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Simple Summary: Cervical cancer is the fourth leading cause of cancer-related deaths in females
worldwide. Despite an active immunisation strategy in many countries, high-risk human papil-
lomavirus infection and environmental factors may result in cervical cancer progression. Genetic
factors contributing to host–pathogen interactions are incompletely understood and remain largely
unknown, apart from the variants at the human leukocyte antigen (HLA) locus on 6p21.3, which
replicates across populations. Novel cervical cancer susceptibility loci from recent large biobank-based
genome-wide association studies and meta-analyses are likely to be more robust as compared to previ-
ous candidate gene based studies. In this review, we summarize findings from recent genome-wide
association studies on cervical cancer and propose variants that may be universal susceptibility loci.

Abstract: Cervical cancer is the fourth common cancer amongst women worldwide. Infection by
high-risk human papilloma virus is necessary in most cases, but not sufficient to develop invasive
cervical cancer. Despite a predicted genetic heritability in the range of other gynaecological cancers,
only few genomic susceptibility loci have been identified thus far. Various case-control association
studies have found corroborative evidence for several independent risk variants at the 6p21.3 locus
(HLA), while many reports of associations with variants outside the HLA region remain to be
validated in other cohorts. Here, we review cervical cancer susceptibility variants arising from recent
genome-wide association studies and meta-analysis in large cohorts and propose 2q14 (PAX8), 17q12
(GSDMB), and 5p15.33 (CLPTM1L) as consistently replicated non-HLA cervical cancer susceptibility
loci. We further discuss the available evidence for these loci, knowledge gaps, future perspectives,
and the potential impact of these findings on precision medicine strategies to combat cervical cancer.

Keywords: cervical cancer; cervical dysplasia; HPV; HLA; GWAS; genetic susceptibility; meta-
analysis; SNP; eQTL; papillomavirus

1. Epidemiology and Heritability of Cervical Cancer
1.1. Risk and Prevention

Cervical cancer is one of the leading causes of cancer-related deaths in women world-
wide [1–3]. Infection by known high risk sub-types of human papillomavirus (HPV 16,
18, 31, 33, 34, 35, 39, 45, 51, 52, 56, 58, 66, 68, and 70) as well as environmental or life style
factors such as multiple sexual partners, smoking, obesity, high parity, early menopause,
co-infection with Chlamydia trachomatis, herpes simplex virus type-2 (HSV2), or human
immunodeficiency virus (HIV) are known to increase the risk of developing cancer [4–9].
Some of the epidemiological factors may correlate with specific cervical cancer histology
groups such as adenocarcinomas or squamous carcinomas [10].

As preventive measures, screening at regular intervals at clinics or self-testing at home,
followed by Papanicolaou “pap” smear testing, or PCR based tests for HPV typing, help
to identify the early stages of infection [11,12]. Vaccination against the most prevalent
high risk HPV types (Cervarix, Gardasil, or Gardasil 9) is available in many developed
nations [12–14]. Treatment options include surgery, irradiation, chemotherapy, targeted
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immunotherapy, or combinations thereof. Despite this, the mortality rate from cervical
cancer is still high in developing countries.

1.2. HPV-Associated Pathogenesis

The lower part of the uterus, called the cervix uteri, contains an inner and an outer
compartment (endocervix and ectocervix). The thin, flat squamous cells lining the ecto-
cervix meet the columnar glandular cells of the inner endocervix at the transformation
zone, which is prone to pre-cancerous lesions caused by HPV. The first infections in low
grade squamous intraepithelial lesions (LSIL), or cervical intraepithelial neoplasia stage
1 (CIN1), often resolve on their own (in 90% cases up to two years) [6]. Re-infection may
occur multiple times, without leading to cancer development in most cases. Only a small
fraction of women go on to develop invasive cervical cancer after HPV infection, indicating
that genetic variability may play a vital role in resolving infection and preventing progres-
sion to invasive disease [15]. A persistent HPV infection over time, gradual worsening
of the lesions, viral load, tissue composition at the site of viral integration, and multiple
reinfections are associated with the development of high grade squamous intraepithelial
lesion (HSIL), or cervical intraepithelial neoplasia stage 2 and 3 (CIN2 and CIN3) and
further, cancer in situ (CIS) [16]. These stages are together termed as high-grade dysplasia
and can progress into carcinoma or invasive cervical cancer [6,17,18] (Figure 1).
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Figure 1. Pathogenesis of cervical cancer. Epithelial cells in the transformation zone of the cervix acquire lesions upon
persistent infection with high risk HPV (hrHPV). In some cases, the lesions resolve, whereas in others, upon viral integration,
cells are transformed and progress from cervical intraepithelial neoplasia I to II and III (CIN1, CIN2, and CIN3). Viral
proteins E6 and E7 are released and inhibit apoptosis mediated by TP53, cell cycle checkpoint by p21, T-cell response by
toll-like receptors (TLR), and macrophage activation by cytokines. This leads to an insufficient immune response and viral
replication, uncontrolled cell proliferation and genome instability, and further cancer in situ (CIS) or invasive cervical
cancer (CC).

Although all high-risk human papillomaviruses predispose a woman to cervical can-
cer, there are notable differences between them. The most prevalent anogenital HPV type,
HPV16, is also the most carcinogenic. Variations within the viral genome appear to modu-
late the pathogenicity of the respective lineages of HPV16, HPV33, or HPV45 [19–21]. Such
genomic evolution of the virus may be partially driven by host cell DNA-editing enzymes
of the APOBEC family [22]. The mechanisms underlying the different pathogenicity of
diverse lineages are largely unknown, but may relate to differential expression levels or
alternate splicing of viral oncogenes [23]. Further differences have been noted with regard
to the tumour characteristics. The second most carcinogenic HPV type, HPV18, accounts for
approximately 12% of squamous cell carcinoma, but 37% of adenocarcinoma of the cervix
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worldwide [24], suggesting etiological differences in tumour development after HPV16 or
HPV18 infections. Patterns of integration within the host genome can also vary between
different HPV types. HPV18 appears to integrate fully in cervical intraepithelial neoplasia
grade 3 (CIN3) or invasive cancer whereas HPV16 can be either completely integrated or
remain as episomes [25–27]. HPV integration sites within the human genome have been
closely scrutinised with reported changes in gene and protein expression near integration
hot spots as well as differential pathway activation [27–29]. Possible mechanisms include
differences in promoter methylation, which have also been reported in HPV positive versus
negative lesions [30–32], direct disruption of genes, or activation of retroelements [33].

The viral DNA replicates inside the host cell and starts expressing early genes E6 and
E7, among others [7]. The E6 protein is known to bind and initiate the degradation of
p53, a well-characterised tumour suppressor, blocking apoptosis and accumulating DNA
damage within the cells, which can lead to uncontrolled proliferation [34–36]. The E7
protein binds and inactivates the retinoblastoma (Rb) protein, which otherwise sequesters
the transcription factor E2F [37–39]. Upon the inactivation of Rb, E2F lifts the cell cycle
checkpoint inhibition, and induces unchecked cell proliferation. E7 via E2F also upreg-
ulates cyclin-dependent kinase inhibitor 2A (p16INK4A, or CDKN2A) expression, which
acts as a prognostic biomarker for cervical cancer [40–42]. CDKN2A is then gets hyper-
methylated [43–45], however, this inhibition of CDKN2A cannot effectively arrest the cell
cycle while Rb is blocked and p53 is degraded. E7 also suppresses p53 effector and tumour
suppressor protein cyclin-dependent kinase inhibitor 1A (p21 or CDKN1A) [37–39].

E6 and E7 overexpression appears to downregulate the toll-like receptor (TLR) medi-
ated type I interferon (IFN- α and ß) response [46]. Additionally, once the HPV integrates
inside the cells, this interferon mediated response is ineffective [47]. Keratinocytes express
cytokines, which are crucial for the activation of macrophages and Langerhans cells and for
T-cell activation, but HPV episomes have been shown to downregulate the cytokines IL-1ß
and IL-6 [48,49]. In some women, due to a combination of such mechanisms, immune cells
are not able to constrain viral replication, and the unrestrained cell proliferation due to the
E6 and E7 downstream activities results in progression to HSIL and ultimately, cervical
cancer (Figure 1).

HPV-induced inactivation of p53 and unscheduled replication and cell proliferation
make the host cell prone to mutagenesis. As with all cancers, the host genome acquires
selective advantage through the accumulation of somatic mutations and epigenetic changes.
Some 537 genes associated with cervical cancer progression have been included in an early
manually curated cervical cancer gene database [50], while genes with an experimentally
validated role in cervical cancer have been listed in the Disease-Gene Association database
DisGeNET [51]. More recently, large sequencing efforts such as those of the TCGA and the
BioRAIDs consortia have established key genes and pathways for cervical cancer [27,52]. It
is possible, but yet under-investigated, that differential regulation of some of them are also
relevant in the germline predisposition of cervical cancer risk.

1.3. Heritability of Cervical Cancer

Genetic factors contributing to the development of HSIL and invasive cervical cancer
are largely unknown. However, some evidence for familial clustering has been noted
for more than 60 years [53], thus previous studies have examined whether there is a
hereditary component to acquiring cervical cancer. There is clear evidence for a high
familial relative risk (FRR), which has been deduced from the Swedish cancer registry and
indicated towards disease clustering in families [54–56]. These studies reported that female
offspring and siblings have a relative risk (RR) of 1.5–2.3 for developing cervical cancer.
This risk is substantial and comes close to the familial relative risk for breast cancer, which
has a strong genetic component.

However, in contrast to breast and ovarian cancer, there have not been many large
multiple-case families described with cervical cancer [53,55,57–59], suggesting that high-
penetrance germline variants are rare in this malignancy and many of the heritable factors
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may be low- or intermediate penetrant and may act in synergy with HPV infection. With
regard to the outstanding role of HPV infection, cervical cancer has sometimes been called
a unique human neoplasia that has one single necessary cause [60]. Nevertheless, there has
been accumulating evidence that cervical cancer can occur in the absence of HPV [61–63]
and these tumours with undetected HPV have specific molecular pathology [27,64]. It
is important to note that some of the HPV negative cervical cancer cases may arise from
false diagnoses or outdated genotyping methods [65]. However, with the advancements in
HPV genotyping and enhanced detection of more HPV sub-types, it has become possible
to identify true HPV-negative cervical cancer cases. Genome-wide sequencing of a large
series of such cases may reveal whether germline variants in certain genes are enriched in
cancers with undetected HPV.

Further studies towards the hypothesis of germline predisposition suggested that
heritability via genetic factors might contribute some 27–36% of cervical cancer risk vari-
ation [56,66], and a large proportion of this heritability was attributed to unidentified
autosomal common SNPs with low penetrance [67]. A pan-cancer heritability study using
UK Biobank and US Kaiser Permanente Genetic Epidemiology Research on Adult Health
and Aging (GERA) data found an array heritability estimate of 7% for cervical cancer,
which was similar to the estimates for ovarian or colon cancer [68]. As will be discussed in
Section 2.2 below, several genomic loci have been identified by recent GWAS at genome-
wide significance. However, the contribution of these variants is small, and the major
fraction of the estimated heritability still remains to be defined.

1.4. Candidate Gene Based Studies

There have been many candidate-gene based studies performed for cervical cancer,
but the findings have been restricted to specific populations. Since host genetic factors are
thought to play a major role in the response to cancer and HPV infection, most cervical
cancer candidate gene based studies have focused on genes with relevant roles in immunity
or carcinogenesis.

Candidate cervical cancer susceptibility gene variants have been reported in the tumour-
suppressor gene TP53 [69–71] or the p53 regulating ubiquitin ligase gene MDM2 [70,72,73],
and in further DNA damage response or cell cycle genes such as ATM [74], BRIP1 [75],
CDKN1A [76–78], CDKN2A [79], FANCA, FANCC, and FANCL [80], XRCC1 [81–83],
or XRCC3 [84]. Variants in immune response genes, which may confer immune advan-
tage to the virus or to the host, in genes such as T-cell surface molecules CD83 [85,86]
and CTLA4 [87], CARD8 [88], or secreted factors such as tumour necrosis factor al-
pha (TNFA) [89–92], interleukins [93–96], transforming-growth factor beta (TGFB1) [97],
interferon-gamma (IFNG) [76,98] have also been studied, among many others.

Despite these considerable efforts, the vast majority of proposed risk variants from
candidate gene studies have not been replicated (e.g., a debated ArgR72Pro variant in
p53 [99]) and have not reached statistical significance in large case-control studies or meta-
analyses (except for certain HLA alleles, e.g., [67]). With technological advancements over
the past decade, stronger evidence for additional risk variants has come from the massively
parallel analysis of millions of variants throughout the whole genome. In the following
section, we will discuss the progress made through these genome-wide association studies.

2. Genomic Susceptibility Variants for Cervical Cancer
2.1. Genome-Wide Association Studies

GWAS are powerful tools to identify common susceptibility variants in the population
and have very successfully been applied to cancer research [100]. After genotyping and
imputation, association analysis is performed using software such as PLINK or Rege-
nie [101,102]. After associated variants are identified, replication studies in additional
cohorts and meta-analysis are performed to validate new loci. Fine-mapping approaches
along with bioinformatic annotations and colocalisation help to identify the causal SNP
from independent sets of correlated, highly associated variants (iCHAVs). In silico predic-
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tions are used to annotate variants for known chromatin marks, genes in the vicinity, and for
testing gene and pathway enrichment. These predictions become crucial in understanding
the role of identified susceptibility variants since a majority of them are from the non-
coding genome [103,104]. Furthermore, functional assays are designed to assess biological
functions of the lead variants in the form of luciferase reporter assays, quantitative trait loci
for expression, methylation, splicing, and protein levels (eQTL, metQTL, sQTL, and pQTL),
chromatin immunoprecipitation (ChIP), chromosome conformation capture and related
technologies (3C, 4C, 5C, Hi-C, ChIA-PET), or functional studies after genome editing
of the sequences containing the variant by CRISPR/Cas or related techniques [105,106]
(Figure 2).
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Figure 2. GWAS workflow from replication, validation, fine-mapping, and identifying biological mechanisms to clinically
relevant outcomes. The various stages of a genome-wide association study, starting from genotyping on custom arrays,
imputation on reference genomes, association analysis, and visualisation, followed by replication in an independent cohort,
validation genotyping, and meta-analysis. The top loci are then fine-mapped and integrated with bioinformatic annotations
before proceeding to functional experiments in relevant cell and tissue types such as promoter and enhancer luciferase
assays, ChIP, 3C, 4C, 5C, Hi-C, ChIA-PET, eQTL analysis, and genome editing via the CRISPR/Cas system. Expected
outcomes are the identification of relevant genes and pathways affected by the variant, and extraction of polygenic risk
scores (PRS), Mendelian randomisation (MR), and genetic correlation with other traits.

GWAS are conducted to identify common trait-associated variants above the genome-
wide significance (GWS) threshold of p < 5 × 10−8, however, sub-significant variants may
contribute small effects towards traits and are worthy of scrutiny [106]. The availability
of rich data sources such as GTEx, HaploReg, SNPNexus, SNiPA, among many others,
enable lookup of known eQTL and chromatin status, motif changes, linked variants, and
previous known associations [107–110]. Similarly, the availability of summary statistics
from published GWAS studies enables meta-analyses and validation of proposed trait-
associated variants in different populations. These may eventually aid previously sub-
significant variants to now cross the GWS threshold since combined studies have an
increased power to detect common variants with small effects.

GWAS in large cohorts derived from biobanks (UK, FinnGen, Japan, Estonia, IARC,
among others) are increasingly being used to quantify disease risk, derive polygenic risk
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scores (PRS), determine the genetic correlation between traits having shared environmen-
tal factors, and test causality between exposures and outcomes (Mendelian randomisa-
tion) [111–113]. These will drive future decisions in precision medicine and preventive
screening [109,114].

2.2. Results from Cervical Cancer GWAS

The power of GWAS for the detection of cervical cancer susceptibility has been in-
creasingly exploited over the past decade [115]. There have been a handful of cervical
cancer-specific GWAS worldwide, which, however, have been complemented with recent
studies from large biobank based cohorts (Table 1). Some studies have focused on invasive
cervical cancer while others combined dysplasia and invasive cancer or have analysed
dysplasia separately. The features and main findings of these GWAS are sequentially
summarised in Table 1.

Although the GWAS addressed different populations, there has been some overlap
between the results. We will consider this shared evidence across two or more GWAS as
successful replication. Most of the consistent genome-wide significant variants arose from
the human leukocyte antigen (HLA) locus in the chromosome 6p21.3 region. However,
three non-HLA signals on chromosomes 2q13 (PAX8), 5p15.33 (TERT-CLPTM1L), and
17q12 (GSDMB) have also been replicated in different study populations. In the following
sub-sections, we highlight these consistent loci, but also pay attention to those that still
need replication in independent cohorts.

Table 1. List of cervical cancer GWAS performed so far, with study population, genome-wide significant variants, and
references. Signals that are correlated at r2 > 0.3 [110] with other GWAS variants listed above are indicated with a–e.
Replication results are indicated with an asterisk (*) before the rsID. LoF: loss of function.

GWAS Population GWS Risk Loci Comment Ref.

Chen et al., 2013 Swedish

6p21.33 rs2516448 (MICA)

[116]6p21.32 rs9272143
(HLA-DRB1/HLA-DQA1) a

6p21.32 rs3117027 (HLA-DPB2)

Shi et al., 2013 Chinese

6p21.32 rs4282438
(HLA-DPB1/HLA-DPB2)

[117]4q12 rs13117307 (EXOC1)

17q12 rs8067378 (GSDMB) b

Chen et al., 2016 Swedish

6p21.32 * rs9271898 (HLA-DQA1) a

Pooled analysis with
mainly CIN3 [118]

6p21.33 * rs2516448 (MICA)

6p21.32 * rs3130196 (HLA-DPA2)

6p21.32 rs73730372
(HLA-DQA1/HLA-DQB1) c

6p21.32–6p21.33

HLA alleles HLA-B * 07:02,
HLA-B * 15:01, HLA-DRB1 *

13:01, HLA-DRB1 * 15:01,
HLA-DQA1 * 01:03, HLA-DQB1

* 06:03, HLA-DQB1 * 06:02,
HLA-C* 07:02

Leo et al., 2017 Caucasian 6p21.32–6p21.33

Replication of HLA haplotypes
that are determined by the

amino-acids carried at positions
13 and 71 of HLA-DRB1 and

position 156 in HLA-B

[66]

Rashkin et al., 2020 UK/US
2q13 rs10175462 (PAX8/PAX8-AS1) d Combined analysis of

UK and GERA
biobanks

[68]
6p21.32 rs2856437 (PBX2)

Takeuchi et al., 2019 Japanese
5q14.3 rs59661306 (ADGRV1/ARRDC3)

[119]
7p11.2 rs7457728

(LINC01445/VSTM2A)
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Table 1. Cont.

GWAS Population GWS Risk Loci Comment Ref.

Ishigaki et al., 2020 Japanese no new loci for cervical cancer [120]

Bowden et al., 2021 UK/Finnish

2q13 * rs35724515 (PAX8/PAX8-AS1) d

Analysis of UK
Biobank and

validation in the
FinnGen biobank.

[121]

5p15.3 rs27069 (CLPTM1L)

6p21.32 * rs9272050 (HLA-DQA1) a

6p21.33 rs6938453 (MICA)

6p21.32 * rs55986091 (HLA-DQB1) c

6p21.33 rs9266183 (HLA-B)

6p21.32 * rs9272245 (HLA-DQA1) a

1p36.32 rs138446575 (TTC34)

12q24.11 rs117960705 (ACACB)

Koel et al., 2021 Multi- ethnic

1p36.12 rs2268177 (LINC00339/CDC42)

Meta-analysis of UK,
FinnGen, Japanese

RIKEN and Estonian
biobanks.

[122]

2q13 * rs4849177 (PAX8/PAX8-AS1) d

5p15.3 * rs27069 (CLPTM1L)

17q12 * rs12603332 (GSDMB) b

2q24.1 rs12611652 (DAPL1)

6p21.32 * rs35508382
(HLA-DRB1/HLA-DQA1) c

6p21.33 rs1053726 (HLA-B) e

6p21.32 * rs36214159 (HLA-DQA1) c

19p13.3 rs425787 (CD70)

Gene-based analysis

Olafsdottir et al., 2021 Icelandic 1q32.3–41

3 LoF variants
(c.-1_2delinsATGG,
p.Gln503ArgfsTer12,

c.3271 + 1G > A) in PTPN14

Burden analysis after
imputation of rare

PVs
[123]

Cross-trait analysis

Masuda et al., 2019 Japanese

11p15.5 rs150806792 (INS-IGF2)

Combined analysis of
cervical cancer with

uterine cancer
(INS-IGF2, SOX9) or
five different cancers

[124]

17q24.3 rs140991990 (SOX9)

2p16.3 rs937380553 (LOC730100)

9q22.33 rs73494486 (GABBR2)

15q25.2 rs145152209 (SH3GL3/BNC1)

21q22.2 rs147427629 (LOC107985484)

Rashkin et al., 2020 UK/US

4q24 rs10007915 (TET2)

Combined analysis of
cervical cancer with
15 different cancers

[68]

6p21.33 rs17190106 (MUC22/HCG22)

6p21.33 * rs9266766 (HLA-S/MICA) e

6p21.33 rs114060326 (MICB/MCCD1)

6p21.33 rs2763979 (HSPA1B)

6p21.32 rs34563311 (HLA-DRB1)

6p21.32 * rs9270747
(HLA-DRB1/HLA-DQA1) a

6p21.32 rs535777
(HLA-DRB1/HLA-DQA1)

8q24.21 rs117952826 (CASC8)

2.2.1. 6p21.3 (HLA)

The human leukocyte antigen (HLA) locus on chromosome 6p21.3 is the human
equivalent of the major histocompatibility complex (MHC) and contains several genes that
encode membrane proteins responsible for the regulation of the immune system [125–127].
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The MHC is divided into three subclasses: the class I region, which includes the classical,
highly polymorphic HLA-A, HLA-B, and HLA-C genes, and the less polymorphic HLA-E,
HLA-F, and HLA-G genes as well as the non-canonical MHC class I-related chain (MIC)
genes MICA and MICB that encode ligands for the activating natural killer cell receptor
NKG2D; the class II region, which includes the HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB2, HLA-DRB3, HLA-
DRB4, and HLA-DRB5 genes as well as less variable genes involved in antigen processing
and presentation; and the class III region, which contains genes implicated in inflammatory
responses, leukocyte maturation, and the complement cascade [127]. Class I and Class II
MHCs form two types of peptide presenting complexes, and differential representation or
peptide binding of these may be associated with differential disease susceptibility.

Although we highlight the HLA region as the first consistent cervical cancer sus-
ceptibility locus, it is, in fact, made up of several separate signals. The first cervical
cancer GWAS, performed in the Swedish population, identified multiple variants at the
HLA locus [116]. It confirmed allelic associations with HLA-B*07:02, HLA-DRB1*13:01-
DQA1*01:03-DQB1*06:03, and HLA-DRB1*15:01-DQB1*06:02, which had previously been
reported in candidate gene studies, and further identified three novel loci for CIN3 in
the MHC region: rs9272143 between HLA-DRB1 and HLA-DQA1; rs2516448 adjacent to
MICA; and rs3117027 at HLA-DPB2 [115,116]. Interestingly, the risk allele rs2516448 was
in perfect linkage disequilibrium with a frameshift mutation (the A5.1 allele) in exon 5
of MICA, resulting in a truncated MICA protein and less membrane-detectable MICA in
cervical lesions, which may compromise the immune response towards HPV infection
or neoplastic change [115,116,128,129]. Other polymorphisms at the same MICA exon 5
microsatellite sequence were also associated with cervical cancer [128]. Further SNPs in the
vicinity (rs9271898, rs3130196, and rs73730372) were identified by follow-up investigations
by combining cohorts and via pathway analysis by the same group [115,118,130].

There were several replications of these findings. The first Asian cervical cancer
GWAS replicated the HLA locus in identifying another signal (rs4282438, HLA-DPB2) in
the Chinese population [117]. Apart from a multi-centric study on Caucasians, which
corroborated variants at the HLA locus (esp. rs9271858) [131], a cervical cancer GWAS
meta-analysis combining >400,000 samples from the UK Biobank and Kaiser Permanente
GERA cohorts also confirmed previously known variants at the HLA locus and identified
a novel HLA signal, rs2856437 at PBX2 [68]. The UK Biobank cervical cancer GWAS, which
combined CIN3 and invasive cervical cancer, confirmed variants at HLA-DQA1 (rs9272050),
MICA (rs6938453), and HLA-DQB1 (rs55986091), of which HLA-DQA1 (rs9272050) was
also replicated at a genome-wide significance in the FinnGen biobank cohort [121]. The
MICA variant rs6938453 is only very weakly correlated with the initially reported variant
rs2516448 (r2 = 0.22). This study furthermore identified a novel association with rs9266183
in HLA-B that encodes a rare missense substitution, p.Asp54Gly [121].

Although some studies have focused on invasive cervical cancer or did not distinguish
between invasive cancers and dysplasia, there is solid evidence that HLA variants already
affect the risk at the dysplasia stage [116,121,122,132]. The first Swedish GWAS was
performed on high-grade dysplasia, CIN3 [116]. The UK Biobank and FinnGen study also
performed a GWAS restricted to cervical dysplasia and reported rs9272245 (HLA-DQA1)
as a signal for dysplasia alone [121]. A recent trans-ethnic GWAS meta-analysis including
the Estonian population proposed two signals at the HLA locus, rs1053726 (HLA-B) and
rs36214159 (HLA-DQA1), from a specific analysis that only included dysplasia cases [122].
This indicates that the risk conferred by at least some HLA alleles manifests early in the
process of cervical carcinogenesis.

Chen et al. investigated HLA alleles specifically and identified significant associations
with cervical dysplasia and cancer for HLA-B*07:02, HLA-B*15:01, HLA-DRB1*13:01, HLA-
DRB1*15:01, HLA-DQA1*01:03, HLA-DQB1*06:03, HLA-DQB1*06:02, and HLA-C*07:02 in
the Swedish population [133]. Further studies in different populations have reported,
amongst others, associations with HLA-DQB1*05:01 and HLA-DRB3*99:01, which have
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recently been recovered in the UK Biobank [134–136]. More work will be required to reduce
the reported associations in the HLA region to conditionally independent alleles with
high-confidence associations.

From the known cervical cancer GWAS thus far, ten apparently independent HLA
signals have emerged that are not in linkage disequilibrium at r2 > 0.3, and another
five HLA signals have been suggested from the cross-cancer analyses (Table 1). As the
pattern of linkage disequilibrium at the HLA region is complex and varies according to
ethnic background, there could be hidden correlation for some of the GWAS hits. Of the
clearly independent hits, the two signals initially represented by rs2516448 and rs9272143
have been replicated by three or four other GWAS, respectively, as well as through direct
genotyping in case-control studies [131,132]. The genes underlying these consistent signals
in the HLA region are unknown, although plausible candidates including MICA and HLA-
DRB1 have been proposed [128,132]. A study of 278 affected sib pairs revealed significant
excess genetic sharing for all three HLA class II loci studied: HLA-DPB1, HLA-DQB1, and
HLA-DRB1 (with the strongest evidence for DQB1 and DRB1) whereas no evidence of
excess sharing was observed for the HLA class I HLA-A and HLA-B loci [137]. On the other
hand, HLA-B has also been repeatedly identified as a separate GWAS locus [121,122]. As
the HLA region is very large and gene-dense, several genes may be affected and the causal
genes may not necessarily be those in the closest vicinity. Some evidence has indicated
that there may be long-range transcriptional regulation of HLA gene expression in cervical
specimens [132]. Adding to the complexity, such regulations might be dependent on HPV
status and on tissue constitution.

2.2.2. 17q12 (GSDMB)

The first GWA study in the Chinese population identified two novel risk loci at
4q12 (rs13117307, EXOC1) and 17q12 (rs8067378, GSDMB) [117]. While the first one
has not been fully replicated, the signal on 17q12 also came up in a transethnic meta-
analysis GWAS from the Estonian Biobank, the FinnGen study, the UK Biobank, and
Biobank Japan (rs12603332, [122]). The closest gene is GSDMB, which encodes a member
of the gasdermin family that forms pores in the membrane to aid the release of cytokines.
Gasdermin B participates in the regulation of cell pyroptosis, a pro-inflammatory form
of regulated cell death that is designed to attract a nonspecific innate response to the site
of infection [138,139]. It also appears to activate STAT3 signalling and thereby tumour
growth [140]. Interestingly, higher levels of Gasdermin B (also known as Gasdermin-like,
GSDML) had previously been associated with tumour progression in cervical cancer [141].
Although it is an attractive candidate for cervical cancer risk, experimental evidence for
GSDMB as the causal gene underlying the signal on 17q12 is still lacking.

2.2.3. 2q13 (PAX8)

A cervical cancer GWAS meta-analysis combining >460,000 samples from the UK
Biobank and the Kaiser Permanente Genetic Epidemiology Research on Adult Health and
Ageing investigated heritability and pleiotropy across 18 cancer types [68]. This study not
only confirmed previously known variants at the HLA locus, but also identified a novel
variant at genome-wide significance on 2q13 (rs10175462) near the PAX8 gene that encodes
the transcription factor Paired box 8 [68]. This signal replicated in the UK Biobank and
in the FinnGen Biobank [121] as well as in a German case-control study [142] and in the
transethnic meta-analysis GWAS from the Estonian Biobank, the FinnGen study, the UK
Biobank and Biobank Japan (rs4849177, [122]). Two weakly correlated variants, rs4848320
and rs1110839, had previously been associated with cervical cancer in a candidate gene
study of PAX8-AS1 haplotypes [143]. In gene expression analyses, the variant rs10175462
presented as a cis-eQTL for the PAX8-AS1 non-coding RNA and also appeared to modulate
PAX8 levels in response to HPV [142]. PAX8 is also emerging as an important transcription
factor for other gynaecological cancers [144] but more work will be required to elucidate
its role in cervical cancer pathogenesis. It is possible that the PAX8/PAX8-AS1 locus has a
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central role in cervical biology and pathology, as it has also been associated with cervical
ectropion and cervicitis [122].

2.2.4. 5p15.33 (CLPTM1L)

The UK Biobank cervical cancer GWAS identified a genome-wide significant locus at
CLPTM1L (rs27069) [121]. This finding was replicated in an independent series from the
FinnGen biobank cohort at p = 2.5 × 10−7 [121] and remained genome-wide significant
in a trans-ethnic meta-analysis that included the UK, Finnish, Japanese, and Estonian
Biobanks [122]. rs27069 is located 10 kbp upstream of CLPTM1L, which encodes a mem-
brane protein involved in apoptosis. Some 50 kbp apart lies TERT, the gene encoding
human telomerase reverse transcriptase. The CLPTM1L-TERT locus is relevant for several
gynaecological cancers [121,145–148], however, the functional significance of the identified
variant and its contribution to cervical cancer pathogenesis via the CLPTM1L-TERT locus
remain to be elucidated.

2.3. Other GWAS Loci for Cervical Cancer or Dysplasia

The first cervical cancer GWAS in the Japanese population failed to identify any SNPs
at genome-wide significance, but a second, larger GWAS in the East Asian population (with
cohorts from China and Japan), identified and linked their top novel variant rs59661306 on
chromosome 5q to the ARRDC3 (Arrestin domain-containing 3) gene, encoding a known
tumour suppressor and regulator of insulin sensitivity [119,149–151]. However, these
results have not yet been replicated in European populations.

Another study on cross-trait analysis in gynaecological cancers with some over-
lap with the Japanese Biobank identified two novel cervical cancer variants at INS-IGF2
(rs150806792) and SOX9 (rs140991990), requiring further validation [152]. The most re-
cent Japanese Biobank cervical cancer GWAS did not identify any new variants at GWS,
although it confirmed previous findings [120] (Table 1).

Cross-trait analyses have also been performed in the pan-cancer meta-analysis of the
UK Biobank and Kaiser Permanente GERA cohorts [68]. Although this study did not find
evidence for a genetic correlation of cervical cancer with any other cancer at p < 0.05, it
identified some loci with pleiotropic variants that reached genome-wide significance after
combining cervical cancer with other cancer cases. Among those were seven HLA variants
but also two signals at 4q24 (rs10007915, TET2) and 8q24.21 (rs117952826, CASC8) (Table 1).
Further work will be required to validate whether these associations were significantly
driven by cervical cancer.

Bowden et al. performed a separate GWAS for invasive cervical cancer in the UK and
FinnGen Biobanks and reported two novel signals for invasive cancer only, rs138446575
(TTC34) and rs117960705 (ACACB) [121]. Polymorphisms in the latter gene have also
been associated with obesity and diabetes [153]. However, these results would need to be
replicated and the causal genes identified.

The first GWAS in the Chinese population identified a risk locus on chromosome 4q12
(rs13117307, EXOC1) [117], which has not been replicated by subsequent GWAS results,
although a multicentric case-control study reported borderline evidence of association [131].
A second GWAS designed to detect association with neoadjuvant chemotherapy response
discovered four loci for prognosis at 4q (rs6812281), 10q (rs4590782), 14q (rs1742101), and
16q (rs1364121) [154]. These loci might affect treatment response rather than the primary
risk and have not been validated thus far.

Koel et al. performed a GWAS trans-ethnic meta-analyses that included Estonian, UK,
Finnish, and Japanese Biobanks, and reported genome-wide significant signals for five loci
associated with invasive cervical cancer including one novel signal at LINC00339/CDC42
(rs2268177) on chromosome 1p36 [122]. Furthermore, this study reported a novel locus
for cervical dysplasia at DAPL1 (rs12611652) on chromosome 2q24. In a joint analysis of
cervical dysplasia and invasive cancer, there was another novel locus on chromosome
19p13 (rs425787) near CD70 [122]. This large GWAS had not yet been fully peer-reviewed
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at the time of this review but will increase the number of potential cervical cancer risk loci
and candidate genes that merit validation.

In a genome-wide sequencing study from Iceland, rare loss-of-function variants in
PTPN14 were associated with high risk of cervical cancer (OR, 12.7, p = 1.6 × 10−4) [123].
These overall variants were also associated with earlier age at diagnosis. PTPN14 is a
p53-regulated gene that encodes a protein tyrosine phosphatase targeted by high-risk
HPV E7 proteins, and the authors speculate that its germline mutation may enhance
oncogenic activation of the Hippo–YAP pathway [123]. This finding indicates a potential
high-penetrance germline predisposition for cervical cancer, however, the role of PTPN14
needs replication in other populations and corroboration in functional studies.

2.4. Other GWAS Loci for Viral Infection

Since not all women infected with high-risk HPV (hrHPV) go on to develop cancer and
it is known that viral diversity correlates with an excess of genomic variants in immune
response loci [155], there has been obvious interest to understand genetic factors that
contribute to a persistent HPV infection. Such an attempt to identify host genetic factors
that influence HPV seropositivity found a variant at 6p21.32, rs9357152, to be associated
with seropositivity for HPV8, a β-cutaneous HPV type [156]. Although this is not among
the high-risk types for cervical cancer, the result provided supportive evidence that genomic
variants in the HLA region can influence immune response against HPV. Another GWAS in
a Nigerian population reported further variants associated with cervical hrHPV infections
at sub-genome-wide significance [157]. Increasing study sizes in the future may allow
genomic factors associated with viral exposure to be established that could help to identify
women at increased risk at an early stage [158].

3. Follow-Up Studies of Cervical Cancer GWAS Results

As mentioned in the previous sections, the identification of significantly associated
variants is just the first step. Apart from GWAS, gene-based and pathway analysis thus
contribute towards the understanding of cervical cancer aetiology. At present, the genes
underlying cervical cancer GWAS signals are largely unknown, although prediction tools
are established to prioritise genes by the use of established data on large-scale chromatin
conformation or tissue-specific gene expression. A transcriptome-wide association study
(TWAS) based on the GWA studies by Leo et al. [66] and Takeuchi et al. [119] identified
20 genes to be associated with cervical cancer in using transcriptome databases for six
different tissues [159]. These genes were mainly expressed at the HLA locus, however,
four non-HLA genes were also identified. However, the tissues used in this study did not
include cervical epithelial cells or cervical cancer lines, and these findings need further
replication [159].

There are well-characterised methylation changes in cervical cancer prognosis, and an
integrative analysis combining multi-omics approaches may help to further assign func-
tional roles to susceptibility variants and understand the mechanisms underlying cervical
cancer. Recent multi-omics approaches in tumours found that HPV related squamous
carcinomas have defined molecular and genetic signatures [160]. However, the genomic
germline factors determining hereditary cervical cancer risk and the somatic epigenetic and
genetic variations do not necessarily share a large overlap. Nevertheless, the integration of
methylome, proteome, and metabolome data could aid to narrow down causal genes and
eventually identify novel risk factors.

While these processes of gene identification and functional follow-up are ongoing,
parallel work will aim to make use of the identified genomic risk factors to define the indi-
vidual risk of cancer in an unaffected woman with higher precision. Biobank-based large
cohorts provide the possibility of testing the correlation between traits and draw polygenic
risk scores (PRS) that can eventually help to design preventive measures and personalise
treatment methods. In correlation studies, cervical cancer was not strongly correlated with
other gynaecological cancers [68], although it has been found to be correlated with bladder
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cancer in one analysis [112]. In attempts to define polygenic risk scores, it has not been
possible thus far to predict a strong PRS for cervical cancer due to the low number of
known susceptibility variants given as input [161]. Nevertheless, polygenic risk scores can
be a powerful instrument when more genomic risk loci become identified, as was shown
for breast cancer [162], and this also bears great potential for cervical cancer [163].

In addition, Mendelian randomisation studies can be very useful for the robust iden-
tification of associated traits and will become more powerful with the increasing size of
cervical cancer GWAS data. In this type of analysis, genetic variants replace exposure
measures as instrumental variables to infer whether a risk factor affects a clinical outcome.
The assumption is that the genetic variant is associated with the risk factor and influences
the outcome only through the risk factor, independent of confounders. Thus far, Mendelian
randomisation studies did not detect causal relationships between cervical cancer and
obesity [164] or cervical cancer and Alzheimer’s disease [165], but they suggested a pos-
sible link between cervical cancer and type II diabetes mellitus [166], and they strongly
supported the complementary role of smoking, older age at first pregnancy, and number of
sexual partners in the risk of developing cervical cancer [121].

4. Conclusions

There is now ample evidence for a strong genetic component of cervical cancer risk
that adds to known risks posed by epidemiological factors and HPV infection. There
have been few cervical cancer GWA studies so far, with the HLA region emerging as a
consistently associated locus across different populations. Cervical cancer thus adds to
the large number of autoimmune and immune-mediated diseases associated with this
genetic region [127,167,168]. As for most other HLA-associated cancers with infectious
aetiology, the associations were driven by multiple HLA regions, suggesting that both
cytotoxic and helper T-cell responses might be important [169]. This may open a perspec-
tive for personalised antigen-specific disease prevention through harnessing HLA–ligand
interactions for clinical benefit [127]. More recent biobanking and consortia efforts have
also led to the identification of non-HLA susceptibility loci such as rs8067378 (GSDMB),
rs10175462 (PAX8), and rs27069 (CLPTM1L-TERT), which warrant further investigation.
Such association results from large-scale case-control series will become increasingly useful
to inform risk assessment strategies as well as biological and pharmacological studies.

Cohort size, apart from effect allele frequency and the magnitude of risk, determines
the power of the study and is therefore a crucial factor in identifying novel susceptibility loci.
There are only a limited number of consistent cervical cancer susceptibility variants thus far,
compared to other traits, and even fewer follow-up studies to identify the causal variant via
fine-mapping. Even where the causal variants were determined, it still remains a challenge
to assign biological function to the variants and identify the causal gene(s). Furthermore,
only a handful of results so far has been attempted for fine-mapping or functional validation
via chromatin conformation or eQTL analysis [119,128,132,142,152,170].

Although there are rare coding variants in MICA, HLA-B, or PTPN14 that would
directly affect the function of the gene product [121,123,128], the majority of genome-wide
significant signals identified at susceptibility regions seem to be regulatory variants. For
the HLA region, specific amino acids in the MHC-peptide binding groove may also explain
some of the SNP associations, as is known for HLA-B and HIV infection [171,172]. Addi-
tional work will be required to trace down target genes at every locus and to understand
their molecular mechanisms. It is highly likely that at least some of these genomic factors
play a role in viral infection and host immunity. The identification of these genes and their
function(s) could provide important insights into the aetiology of cervical cancer and fuel
further pharmacological research [173].

Thus far, the low number of known cervical cancer susceptibility variants and genes
has restricted further research towards precision medicine approaches. It is therefore the
need of the hour to perform large-cohort based cervical cancer GWAS and meta-analysis
in order to identify further susceptibility loci, and national biobanking has proven to be a



Cancers 2021, 13, 5137 13 of 20

very fruitful resource for genomic research in this regard. With ongoing efforts, we may
eventually be able to screen for disease-associated risk factors early on as part of preventive
cancer surveillance strategies.
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