-subject
training dataset can be used to train a gesture classification
model. A new target subject (the end-user of the device) is
then accommodated by learning the projection from a single
repetition of each gesture to the expert subject’s domain. This
projection is then applied to the remaining repetitions from
the target subject prior to classifying them using the global
gesture classification model. In this work, the CCA analyses were
repeated for all combinations of target subjects and expert users
as there is currently no accepted method of selecting the best
expert user a priori. The accuracy for a target user was, therefore,
reported as the mean accuracy across the different expert users.

Five handcrafted feature sets were chosen to undergo CCA
projection in this analysis due to their prevalence across
the literature:

• The Hudgins’ time domain (TD) features are perhaps the
most commonly used EMG feature set and include the
mean absolute value, zero crossings, slope sign change, and
waveform length features (Hudgins et al., 1993).

• The TDAR feature set provides an extension to the TD set by
adding the 4th-order autoregressive coefficients.

• The TDPSD feature set was developed to increase robustness
to limb position and contraction intensity by adding a
combination of statistical moments and non-linear scaling;
the 0th, 2nd, and 4th order statistical moments, sparseness,
irregularity factor, and waveform length ratio (Khushaba
et al., 2014). This feature set was originally proposed to
improve robustness to limb position and contraction intensity
confounding factors; however, TDPSD has since been shown
to also outperform the TD feature set on controlled gesture
recognition studies (Campbell et al., 2020c).

• Low sampling frequency (LSF) feature sets have been proposed
as a robust alternative when data are acquired at 200 Hz
(as opposed to the more traditional 1,000 Hz), although
subsequent studies have demonstrated strong performance at
1,000 Hz as well. The LSF4 feature set contains maximum
fractal length, l-score, mean-squared ratio, and Willison’s
amplitude (Phinyomark et al., 2018).

• The LSF9 feature set expands upon the LSF4 set, adding zero
crossings, root mean square, integral of the EMG, difference
absolute standard deviation, and variance (Phinyomark et al.,
2018).

A linear discriminant analysis (LDA) classifier was adopted to
classify these handcrafted feature sets due to its extensive use
in EMG pattern recognition literature and low computational
complexity (Campbell et al., 2019b; Leone et al., 2019).

2.3. Convolutional Neural Networks (CNN)
CNNs have previously been used in several within-subject EMG
pattern recognition systems and achieved high performance
(Zia ur Rehman et al., 2018; Ameri et al., 2019; Côté-Allard et al.,
2019). The kernel employed in conventional CNN architectures
allows for the spatial information from the input to be leveraged.
In EMG, this consists of information from across electrodes but
also in the temporal information within channels (over a short

duration). A conventional CNN architecture, without adaptation,
was selected for both within-subject and cross-subject evaluation
in this study to provide a deep learning (DL) benchmark and
provide context for the adaptation strategies employed within the
ADANN network.

The employed CNN architecture contained six convolutional
blocks followed by a single linear layer. The windows of data were
first arranged into 10 × 151 (channels × samples per frame)
dimensional input vectors. Within each convolutional block, the
inputs were transformed by a convolutional layer that consisted
of 64 kernels of size 1 × 21 (single channel × 21 samples). This
produced 64 feature maps of activation values. Afterwards, these
activations were regularized by batch normalization to stabilize
and accelerate convergence during model training. The batch
normalization transform is given in Equation (4), where x(k)

denotes the kth example within a batch, x̂(k) denotes the element
after regularization, µB and σB denote the mean and standard
deviation of the batch, andm denotes the momentum term.

x̂(k) = (1−m)× x(k) − µB√
σ 2 + ǫ

+m× x(k) (4)

The momentum term was set to 0.99. A leaky rectified linear
unit, with negative slope of 0.1, provided a non-linear mapping
to segment the different blocks during training. Prior to making
outputs available to the next block, dropout was implemented
with a probability of 0.35 to improve generalizability of the model
to unseen samples. After the six convolutional blocks, the linear
layer anticipated an input of 64 × 10 (number of features ×
number of channels). This was transformed to a 7 × 1 output
vector which represented the number of classes in the dataset.
A softmax was applied to the output and the highest activated
neuron was assigned as the predicted gesture.

The model hyper-parameters were selected according to
values found suitable in past experiments and through iterative
optimization. The learning rate was 0.04047 and the Adam
optimizer was employed (Kingma and Ba, 2014). The cross
entropy between the predicted and true labels was used as the
loss function during training. The model was trained using a
batch size of 256 windows. The learning rate decreased as training
progressed according to a heuristic that monitored training and
validation loss. If the loss did not achieve a new minimum within
15 epochs, the learning rate was decreased by a factor of 5, and the
training procedure was considered complete when the learning
rate dropped below 1e-8.

CNNs were used to test two scenarios: the difference between
handcrafted and DL features within-subject and the effectiveness
of DL approaches when applied across-users without domain
adaptation. Consequently, CNNs were applied in both within-
subject and cross-subject frameworks, where the within-subject
framework was trained for each subject in isolation, and the
cross-subject framework was trained on a collection of subjects
and then naively applied to a new, previously unseen subject.
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2.4. Adaptive Domain Adversarial Network
(ADANN)
The ADANN followed an identical topology and training strategy
to the CNN network described in the previous section, with the
addition of two domain adaptation techniques: adaptive batch
normalization and domain adversarial training.

Adaptive batch normalization is a domain adaptation
technique that encodes domain-specific information in sets of
batch normalization parameters and class-specific information in
the weights and biases of the network (Li et al., 2016). This is
achieved by associating a set of batch normalization parameters
to each subject during training but using common weights and
biases across all subjects. During training, the mean and variance
of activations within a feature map were tracked; this resulted
in 128 parameters per block being trained to encode domain
information. In contrast to regular batch normalization, which is
used for regularization during training but not after, the adaptive
batch normalization parameters associated with a subject are
retained to adapt activations after training. This enables a model
that is pre-trained using a large number of subjects with multiple
repetitions of gestures to be adapted to an unseen subject by
learning their batch normalization parameters using a small
amount of data (here, a single repetition of each gesture). In
practice, this adaptation can be done using the Pytorch library
by performing forward passes over the single repetition while the
model is in train mode and all convolutional and linear layers are
frozen (set the requires_grad attribute to false). This will update
only the running mean and running variance parameters and
leave the model weights unchanged. In addition to its part in
previous ADANN studies, adaptive batch normalization alone
has proven meaningful for EMG gesture recognition (Cote-
Allard et al., 2017; Du et al., 2017).

Domain adversarial training is another technique used by
ADANN that can improve generalization of the model to
different domains (subjects) (Ganin et al., 2016; Côté-Allard
et al., 2020a). Domain adversarial training relies on the network
having two heads with which to simultaneously predict the
elicited gesture and the subject who elicited that gesture during
training. The heads consist of linear layers that operate in parallel
to produce predictions on different characteristics of the data
provided the same input from the convolutional blocks. These
layers result in two loss terms, a gesture prediction loss (Ld)
and a domain divergence loss (Ly). Standard backpropagation
is used for the gesture prediction loss; however, the divergence
loss is reversed (multiplied by −λ) for all convolutional
blocks. In theory, this training strategy penalizes domain-specific
information by regularizing across-subjects while encoding
gesture-specific information. Effectively, the system is trained to
be able to differentiate between gestures while being unable to
differentiate between users. An appropriate penalty was observed
when λ was set to 0.1, as suggested in past works (Côté-Allard
et al., 2020a).

The domain adversarial training was further optimized by
using only two output neurons when computing the domain
divergence loss. These neurons represent whether the input
comes from a particular subject or from any other subject.

This strategy, as opposed to using a neuron for each subject in
the training set, enabled the domain to be distinguished with
a higher degree of certainty, resulting in a more appropriate
penalty term. During each epoch of training, a random subject
from the training set was selected as the particular subject which
ensured an approximately equal representation over the course
of training. Balance between the domain labels was achieved by
ensuring half the batch was from the selected subject, and the
remainder was from other subjects. Inputs that originated from
the selected subject were issued a subject label of 1, whereas the
remaining inputs were issued a label of 0. Domain divergence
was computed via cross entropy between the issued labels and
the predictions of the domain head.

2.5. Evaluation Frameworks
The performance of the classification models were validated
using three different evaluation frameworks.

Within-subject framework: Used to establish an upper
baseline for accuracy when subjects supply data using a full
training protocol. The within-subject analysis was performed
independently for each subject. The dataset was bisected into a
training set (eight repetitions) and a testing set (eight repetitions)
for each subject (Figure 1A). For this analysis, as no adaptation
was necessary, the handcrafted feature sets were used without
CCA, and a conventional CNN network was tested to evaluate
the performance of a DL approach. The results were computed
for the two groups (intact-limb and amputee populations).

Single repetition framework: Used to establish a lower baseline
for accuracy when subjects supply only a single training
repetition. The single repetition analysis was, likewise, performed
independently for each subject. In contrast to the within-subject
framework, only one repetition from each class was used for
the training set to establish the impact of reduced training data
(Figure 1B). Again, no adaptation was used for this framework,
and CCA was not needed. Because of the limited amount of
data, and because there were no additional repetitions available
to serve as a validation set for DL, only the handcrafted feature
sets were evaluated in the single repetition framework.

Cross-subject framework: Used to establish the benefit of
using adaptation learned from a single training repetition. The
amputee and able-bodied datasets were evaluated similarly, but
separately, each using a leave-one-subject-out cross-validation
scheme (Figure 1C). For each iteration/fold, a different subject
was selected as the novel target user with the reduced training
protocol. All other subjects were considered training subjects and
had their data bisected into an equal training set and validation
set (eight repetitions per set). In each of the ADANN, CNN, and
CCA frameworks, the training set was used to establish an initial
classification model for the target subject using an equal amount
of data. The validation set was used in the ADANN and CNN
cases to ensure that themodels were not overfit bymonitoring the
divergence between their training and validation losses. In each
fold, the target subject’s data were divided into three segments: an
unused segment that corresponded to the training data in other
folds of the cross-validation (eight repetitions), an adaptation
set that was used to learn the parameters required to adapt the
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FIGURE 1 | Evaluation frameworks shown for 1-fold of cross-validation. (A)

Within-subject framework, (B) Single-repetition framework, (C) Cross-subject

framework.

model to the target subject (one repetition), and a testing set
with which the accuracy of the adapted classifier was computed
(seven repetitions).

2.6. Statistical Analyses
Statistical significance was evaluated using a two-way repeated-
measures analysis of variance (RMANOVA) test with a
significance value of p = 0.05. The 15 subjects (10 intact-
limb, five amputee) were used as the repetitions within the
analysis. The two independent variables under investigation
were the population type (amputee, intact-limb) and the
gesture recognition pipeline (23 pipelines total). If a significant
difference was found at the whole study level, subsequent
one-way RMANOVA tests would be conducted on these
significant variables. Finally, if the one-way RMANOVA tests
were significant, post-hoc t-tests would be conducted using a
Bonferroni correction.

3. RESULTS

The performance of the within-subject, single-repetition, and
cross-subject models for the intact-limb and amputee datasets are
given in Figures 2, and 3, respectively.

Prior to conducting the RMANOVA, the assumptions of
normality and sphericity were verified to ensure this parametric
test was appropriate. The two-way RMANOVA analysis revealed
a significant effect of population (p = 0.007), gesture recognition
pipeline (p ∼ 0), and their interaction (p ∼ 0) on gesture
recognition accuracy. The one-way RMANOVA investigating the
effect of population found a significant effect for all pipelines
except TD, TDAR, TDPSD, LSF4, and LSF9 in the cross-
subject evaluation framework (p = 0.191, 0.181, 0.497, 0.082,
0.07, respectively).

The one-way RMANOVA investigating the effect of pipeline
was found to be significant for intact-limb subjects (p ∼ 0).
Post-hoc tests revealed ADANN performed significantly better
for intact-limb subjects than all other pipelines across evaluation
frameworks (p < 0.05), except the within-subject framework
TDAR, TDPSD, LSF4, LSF9, and CNNpipelines (p = 0.058, 0.537,
0.704, 0.952, 0.174, respectively). For reference, the accuracies of
the intact-limb subjects using the ADANN pipeline and within-
subject TDAR, TDPSD, LSF4, LSF9, and CNNpipelines were 96.2
± 2.8, 93.9 ± 3.1, 95.4 ± 3.1, 95.8 ± 2.7, 96.1 ± 2.5, and 97.4
± 1.5, respectively. This indicated that despite being evaluated
under the cross-subject condition, ADANN achieved an accuracy
competitive with pipelines trained with full training protocols.
Moreover, the ADANN pipeline resulted in consistently higher
accuracies for each gesture when compared against all other
intact-limb single-repetition and cross-user pipelines.

The prior state of the art cross-subject technique, CCA, also
achieved reasonable cross-subject performance for intact-limb
subjects. In particular, CCALSF4 significantly outperformed all
intact-limb cross-subject pipelines except ADANN. Interestingly,
however, the accuracy obtained by CCALSF4 was significantly
lower than the single-repetition LSF4 pipeline (86.8± 7.4 vs. 89.2
± 7.6; p= 0.003). This indicated that the single-repetition used for
adaptation in the cross-user CCA frameworks would be leveraged
better by independently training a model for this dataset.

The one-way RMANOVA investigating the effect of pipeline
was also found to be significant for amputee subjects (p ∼
0). The ADANN pipeline was likewise found to significantly
outperform most pipelines, with the exception of the within-
subject framework TDPSD, LSF4, LSF9, and CNN (p =
0.073, 0.804, 0.950, and 0.816, respectively). For reference, the
accuracies of amputee subjects using the ADANN pipeline and
within-subject TDPSD, LSF4, LSF9, and CNN pipelines were
84.1 ± 5.3, 82.4 ± 5.5, 83.9 ± 5.6, 84.1 ± 5.3, and 84.3 ±
5.5, respectively. Similar to the intact-limb results, the ADANN
pipeline accuracy for amputee subjects was consistently higher
for each gesture when compared against the other single-
repetition and cross-user pipelines.

Amputee subjects likewise had higher accuracies while using
the CCA pipelines than the untransformed naive cross-subject
pipelines. In contrast to the intact-limb findings, the CCA
pipelines using amputee subjects achieved statistically similar
accuracies to the pipelines of the single-repetition framework.

3.1. Computation Time
All computations were performed in Python or MATLAB on a
computer using the Windows 10 operating system with Intel i7
4790s CPU, Nvidia GTX 970 GPU, and 8 Gb RAM.

The computation times of the CCA model linear projections
were 15.2, 21.1, 10.5, 14.9, and 37.6 s for intact-limb subjects and
11.8, 18.0, 8.3, 12.9, and 35.3 s for amputee subjects using the TD,
TDAR, TDPSD, LSF4, and LSF9 feature sets, respectively. The
computation time of the CCA adaptation was therefore suitable
for myoelectric control, as this computation occurs only once
per session.

The computation times for training the between-subject
CNN network are 76 and 51 min for intact-limb and amputee
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FIGURE 2 | Accuracy of the intact-limb gesture recognition pipelines explored throughout the study. The pipelines were categorized according to their evaluation

framework: within-subject, single-repetition, or cross-subject. The cross-subject framework was further divided into naive cross-subject pipelines and specialized

cross-subject pipelines. These signified the absence or presence of a cross-subject specific solution leveraged to minimize the accuracy degradation due to

between-subject variance, respectively. A dot represents the average accuracy across all gestures for a intact-limb subject using a particular gesture recognition

pipeline; whereas the boxplot represents the distribution of accuracies among intact-limb subjects.

subjects, respectively. This corresponds to the validation loss
being minimized using 133 and 180 epochs for intact-limb and
amputee subjects, respectively. This training procedure included
no adaptation procedure, and therefore the CNNmodel could be
immediately used by the target user with no data acquisition.

The computation times for the pre-training procedure of
the ADANN network were 65 and 45 min for intact-limb and
amputee subjects, respectively. This corresponds to the ADANN
validation loss of these models achieving a minima after 44 and
60 epochs for intact-limb and amputee subjects, respectively. The
computation time of the ADANN adaptation procedure to the
end-user, however, was only 47 s. As the pre-training procedure
can be performed in advance, the adaptation time is the only
delay an end-user would experience from the training pipeline.
This result indicates that the ADANN adaptation is completed in
less time, and with far less user effort, than would be necessary
to collect sufficient data for a conventional full within-subject
model. The computation time of ADANN is, therefore, suitable
for real-time myoelectric applications.

4. DISCUSSION

Although ADANN has previously been proposed as a possible
solution for subject-independent/subject-general pattern
recognition (Côté-Allard et al., 2020a), this is the first successful
demonstration of ADANN within a cross-user framework that

substantially reduces the training burden on an end-user. The
ADANN model significantly outperformed the CNN and CCA
models, demonstrating the benefit of adversarial training and
adaptive batch normalization when minimal training data are
available. Despite the similar structure to the CNN, the use of
subject-specific penalties implemented by adversarial domain
training resulted in the weights of the ADANN model being
more appropriate for translation to the target subject. Without
this explicit penalty for subject-specific information, the CNN
architecture performed similarly to the CCA models using
modern feature sets. The adaptive batch normalization of the
ADANN network tailored the network to the target subject
while minimizing the likelihood of overfitting or underfitting
given the limited data. By computing these batch normalization
parameters of the target subject, the ADANN network was able to
adapt under a condition that quickly achieved stability with only
a single repetition of each gesture. In contrast to the pretraining
procedure of the ADANN network, overfitting/underfitting
of the CNN network could not be mitigated if neural weights
were allowed to be modified during adaptation, as a validation
set was unavailable for this process. As a result of these
differences, ADANN was significantly better than the previous
state-of-the-art for both intact-limb and amputee populations.

Although DL models are a growing trend in recent
EMG literature (Côté-Allard et al., 2019), the conventional
within-subject analysis indicated that DL did not yield a
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FIGURE 3 | Accuracy of the amputee gesture recognition pipelines explored throughout the study. The pipelines were categorized according to their evaluation

framework: within-subject, single-repetition, or cross-subject. The cross-subject framework was further divided into naive cross-subject pipelines and specialized

cross-subject pipelines. These signified the absence or presence of a cross-subject specific solution leveraged to minimize the accuracy degradation due to

between-subject variance, respectively. A dot represents the average accuracy across all gestures for an amputee subject using a particular gesture recognition

pipeline; whereas the boxplot represents the distribution of accuracies among amputee subjects.

significant improvement over modern handcrafted feature sets
(TDAR, TDPSD, LSF4, LSF9). Within this study, gestures were
conducted in a controlled environment where limb position,
contraction intensity, continuous transitions between classes,
and other factors that degrade model accuracy were minimized.
In studies that address these factors using DL, the flexibility of
a data-driven feature extraction combined with a regularization
term across conditions of the factor typically does lead to
significant improvements over handcrafted models. For instance,
Betthauser et al. (2019) employed a temporal convolutional
network in the presence of continuous class transitions and
achieved significant accuracy and responsiveness improvements
over both handcrafted feature models and standard DL models
(long short term memory, artificial neural network). In contrast,
studies that address these factors using handcrafted feature
models employ different strategies to achieve similar robustness,
but require that the features, or their behavior, be explicitly
defined. For instance, Amsuss et al. (2014) improved robustness
to continuous transitions using a post-processing algorithm on
the posterior probability of a handcrafted feature model. In short,
DL models do not have an inherent advantage over handcrafted
feature models for myoelectric control, although they may
model characteristics not yet learned within the community with
handcrafted models. Therefore, handcrafted feature sets or DL
models may similarly achieve meaningful improvements over the
current state-of-the-art approaches in EMG pattern recognition
when an appropriate adaptation technique is applied.

Despite ADANN being by far the best solution for intact-
limb and amputee cross-subject conditions, the performance for
the amputee users was 12.0% lower than that of the intact-
limb users. This finding was consistent across all cross-subject
models evaluated, where a 19.6, 21.7, 24.3, 26.2, 20.3, and
14.5% lower accuracy was found for the CCATD, CCATDAR,
CCALSF4, CCALSF9, CCATDPSD, and CNN models, respectively.
Scheme and Englehart (2011) noted in previous works that
this decrease in accuracy is typical when models are compared
between populations. A number of additional factors beyond
the difference in population, however, may contribute toward
this margin. First, the electrode placements were replicated less
consistently across amputee participants to leverage residual
muscle activity. To validate this concern, future work should
investigate the performance of cross-user models when electrode
placements are as similar as possible across the population or
explicitly leverage the residual muscle of the amputee subjects.
Khushaba (2014) proposed that CCA would be robust to changes
in electrode positions between users, and provided supporting
results; however, the presence of non-linear characteristics may
warrant further investigation in future works. Second, the
difference in the number of subjects between the populations
may have magnified this effect, as the cross-subject models
relied on leveraging inter-subject variability from a pool of users.
To evaluate this potential, a supplementary test was conducted
where the intact-limb ADANN model was limited to using the
first five subjects for the initial training procedure. The resulting
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FIGURE 4 | Summary of the results found in this paper, where the best

performing model for each classification framework was specified. The ideal

conditions for a classification model are indicated using arrows.

accuracy when less inter-subject variability was provided from
these five subjects was 92.1% compared to 96.2%when 10 subjects
were used. The difference in accuracy between the populations
was therefore likely due to a combination of the difference in
number of available subjects, the increased variability of electrode
positions for amputee subjects, and intrinsic factors leading to the
larger inter-subject variability between amputee subjects.

The CCA results obtained in this study do not provide a
satisfactory solution to cross-user gesture recognition, despite
the original CCA work finding otherwise (Khushaba, 2014).
In that work, results suggested that a CCA-based cross-subject
approach could outperform within-subject models trained using
single repetitions. First, the between-subject CCA models all
performed worse than their corresponding within-subject non-
adapted models. Second, and more importantly, the between-
subject CCA models did not result in a noticeable improvement
over the single repetition models for any feature set. The use of
CCA adaptation, instead of training a classifier with the single
repetition, resulted in a reduction in accuracy of 3.2, 4.2, 5.4, 3.7,
and 5.7% (1.6, 1.0, 3.8, 2.9, and 1.4%) for intact-limb (amputee)
TD, TDAR, TDPSD, LSF4, and LSF9 feature sets, respectively.

In light of the large difference between the anticipated and
actual effectiveness of the CCA adaptation, a follow-up analysis
was conducted under similar circumstances to those used by
Khushaba (2014). In Khushaba (2014), the CCA adaptation was
applied on the TDPSD feature set for an amputee target user,
using the other amputee subjects to aggregate the training set,
however, an intact-limb subject was used as the expert subject.
When a similar analysis was replicated here, using intact-limb
expert users instead of amputee expert users, an increase in
accuracy from 59.8 to 66.3% was observed. This pipeline, as
prescribed by Khushaba et al., significantly outperformed all
single-repetition pipelines except LSF4; further, this pipeline
outperformed all cross-subject pipelines with the exception of
CNN and ADANN.

This improvement was somewhat unexpected given the
disparity between intact-limb and amputee populations
determined in past works (Campbell et al., 2019a, 2020b).
However, in Campbell et al. (2020b), subject groupings (intact-
limb or amputee) could not be classified using a single window
of data. Because CCA also uses a single frame at a time when
computing its least squares regression, the intact-limb and
amputee experts could be interchangeable in this regard.
Additionally, because the CCA adaptation was computed by
maximizing the correlation of the features to that of the expert
user, the migratory component of the TDPSD feature set was
likely minimized and, therefore, had little effect on the classifier
boundaries. The improvement found when using an intact-limb
expert user likely stemmed from learning a mapping from the
less separable feature space of the amputee subjects to the more
separable feature space of an intact-limb subject. Although class
labels were not explicitly passed to the CCA adaptation, the
datasets within the adaptation were always paired to represent
an identical progression of gestures. The remaining disparity
in model effectiveness was likely associated with differences in
the classification task. In Khushaba (2014), individual finger
movements and combinations of finger movements were used
as the gesture set. These finer gestures are largely produced
by intrinsic hand muscles, and therefore typically yield a less
separable feature space, especially for amputee subjects (Xiang
et al., 2009). Consequently, the projection to the more highly
separable feature space of an intact-limb expert user may have
allowed the CCA accuracy to exceed the within-subject accuracy
of the amputee subjects. Nevertheless, the ADANN cross-subject
model outperformed the CCA cross-subject model for amputee
subjects on a gesture set that more similarly mirrors gestures
performed when using commercial prosthetic devices.

Further studies on the ADANN architecture for cross-
subject gesture recognition should be conducted to validate
the results presented in this work. Although it is expected
for ADANN to similarly outperform CCA in an online
experiment, this subsequent analysis would allow for insights
into various usability parameters. Moreover, the user-acceptance
of our cross-subject model could be assessed in comparison
to within-subject models. In this assessment, users would
experience the difference in training burden between the
cross-user model (single trial) and the within-subject model
(numerous trials with breaks to minimize fatigue), and
presumably achieve at least similar performance. This work
did not consider the confounding factors typically encountered
alongside real world applications of myoelectric control (limb
position, contraction intensity, electrode shift). Consequently,
future works should consider the combination of reducing
training burden using ADANN while also incorporating these
dynamic factors.

5. CONCLUSION

A visual summary of the results found in this manuscript are
given in Figure 4, where the cross-subject ADANN framework
was determined to be the most desirable classification model
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in terms of accuracy and end-user training burden. This
framework resulted in significant improvements upon the
prior state-of-the-art cross-subject models for both intact-
limb and amputee subjects when an end-user supplied only
a single repetition of each class to establish the adaptation.
ADANN is, therefore, a valid approach for minimizing
training burden while maintaining high accuracy. This
work could enable viable rapidly-trained myoelectric control
enabling widespread use across consumer and industrial
applications, where training burden was previously a barrier
to adoption.
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