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Abstract

Purpose

Quantified computed tomography (qCT) is known for correlations with airflow obstruction

and fibrotic changes of the lung. However, as qCT studies often focus on diseased

and elderly subjects, current literature lacks physiological qCT values during body

development. We evaluated chest CT examinations of a healthy cohort, reaching from

infancy to adulthood, to determine physiological qCT values and changes during body

development.

Method

Dose-optimized chest CT examinations performed over the last 3 years using a dual-source

CT were retrospectively analysed. Exclusion criteria were age >30 years and any known or

newly diagnosed lung pathology. Lung volume, mean lung density, full-width-at-half-maxi-

mum and low attenuated volume (LAV) were semi-automated quantified in 151 patients.

qCT values between different age groups as well as unenhanced (Group 1) and contrast-

enhanced (Group 2) protocols were compared. Models for projection of age-dependant

changes in qCT values were fitted.

Results

Significant differences in qCT parameters were found between the age groups from 0 to 15

years (p < 0.05). All parameters except LAV merge into a plateau level above this age as

shown by polynomial models (r2 between 0.85 and 0.67). In group 2, this plateau phase is

shifted back around five years. Except for the volume, significant differences in all qCT val-

ues were found between group 1 and 2 (p < 0.01).
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Conclusion

qCT parameters underly a specific age-dependant dynamic. Except for LAV, qCT parame-

ters reach a plateau around adolescence. Contrast-enhanced protocols seem to shift this

plateau backwards.

Introduction

Quantitative computed tomography (qCT) is an emerging diagnostic method in thoracic radi-

ology. Already in the early stages of computed tomography, quantification of the usually visu-

ally assessed emphysema of the lung was published. [1] Since these first quantitative attempts

CT technique changed rapidly, allowing lower doses at higher image quality including better

spatial resolution. [2, 3] In consequence, the use of qCT became more common in several

fields of research. One field of extensive research in this area is chronic obstructive pulmonary

disease (COPD). In several previous works, correlations between qCT and lung function val-

ues were shown in patients with COPD. [4–7] Other studies were able to show correlations

between exacerbation rate or mortality and qCT values. [8–10] Moreover, few works have

focused on the prediction of lung function values from qCT values. [11, 12] On the basis of

this evidence, the American Thoracic Society and the European Respiratory Society released a

statement, substantiating the relevance of research in the field of qCT and COPD. [13] With

further developments in dose reduction and image quality optimization (e.g. spectral shaping,

iterative reconstruction), even research in young adults and children became feasible and

more common. [14–17] Besides COPD, cystic fibrosis and interstitial lung disease are potential

indications for the qCT. [18] Several studies have found diagnostic value of quantitative com-

puted tomography in interstitial lung disease showing correlations between qCT findings and

mortality as well as physiological values. [19, 20] Further, qCT has been used to objectify air

trapping in children with cystic fibrosis as early as 1998. [21] For several other disease such as

asthma but also lymphangioleiomyomatosis qCT was shown to be useful as objective diagnos-

tical parameter. [22, 23] Crucial for the potential implementation of qCT in the diagnostical

workflow is the understanding of its findings in context of age and the differentiation of qCT

values in healthy and pathological lungs. Based on the current data, these “normal values” are

often missing. Most studies only included ill patients of one age group in different disease

stages to analyze for example correlations of qCT values and lung function testing—either in

adults or children. [4, 19, 24, 25]

In response, the aim of this retrospective study was to determine lung qCT parameters in a

cross-sectional, lung-healthy cohort of patients at different ages, reaching from infancy to

adulthood. Thereby, potential changes and trends in qCT parameters during body develop-

ment should be detected. To represent a wider spectrum, CT examinations with and without

contrast agent were separately examined in this study.

Methods

Study design

We retrospectively analyzed thoracic CT examinations of patients, performed at our local

medical university hospital center on a 3rd generation dual source CT between 2016 and 2019.

Exclusion criteria were age above 30 years, lung pathologies of any kind (e.g. on-going inflam-

mation, neoplasia, asthma, reduced lung function values) in patient´s history as well as
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radiological lung pathologies (opacities, fibrosis, emphysema, scars). The latter was deter-

mined by an experienced radiologist (15 years of experience). If available, height and weight of

patients was obtained via the DICOM metadata.

We have obtained a waiver from the local institutional review board (Institutional Review

Board of the Medical Association Saarland) for this study. The Institutional Review Board of

the Medical Association Saarland is simultaneously our local institutional review board. Fur-

ther, we have written consent of all patients / legal guardians for analysis of the data. All identi-

fying data was anonymized for final analysis.

CT examinations

All CT examinations were performed on a 3rd generation dual source CT (Somatom Force,

Siemens Healthineers, Forchheim, Germany). Two protocols were used in the analyzed cohort.

First, an ultra-low-dose, non-contrast enhanced chest CT (Group 1) with scan parameters as

follows: 100 kVp tube voltage with spectral shaping using a dedicated tin filter technique, auto-

mated tube current modulation using 96mAs as reference, 0.25 s rotation time, pitch 1.2, 192

mm × 0.6 mm detector collimation. All images were reconstructed with a slice thickness of 1

mm, using a suitable reconstruction kernel for quantitative lung analysis (Br40) and a 3rd gen-

eration iterative reconstruction technique (Adaptive Model-based Iterative reconstruction

[ADMIRE], Siemens Healthineers, Germany). The reconstruction algorithm was substantially

explained in a previous publication by Gordic et al. [26] An iterative strength level of three was

chosen for the present study for optimum image noise as recommended by the CT vendor for

quantitative lung analysis.

Second, a low dose-chest contrast enhanced CT was evaluated (Group 2). Scan parameters

were as follows: tube voltage between 70 and 100 kVp depending on automated tube voltage

regulation and age. Reference tube current varied correspondingly between 172 and 933 mAs.

The pitch varied from 0.8 to 2.8, where younger patients received predominantly high pitch

examinations. Highly concentrated iodinated contrast medium (Imeron 400, Bracco Imaging

S.p.A., Italy) was applied in all patient through peripheral venous access catheters. In total 5 to

70 ml of contrast media, depending on the body weight, were injected at a flow rate of 1 to 3

ml/s, followed by a saline chaser (20 ml) at the same flow rate using a power injector (Accutron

CT-D, Medtron AG, Saarbrücken, Germany). Reconstruction and postprocessing techniques

were identical to the prior protocol.

Image analysis

Datasets were analyzed using dedicated semi-automatic software (SyngoViaVB30, Pulmo3D,

Siemens Healthineers, Forchheim, Germany). Lung segmentation was automated and manu-

ally revised if necessary (Fig 1). Four quantitative parameters were acquired: total lung volume

(volume), mean lung density (MLD), full-width-half-max (FWHM) and low attenuation vol-

ume (LAV). The LAV threshold for emphysema was set to -950 HU. This cut-off had been

extensively evaluated in previous studies and strongly correlates with microscopic and gross

emphysema [27, 28]. FWHM marks the width at the half maximum of the voxel count to spe-

cific HU value curve representing the density distribution of the lung parenchyma. A graphical

explanation of the latter can be found in the online supplement. (S1 Fig).

Statistical analysis

All statistics have been performed, using a dedicated statistic program (JMP 13, Cary, USA).

Mean, median and standard deviation have been calculated for all parameters, with regard to

the protocols used. In a second step, the patients of the two groups (contrast enhanced, non-
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contrast enhanced) were summarized in order of their age. Patients were clustered in 6 sub-

groups according to a five-year range of age (0–5 years, 6–10 years, 11–15 years, 16–20 years,

21–25 years, 26–30 years). The quantitative parameters were then compared between these

groups to find age-related changes using ANOVA corrected for multiple testing using Tukey

HSD. Further, to specify these changes in specific parameters over age, regression models were

calculated, using R Statistical Software (v3.4.2, Foundation for Statistical Computing, Vienna,

Austria). [29, 30]

Results

Patient collective

Initially 471 chest CT examinations performed in patients under 30 years at the given time-

frame were found. After applying the exclusion criteria, 320 cases had to be rejected from the

study cohort, leaving 151 cases for final analysis– 53 patients in group 1, 98 in group 2. Group

1 consisted of 25 females and 28 males, group 2 of 35 females and 63 males (p-value Chi

square = 0.223). The mean age of group 1 was 15 years with a standard deviation of 7 years.

The youngest patient was 2 years, the oldest 30 years old. The mean age in group 2 was 19

years with a standard deviation of 8 years. The youngest patient was 2 months old, the oldest

being 30 years. The specific age distribution over the groups and age-related subgroups can be

found in Table 1.

No statistical differences were found regarding mean body size (154 ± 30 cm Group 1 vs.

161 ± 35 cm Group 2; p-value = 0.414) and mean body weight (52 ± 26 kg Group 1 vs 66 ± 33

kg Group 2; p-value = 0.1) between both groups.

Regarding the clinical indication for the examinations, 68 patients (45%) received the CT

due to suspected pulmonary metastasis. 48 patients (32%) received the examinations due to

suspected vascular anomalies (e.g. double aortic arch) and in 24 cases (16%) a pneumonia was

suspected. The remaining examinations were performed due to other clinical indications (e.g.

suspected bone anomalies).

Fig 1. Lung quantification. Coronary reformation; automatic detection of lung borders and lung parenchyma. blue areas: low attenuation volume (LAV)

with HU values below -950, red areas: high attenuation volume (HAV) with HU values above -200. This patient was not included in the analysis but

showcases the quantitative analysis in low attenuated areas.

https://doi.org/10.1371/journal.pone.0233622.g001
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Quantitative CT values

Results of qCT values are given as means ± standard deviation. Mean total lung volume in

group 1 was 3.3 ± 1.7 l. The lowest volume measured was 0.34, the highest 7 l. The correspond-

ing volumes for group 2 were 3.4 ± 1.8 l with a minimum of 0.15 and a maximum of 7.7 l,

respectively. No significant difference was found between both groups (p-value = 0.65, Stu-

dent’s t-test).

MLD in group 1 was -778 ± 89 HU with the lowest measured MLD of -872 HU and the

highest at -500 HU. In group 2 the mean MLD was -713 ± 112 HU, the lowest -847 HU and

the highest -383 HU. The MLD varied significantly between both groups (p-value = 0.0001).

Mean FWHM in group 1 was 109 ± 46 HU with the highest at 246 HU and the lowest at

54 HU. The mean FWHM in group 2 was 132 ± 61 HU with the highest at 373 HU and the

lowest at 68 HU. Significant differences were found for FWHM between group 1 and 2 (p-

value = 0.01).

Mean LAV in group 1 was 1.2 ± 1.5%. The highest measured percentage was 8.1%, the low-

est 0%. In group 2, the mean LAV was 0.5 ± 1.2% with a maximum of 10% and a minimum

of 0% as well. The quantitative percentage between both groups showed significant differences

(t-value = 2.6, p-value = 0.01) with details given in Table 2. Exemplary images of quantitative

lung parenchyma for every subgroup can be found in Fig 2.

Table 1. Specific age distribution over groups and subgroups.

subgroup group n mean age minimum maximum SD

1–5 years Group 1 8 3.3 2 5 1.5

Group 2 10 2 0 5 1.4

6–10 years Group 1 4 9.3 9 10 0.5

Group 2 7 7.4 6 10 1.5

11–15 years Group 1 14 13.1 11 15 1.5

Group 2 11 13.5 11 15 1

16–20 years Group 1 13 17.2 16 19 1.1

Group 2 16 18.6 16 20 1.2

21–25 years Group 1 8 22.6 21 25 1.2

Group 2 24 23.4 21 25 1.4

26–30 years Group 1 6 27.7 26 30 1.6

Group 2 30 27.6 26 30 1.4

Shown is the age distribution for both CT protocols examined (“group”) as well as the age-related subgroups (“subgroup”).

https://doi.org/10.1371/journal.pone.0233622.t001

Table 2. Mean values and t-test for comparison between groups.

Volume MLD FWHM LAV

Group 1 3.2 ± 1.8 -778± 89 109 ± 46 1.2 ± 1.5

Group 2 3.3 ± 1.7 -713 ± 112 132 ± 61 0.5 ± 1.2

p-value 0.32 0.0001 <0.01 0.01

Shown are the mean values with standard deviation of the four quantitative lung parameters for both protocols used.

Volume is shown in liter, mean lung density (MLD) in HU, full width at half maximum (FWHM) in HU and low attenuated volume in percentage of total lung volume.

Further, the p-value shows the significance level of the t-test.

https://doi.org/10.1371/journal.pone.0233622.t002
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Age dependency of parameters

As represented by Fig 3, all measured parameters showed an age-dependant dynamic develop-

ment. The mean values with standard deviation for the six age subgroups can be found in

Table 3. As shown in the ANOVA results, there are significant differences between the age

groups for every parameter except the LAV in group 1 (p = 0.05).

As shown in post-hoc analysis, especially the differences between the youngest and oldest

patients were significantly (e.g. MLD0-5 vs MLD26-30: difference = 292.4 HU; p-value =<0.0001).

Fig 2. Parenchyma quantification from infancy to adulthood. Reading direction: left top to bottom, right top to bottom. Age as following: 0, 3, 6, 9, 11,

15, 18, 21, 24, 27 years. Shown are exemplary lung parenchymas with (right images) and without (left images) quantification. Red dyed parenchyma shows

HU values above -200, blue tissue below -950.

https://doi.org/10.1371/journal.pone.0233622.g002
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Fig 3. qCT parameters against age. Shown are the mean changes in the four measured parameters of the age of the patients with standard deviation and

smoothed trend lines. As shown, while volume and emphysema percentage (LAV) rise over time, mean lung density (MLD) and the full width at half

maximum of the volume density histogram (FWHM) decline.

https://doi.org/10.1371/journal.pone.0233622.g003

Table 3. Mean values of quantitative lung parameters for different age groups.

0–5 6–10 11–15 16–20 21–25 26–30 p-value

Volume Group 2 0.4±0.2 1.3±0.6 2.3±1 3.7±1 3.9±1 4.6±1.3 <.0001

Group 1 0.5±0.5 1.4±0.4 3.2±0.8 4±1.3 4.4±0.6 5.1±1.2 <.0001

MLD Group 2 -480±76 -587±126 -697±81 -750±43 -755±51 -772±56 <.0001

Group 1 -592±55 -748±74 -812±27 -818±25 -823±23 -819±42 <.0001

FWHM Group 2 236±13 204±16 138±12 109±11 115±9 105±8 <.0001

Group 1 196±42 116±29 98±21 97±24 75±19 89±21 <.0001

LAV Group 2 0.01±0.03 0.1±0.2 0.1±0.2 0.3±0.5 0.4±0.6 1.2±2 0.0173

Group 1 0.04±0.1 0.3±0.3 1.3±0.9 1.8±2.3 0.8±1 2±1.7 0.0504

Shown are the mean values with standard deviation of the four quantitative lung parameters for every age group. Volume is shown in liter, mean lung density (MLD) in

HU, full width at half maximum (FWHM) in HU and low attenuated volume in percentage of total lung volume.

The p-value shows the significance level of the ANOVA, suggesting significant difference between age groups for every parameter, except the LAV in group 1.

https://doi.org/10.1371/journal.pone.0233622.t003
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This trend can be found for all parameters, except the LAV. No significant differences in LAV

were found in the post-hoc analysis between the age subgroups.

As illustrated in Fig 3, most parameters reach a plateau phase at some age. This visual obser-

vation is underlined by the Tukey HSD. For the total lung volume, no differences were found

between the age of 16–30 in both protocols.

For the MLD there were different results, regarding group 1 and 2. For group 1, no signifi-

cant differences in MLD were found between the age of 11–30. For group 2, the significant

differences between the MLD11-15 and MLD26-30 (p = 0.02) were shown. No significant differ-

ences were found for the subgroups above the age of 16, suggesting a homogeneous MLD as

recent as the age range of 16–30.

Similar discrepancies can be found for the FWHM. In group 1, the FWHM showed no sig-

nificant differences between the age subgroups from 6 to 30 years. Whereas in group 2, signifi-

cant differences between FWHM6-10 and all older subgroups were shown (p =< 0.0328),

suggesting the plateau level for FWHM between 11–30 years.

All post-hoc analysis can be found in the online supplement. (S1–S8 Tables).

Beyond the comparison of age groups, a sex-dependant analysis of quantitative parameters

was performed for every age group. Statistical differences between male and female subjects

were only found between the age of 16 and 25 for volume, MLD and LAV. No statistical differ-

ences for FHWM were found at any age group between the genders. (S9 and S10 Tables).

Regression models

For both groups, regression models were calculated to predict the development of all parame-

ters. (compare Fig 4).

For the model fit of MLD a non-linear model seemed most suitable after initial, poor per-

formance of standard linear models (R2 =< 0.02). In group 1, a polynomial regression was

used to describe the data (R2 = 0.85). In group 2, 2nd degree polynomial regression already

described the dataset similar to 3rd degree regression (R2 = 0.677 vs. 0.678).

Similar to the MLD, FWHM showed a non-linear relation. (compare Fig 4) For both

groups, a 2nd degree polynomial regression showed best data description with an R2 of 0.68 for

group 1 and 0.48 for group 2.

In contrast to MLD and FWHM, LAV showed a linear progression over the age range.

Thereby, we fit a linear regression with an R2 of 0.11 in group 1 and 0.1 in group 2, respectively.

Discussion

The aim of this study was to determine mean qCT values of healthy lung tissue and their

changes during body development from infancy to adulthood.

As shown, all parameters except the total lung volume showed significant differences, when

comparing analysis of non-contrast enhanced (group 1) with contrast enhanced CT datasets

(group 2). This is an important finding of our study, as known data primarily originates from

non-contrast enhanced scans of the lung. Obviously, application of contrast media has an

impact on the mainly attenuation-based analysis of qCT lung parameters. As a consequence,

these parameters cannot be transferred from one examination to another and should only be

compared with similar protocols.

Nonetheless, all four measured parameters underly a clear trend during aging regardless of

the scan technique applied. (Fig 3).

Volume and MLD for example, underly a contrary evolution over development. As a result

of increased volume and ventilation of the lung during aging, the MLD is constantly decreasing.

As shown, the MLD underlies a non-linear time course and can be described by polynomial
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regression. The mean density reaches an even level at around 11–15 years in the non-contrast

enhanced protocol group (group 1) and at 16–20 in the contrast enhanced protocol group

(group 2). Similar results, suggesting a plateau in MLD around this age, were found by Gevenois

et al. They did not find significant differences of MLD in individuals between 21 and 70. [27]

The relatively high MLDs, measured for the individuals between 0 and 5 years in group 1, were

Fig 4. Regression models. Shown are the regression models for quantitative CT parameters—left row for group 1, right row group 2. For MLD and

FWHM polynomial regression was used. In LAV linear regression models. For MLD a R-squared of 0.85 (group 1) and 0.67 (group 2) were calculated. For

FWHM R-squared was 0.68 (group 1) and 0.48 (group 2), respectively. For LAV R-squared of 0.1 (both groups) were calculated.

https://doi.org/10.1371/journal.pone.0233622.g004
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confirmed by the findings of Long et al. [31] Further, Stein et al. showed a similar relationship

of MLD and LAV for children between 0 and 7 years. [32]

Similar to MLD, an offset was shown for the FWHM distribution over the age range. While

no significant differences were found in group 1 between age 6 and 30 (p =>0.1332), in group

2 the even level was not reached until the age group of 11–15 years. Likewise, the non-linear

connection could be described by a polynomial regression.

Our results suggest, the level of equality in the quantification of contrast enhanced proto-

cols for MLD and FWHM might be shifted a few years back. One reason for this might be the

ongoing development of the lung at that age. The described offset between group 1 and 2 is

during childhood and adolescence, respectively. As shown in previous studies, the number of

alveoli at this age is already set and not increasing anymore. [33] Growth and expansion of the

lung characterizes the ongoing body development. Thereby, especially in younger children less

air per volume is inside the lung tissue. A contrast media induced increase in density might

thereby be more dominant in younger lungs: as per given volume, the enhancing, parenchy-

matous fraction is larger than the non-enhancing air space at this age. As the airspace expands

during aging, the air will make a larger portion at a given volume and thereby countervail the

enhancing parenchyma.

In contrast to MLD and FWHM, no significant differences were shown for LAV over the

age groups in post-hoc analysis. As LAV defines emphysema, it is not expected to be predomi-

nant in young, healthy lungs. [27] The small percentage of emphysema found might be due to

abnormal parenchymal delopment as no noxae induced emphysema is expected at that age.

Irion et al. found similar percentages in LAV for healthy adults between 21 and 40 years. [34]

Even though no significant differences were found between the age subgroups, mean LAV of

group 1 and 2 differed significantly. Similar to MLD and FWHM this is most likely due to an

overall shift in density. As LAV is defined by areas with a density below -950 HU, an increasing

density is leading to a reduced LAV. Thereby, lung quantification in respect to emphysema

assessment is usually not recommended for contrast enhanced protocols. [35] Nonetheless,

group 2, receiving such a protocol, was analysed in this study. The reason for this is the cohort

itself: infants to adults. The highest priority in a young cohort is radiation protection. [36, 37]

Therefore, infants, children and young adults often receive only single-phase lung CT—either

with or without contrast media. Even if an additional lung quantification is desired, the proto-

cols in children should be chosen solely by the clinical indication. If this indication requires

only a contrast enhanced protocol, no additional non-contrast enhanced scan should be per-

formed to comply with emphysema quantification criteria. Nevertheless, qCT parameters

might implicate important information—even in contrast enhanced protocols. The data

acquired in this work, might help future studies to categorize their measured qCT findings,

regardless of applied contrast media.

Even though LAV is significantly different between group 1 and 2, both groups show a sim-

ilar slow increase. As suggested by the linear regression models, LAV is rising between 0.04

and 0.07% every year—resulting at a LAV% of around 1 at the age of 20. Cho et al. found a

LAV% of around 2–4.6% at the age of 50 in healthy adult non-smokers, which underlines this

steady increase. [38]

As shown, all quantitative lung parameters underly a specific dynamic in the context of

aging. Three of the four parameters measured reach a plateau level around the adolescence age

—varying with regard to contrast media application. Previous studies have described qCT

parameters in healthy, young patients before. [31, 34, 39] One drawback of the current litera-

ture is the age range. Johnson et al. as well as Long et al. for example focused only on healthy

children below the age of five, Stein et al. below the age of seven. [31, 32, 39] On the other side,

Irion et al., Zach et al. and Gevenois et al. for example focused only on healthy adults above 20
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years. [27, 34, 40] The intention of this current study was to project the qCT parameter

dynamic over a wider age range. As additionally suggested by our results, the important level-

ling in qCT parameters occurs right between these mentioned age ranges of 5 and 20 years.

Nonetheless, this study underlies several limitations. First, the sample size of both protocols

is limited. A larger cohort size would be preferable to receive more robust mean values as well

as smaller standard deviations. Especially in the comparison between the older subgroups (age

21 to 30) as well as female and male comparison more subtle changes are most likely to be

missed due do small sample size. Nevertheless, especially in young children acquisition num-

bers of lung-healthy individuals are often limited.

A second limitation of the study is the retrospective design and its inherent projection of

group findings on individuals. To get more valid data, on how qCT findings are changing

during development, a prospective study with a CT scan of every individual every year would

be way more preferable. Nonetheless, from an ethical and radiation protection point of view

this would be unacceptable. In a similar matter, a uniform scan protocol in Group 2 would

be preferable, as different kV/mAs settings might affect quantitative parameters. But as espe-

cially young children do profit from low-kV examinations, a uniform protocol would be

unacceptable.

Beyond the scan protocol, due to the retrospective study design, clinical information

(height, weight) could not be obtained for every patient. A prospective analysis would provide

a more consistent database regarding these demographics.

Another limitation is the absence of spirometric triggering during the CT scans. Although

all patients received verbal breathing commands, especially the young patients were most likely

not to follow them. This variable state of breath might have influenced quantitative parameters

due to variable lung density.

As shown in this study, quantitative lung function parameters underly a specific dynamic

during the body development from infancy to adulthood. Our data suggests, all parameters,

except the emphysema percentage, reach a constant level during adolescence. Further, contrast

media application seems to shift this point of constant evenness a few years back, most likely

due to overall increased lung density. Further research should be undertaken, to describe these

findings in more detail and over a wider spectrum of protocols and diseases. The findings in

this study might assist future research as a point of reference in regard to lung quantification

of younger patients and the discrimination of healthy and pathological qCT values.
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