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The proximal enhancer of the cytochrome c gene (Cycs) contains binding sites for both
cAMP response element binding proteins (CREB) and Nuclear Respiratory Factor 1
(NRF1). To investigate how neuronal activity regulates this enhancer region, a lentivirus
was constructed in which a short-lived green fluorescent protein (GFP) was placed
under the transcriptional control of the Cycs proximal enhancer linked to a synthetic
core promoter. Primary hippocampal neurons were infected, and the synaptic strengths
of individual neurons were measured by whole-cell patch clamping. On average the
amplitude of miniature postsynaptic currents (mEPSCs) was higher in brighter GFP+
neurons, while the frequency of mEPSCs was not significantly different. Increasing neural
activity by applying a GABAA receptor antagonist increased GFP expression in most
neurons, which persisted after homeostatic synaptic scaling as evidenced by a decrease in
the amplitude and frequency of mEPSCs. Removing the CREB binding sites revealed that
calcium influx through L-type channels and NMDA receptors, and ERK1/2 activation played
a role in NRF1-mediated transcription. CREB and NRF1, therefore, combine to regulate
transcription of Cycs in response to changing neural activity.

Keywords: cytochrome c promoter, lentivirus, hippocampal neurons, gene expression, bicuculline, green
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INTRODUCTION
Transcriptional responses to strong activation of glutamater-
gic synapses are triggered by calcium influx through NMDA
receptors and calcium channels (Bading et al., 1993). Calcium
activates CAM kinases, and calcineurin, which ultimately leads
to activation of cAMP response element (CRE) binding pro-
teins via ERK and TORC pathways (Wu et al., 2001; Kovacs
et al., 2007). Many immediate early genes that are thought to
drive synaptic remodeling are regulated by CREB, highlighting
the importance of this transcription factor in the nervous sys-
tem (Flavell and Greenberg, 2008). Most of the energy used
by neurons to maintain excitability and power synaptic trans-
mission comes from oxidative phosphorylation taking place in
mitochondria (Kann and Kovacs, 2007). The promoter regions
of a number of nuclear-encoded mitochondrial genes have CREB
binding sites (Zhang et al., 2005; van Waveren and Moraes,
2008) indicating that energy metabolism and neural activity may
be coordinated via this transcription factor. A second impor-
tant link between neuronal activity and mitochondrial function
is forged by Nuclear Respiratory Factor 1 (NRF1), which has
recently been shown to regulate the transcription of NMDA
receptor subunit genes (Dhar and Wong-Riley, 2009). NRF1 was
originally discovered from an analysis of the promoter of the
Cycs gene, which encodes somatic cytochrome c the soluble elec-
tron donor to Complex IV (cytochrome c oxidase) (Evans and
Scarpulla, 1989). Subsequent work has shown that NRF1 reg-
ulates all of the nuclear-encoded components of Complex IV

(Dhar et al., 2008), and other genes critical for mitochondrial
function (Scarpulla, 2008).

The NRF1 binding site and two CREs are located within 300
base pairs of the start site of transcription of the Cycs gene
(Evans and Scarpulla, 1989). Activity of a reporter gene under
the transcriptional control of the Cycs promoter increased follow-
ing serum stimulation of starved NIH 3T3 cells, and both NRF1
and CREB binding sites were required for this response (Herzig
et al., 2000). We investigated whether a sequence encompass-
ing these transcription factor binding sites would report on the
activity level of individual neurons using GFP as a reporter gene.
Live neuron imaging revealed a connection between reporter gene
expression and synaptic strength. A marked but variable increase
in Cycs proximal enhancer-dependent reporter gene expression
occurred in response to bicuculline-induced elevated synaptic
activity, which persisted after homeostatic reduction in mean
excitatory postsynaptic current (Turrigiano et al., 1998). Both the
CRE and NRF1 binding sites were required for full activity, and
like CREB-mediated responses to neural activity, NRF1-mediated
activity involved calcium influx via both NMDA receptors and L
type Ca channels, and ERK1/2 activity.

METHODS
REPORTER CONSTRUCTS
A 235 bp fragment extending from −73 to −308 with respect to
the transcription start site of the rat Cycs gene, and encompassing
the NRF1 and CRE sites, was amplified from genomic DNA
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using Phusion® DNA polymerase (72◦C anneal and extend)
using the following primers: forward primer 5′ GGAATGCATGC
TACTCGCTCCTCCTCCCCAACACGCAGG 3′, reverse primer
5′ GGAAGATCTGACGTGCGGCAGCGCCGGGCACTGCGCCG
3′. Constructs with mutated binding sites for CRE or NRF1
or both were kindly provided by Dr. Richard Scarpulla
(Northwestern University Medical School). The enhancer
sequence was inserted into FLX1.8GFPpd2HS4, a feline immun-
odeficiency virus (FIV)-based lentiviral vector in which the
upstream U3 has been replaced with the CMV immediate early
gene promoter, and the downstream U3 has been replaced with
the core sequence of the chicken beta globin DNA hypersensitive
site 4 (HS4) (Chung et al., 1997). The Cycs enhancer fragment
was placed immediately upstream of a 51 base pair synthetic core
promoter comprising an optimized TATA box, and initiator regu-
lator element (Colgan and Manley, 1995). Fos (564 bp; Wang and
Howells, 1994) and Arc (104 bp; Kawashima et al., 2009) enhancer
sequences were amplified from rat genomic DNA using the fol-
lowing primers: Fos forward primer 5′ GATATGCATCAGAGACT
TGGAGCCTTTAGGGCTGCGTGCCTG 3′, 3′, Fos reverse primer
5′ CGTAGATCTGAAGCGCTTGAATGGCTTACTACGTCATGA
GCGG 3′; Arc forward primer 5′ GACGTCGACGAAGTCTTT
CCGGCCATGTCTGGAAGGGGTACC 3′, Arc reverse primer
5′ GACCTCGAGAACCTTAAGGCTCCTGCAAGGTTCTGGCG
GGGGCC 3′. Lentiviruses were generated as previously described
(Edelman et al., 2011) by co-transfecting HEK293 cells with
helper plasmids encoding the VSV-G glycoprotein and FIV
gagpol genes. Virus-containing culture supernatant was con-
centrated approximately 50-fold by ultrafiltration (Vivaspin 20
polyethersulfone ultrafiltration units). Virus titer was estimated
by infecting rat B104 cells, and measuring GFP expression by flow
cytometry. The volume of concentrated supernatant added to
primary neurons equaled the amount that resulted in 50 percent
infection of B104 cells. The same amount of virus was added to
each hippocampal neuron culture.

CELL CULTURE AND IMAGE ANALYSIS
Animal procedures were approved by The Neurosciences
Research Foundation’s Institutional Animal Care and Use
Committee, and were performed in strict accordance with the
US Public Health Service (PHS) Policy for Humane Care and
Use of Laboratory Animals (PHS Animal Welfare Assurance no.
A4558–01).

Tissue culture reagents were purchased from Life Technologies
and inhibitors were obtained from EMD Biosciences or Tocris
Bioscience. Primary hippocampal neurons were prepared from
E18 rat embryos by standard methods and grown on a poly-
D-lysine/laminin substratum (Edelman et al., 2011). Cells were
grown in 35 mm glass-bottomed dishes (MatTek Corporation)
for fluorescence microscopy of live neurons, in 6-well dishes
for western blot analysis or on 12 mm coverslips for electro-
physiology. Plating densities on glass were 7 × 104 cells per
cm2, and on plastic 1.9 × 104 cells per cm2. After seven days
in vitro (div) cultures were treated with cytosine arabinoside
(0.5 μM) for 48 h to suppress glial cell proliferation. Fluorescence
images of live cells were acquired at 630× magnification using a
Leica DMI6000B inverted fluorescence microscope connected to

a CCD camera and Lambda DG-4 light source. Microscope func-
tions were controlled by the SlideBook™ v5.0 software package
(Intelligent Imaging Innovations). During live-cell imaging cul-
tures were placed in a stage top micro-incubator as previously
described (Edelman et al., 2011). In a given experiment all of
the images at all time points were acquired at the same expo-
sure time, and normalized to the same background. To quantify
GFP fluorescence, the image analysis tools in the SlideBook™ v5.0
software package were used. Masks of individual neurons were
generated manually and the mean fluorescence intensity of pix-
els within each mask was computed. Data were plotted as box
and whisker plots and the paired sample Wilcoxon signed rank
test was used to evaluate statistical significance (SOFA statistics
package). Images and histograms were exported to Canvas v12
(ACD Systems).

ELECTROPHYSIOLOGY
Individual coverslips were transferred one at a time to a sub-
merged chamber mounted on a fixed-stage upright microscope
(Leica DMLFSA). They were continuously perfused with warmed
(30.5◦C), oxygenated artificial CSF flowing (ACSF) at a rate of
2–3 ml/min containing 126 mM NaCl, 3 mM KCl, 1 mM
NaH2PO4, 25 mM NaHCO3, 1 mM MgCl2, 2.5 mM CaCl2, and
25 mM dextrose. Individual cells were identified at 400× magnifi-
cation using infrared DIC optics and an infrared-sensitive camera
(Dage-MTI). Pairs of GFP expressing cells were identified by flu-
orescence through a FITC filter. For a given pair of cells, cells were
assigned as bright or dim based on their relative intensity in the
field of view. Whole-cell somatic recordings were obtained with
pulled glass micropipettes (somatic 4–5 M�). The standard intra-
cellular solution contained 110 mM K-gluconate, 10 mM KCl,
1 mM HEPES, 10 mM (Na)phosphocreatine, 4 mM (Mg)ATP,
0.3 mM (Na)GTP, and 0.1% w/v biocytin, adjusted with KOH to
pH 7.4 and with sucrose to 292 mOsm. Miniature excitatory post-
synaptic potentials were isolated by adding 0.1 μM tetrodotoxin
(TTX) and 20 μM bicuculline to the ACSF. Voltage clamp record-
ings were accepted if input resistances were >100 M�, series
resistances were <20 M�, and membrane potentials were more
negative than −60 mV. All electrophysiological recordings were
made using a Multiclamp 700 A amplifier (Molecular Devices).
Signals were filtered at 4 kHz and digitized at 10 kHz using a
NIDAQ board controlled via custom made acquisition software
in MatLab. All data analyses were performed using custom soft-
ware written in MatLab. Plots were created using GraphPad Prism
4.0. Numerical averages are presented as mean ± SEM. Between
group statistical significance was calculated using a One-Way
ANOVA followed by Tukey’s multiple comparison or using the
Mann–Whitney test.

IMMUNOCYTOCHEMISTRY AND WESTERN BLOT ANALYSIS
For immunostaining and visualizing filled cells, cultures were
fixed for 20 min at room temperature in 4% paraformalde-
hyde in Tris-buffered saline (pH 7.4), and blocked for 2 h at
room temperature with Tris-buffered saline (pH 7.4) contain-
ing 5% goat serum and 0.05% Tween®-20. Cells were incu-
bated overnight at 4◦C with anti-beta tubulin III mAb (1:500,
Sigma), and antibody staining was visualized with an Alexa

Frontiers in Molecular Neuroscience www.frontiersin.org March 2012 | Volume 5 | Article 31 | 2

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Delgado and Owens Neuronal activity drives cytochrome c enhancer

Fluor® 568 conjugated secondary antibody (Life Technologies).
Filled cells were visualized with Alexa Fluor® 594 conjugated
to streptavidin (Life Technologies). For western blotting, cells
were harvested in RIPA buffer containing protease and phos-
phatase inhibitors (Sigma-Aldrich). Lysates were separated on
NuPage® Bis-Tris 4–20% gradient gels (Life Technologies), and
transferred to PVDF membrane (Biorad). Membranes were
blocked in Tris-buffered saline (pH 7.4) containing 5% non-
fat dried milk and 0.05% Tween®-20, and probed with either
anti-GFP mAb (1:1000, Clontech Laboratories), or anti-phospho
ERK1/2 mAb (Thr202/Tyr204 and Thr185/Tyr187, 1: 1000, Cell
Signaling Technology). Proteins were visualized with a secondary
antibody conjugated to horseradish peroxidase (1: 2500, Jackson
ImmunoResearch Laboratories) using a chemiluminescent sub-
strate (GE Healthcare Life Sciences). Signal was removed with
stripping buffer (Thermo Scientific) and membranes were re-
probed with antibodies directed against either glyceraldehyde
3-phosphate dehydrogenase (1: 1000, Enzo Life Sciences), or
ERK1/2 (1: 1000, Cell Signaling Technology). X-ray films were
scanned and processed (background subtraction and enhance-
ment using default settings) in ImageJ, and exported to Canvas
v12 (ACD Systems).

RESULTS
DIFFERENTIAL EXPRESSION OF Cycs REPORTER IN INDIVIDUAL
NEURONS
The 235 bp Cycs proximal enhancer fragment was linked to a syn-
thetic basal promoter and a green fluorescent protein (GFPpd2)
gene, and inserted into a self-inactivating lentiviral vector con-
taining a copy of the core sequence of the HS4 insulator element
in place of U3 (Chung et al., 1997). The HS4 sequence has been
shown to partially shield a gene from position effects arising from
the site of provirus insertion (Hanawa et al., 2009). A short-lived
GFP was used in order to capture any dynamic changes in Cycs
enhancer-dependent reporter gene expression (Li et al., 1998).
Hippocampal neurons, prepared from day 18 embryos, were
grown for 14 div, and then infected with the reporter lentivirus.
GFP expression was examined after a further 10 days by which
time cultured hippocampal neurons are fully active (Valor et al.,
2007). To confirm GFP expression in neurons, an infected cul-
ture was fixed and immunostained with anti-beta III tubulin
antibodies. As shown in Figure 1A, the steady state level of
GFP expression varied between morphological similar neurons
indicating that differences in reporter gene activity likely reflect
differences in transcription rather than neuron heterogeneity. In

FIGURE 1 | Cycs enhancer-driven GFP expression correlates with the

state of excitatory transmission in cultured hippocampal neurons.

(A) Beta tubulin III+ hippocampal neurons infected with the Cysc reporter
virus express varying amounts of GFP designated ∗dim or ∗∗bright (A’). Scale
bar corresponds to 20 microns. (B) Biocytin filled cells from which recording
were made expressed relatively high (∗∗ ) and low (∗ ) levels of GFP (B’). Scale
bar corresponds to 50 microns. (C) Recorded mEPSCs from bright and dim

neurons. (D) Cumulative probability distribution for the amplitude of
recorded mEPSCs in cells strongly expressing (bright) or weakly expressing
(dim) GFP. (E) Vertical scatter plot showing the mean mEPSC size for a 5 min
recording session for bright (n = 46) and dim cells (n = 46). (F) Average
mEPSC frequency for the recordings shown in panel E. Between group
statistical significance was determined using the Mann–Whitney test,
∗p < 0.05.
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general cells appeared as relatively bright or dim. Pairs of bright
and dim neurons were patch clamped in order to investigate
whether there were differences in the strength of their excita-
tory synapses. We found that brighter neurons had statistically
significant larger size miniature excitatory postsynaptic currents
(mEPSCs) than dimly fluorescent neurons while there was no sig-
nificant difference in the frequency of mEPSCs (Figures 1B–F).
This indicates that stronger steady state reporter activity is a rea-
sonably good indicator of the level of the synaptic drive that a
neuron receives. Because the reporter virus does not contain any
transcribed sequences from Cycs, it is likely that differences in
GFP expression reflect changes in transcription; however, run-on
transcription and chromatin IP experiments will be necessary to
definitively prove that this is the case.

BLOCKING GABAA RECEPTORS ENHANCES Cycs REPORTER
GENE EXPRESSION
To further analyze how well the activity-dependent reporter con-
structs can follow changes in network activity, we treated 24 day
old cultured neurons with 20 μM bicuculline. This manipula-
tion has been shown to increase synchronous bursting activity
that can persist for up to 24 h (Arnold et al., 2005). Cultures
treated with 1 μM TTX plus bicuculline, or vehicle served as con-
trols. Images of 10 fields selected at random from each culture
were recorded within minutes of adding the inhibitors using the
same exposure time. Cultures were then returned to the incu-
bator, and images were again acquired from the same cultures
after 24 and 48 h. As shown in Figure 2, exposing cultures to
bicuculline increased GFP expression in hippocampal neurons;
while co-administering TTX partially suppressed this response
(Figures 2A,B). Even though GFP levels in bicuculline-treated
neurons was variable, the median value calculated from the mean

fluorescence intensities clearly increased over time (Figure 2B).
There was no statistically significant difference between the three
cultures prior to adding the inhibitors, but after 24 and 48 h there
was a significant difference between the control and bicuculline-
treated neurons.

To confirm the imaging results, we carried out western blots
using an anti-GFP antibody. As expected, cultures treated for
48 h with bicuculline showed an increase in GFP expression
(Figure 3A). Similar to our results obtained by live imaging, co-
applying bicuculline and TTX prevented the increase in GFP
expression, however, the intensity of the GFP signal was higher
than in cells treated with TTX alone. In addition, combin-
ing 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX, 20 μM) and
D-(-)-2-Amino-5-phosphonopentanoic acid (APV, 50 μM) to
simultaneously block AMPA and NMDA receptors, respectively,
had a similar effect to TTX on the bicuculline-induced increase
in GFP expression (Figure 3A). Even if bicuculline was added for
only 8 h and then washed out, GFP expression remained elevated
after 48 h (Figure 3B lane 3). Given that the half-life of the GFP
variant used in our experiments is approximately 2 h (Li et al.,
1998), this likely reflected ongoing transcriptional upregulation
of the Cycs enhancer.

To determine whether the observed increase in Cycs enhancer-
driven GFP was similar to known activity-dependent enhancers
(Lam et al., 2009), two new reporter viruses were made in which
GFPpd2 expression was driven either by a 564 bp Fos proximal
enhancer fragment (Wang and Howells, 1994) or a 104 bp dis-
tal enhancer from the Arc gene (Kawashima et al., 2009). Both
enhancers contain CRE sites as well as a serum response ele-
ment (Sheng et al., 1988; Kawashima et al., 2009). As shown in
Figure 4, the difference between GFP expression under control
of the Fos proximal enhancer in neurons treated with either TTX

FIGURE 2 | Suppressing inhibitory activity markedly increases Cycs

enhancer-driven GFP expression. (A) Hippocampal neurons were exposed
to bicuculline (20 μM) or bicuculline plus TTX (1 μM) for 48 h. Images of living
neurons, normalized to the same intensity scale, show marked differences in
GFP levels between treatments. Scale bar corresponds to 20 microns.

(B) Box and whisker plots showing quantification of GFP expression in the
same cultures over time following addition of bicuculline or bicuculline plus
TTX. Images of a least 25 cells in 10 fields were analyzed. Mean pixel
intensities are in arbitrary units. Between group statistical significance was
determined using the paired sample Wilcoxon signed rank test, ∗∗∗p < 0.001.
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FIGURE 3 | (A) Increase in Cycs enhancer-driven GFP expression by
bicuculline is suppressed by blocking neural activity. Lane 1, 48 h untreated;
lane 2, 48 h bicuculline; lane 3, 48 h TTX, lane 4, 48 h bicuculline plus TTX;
lane 5, 48 h bicuculline plus APV (50 μM) and CNQX (20 μM). (B) Persistent
effect of bicuculline on GFP expression. Lane 1, 8 h bicuculline; lane 2, 48 h
bicuculline; lane 3, 8 h bicuculline plus 40 h after washout of bicuculline.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a
loading control.

FIGURE 4 | Comparing the Cycs enhancer to other activity-regulated

enhancers. Arc enhancer (48 h TTX), Arc enhancer (48 h bicuculline), Fos
enhancer (48 h TTX); Fos enhancer (48 h bicuculline), Cycs enhancer
(48 h TTX), Cycs enhancer (48 h bicuculline). Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as a loading control.

or bicuculline for 48 h was similar to that of the Cycs enhancer.
The Arc enhancer produced a big difference in GFP expression
between bicuculline and TTX, and is in agreement with previ-
ous work (Shepherd et al., 2006; Kawashima et al., 2009). The
relatively modest response of the Fos reporter to biccuculline is
probably due to the absence of additional regulatory sequences
located downstream in the Fos gene (Deschamps et al., 1985;
Schilling et al., 1991).

It has been reported that short-term exposure of cultured
neurons to bicuculline leads to transcription-dependent synaptic
potentiation (Wiegert et al., 2009) whereas long-term exposure
causes synaptic scaling (Turrigiano et al., 1998). To confirm that
this latter process had occurred under our experimental condi-
tions, patch clamp recordings were made of strongly positive GFP
neurons that had been treated with bicuculline for 48 h. As shown
in Figure 5, blocking inhibitory activity significantly decreased
the frequency and the amplitude of mEPSCs showing that there
had been a decrease in synaptic efficacy, a hallmark of home-
ostatic synaptic plasticity. Thus, up-regulation of the Cycs, Fos,
and Arc enhancers persists in the presence of weakened excitatory
drive.

CREB AND NRF1 BINDING SITES ARE REQUIRED FOR
ACTIVITY-DEPENDENT EXPRESSION IN NEURONS
To determine the relative contributions of the CREB and NRF1
binding sites to the bicuculline response, three new lentiviral

FIGURE 5 | Bicuculline treatment for 48 h triggers homeostatic

plasticity. (A) Vertical scatter plot showing the mean mEPSC size
for a 5 min recording session in untreated (n = 22), bicuculline treated
(n = 23) neurons. (B) Average mEPSC frequency for the recordings
shown in panel A. Between group statistical significance was determined
using a One-Way ANOVA with Tukey’s multiple comparison test,
∗∗∗p < 0.001.

constructs were made in which the CRE sites (CRE−), the NRF1
binding site (NRF1−), or both (CRE−/NRF1−) were mutated.
Primary neurons were infected as before, and GFP expression was
measured. As shown in Figure 6A, binding of CREB and NRF1
accounted for most of the steady-state transcriptional activity of
the Cycs enhancer, although loss of NRF1 binding had a greater
effect on GFP expression. To test the involvement of each binding
site in regulating activity dependent GFP transcription, neu-
rons were infected and treated with bicuculline or TTX for 48 h.
Western blot analysis showed that neural activity regulates gene
transcription in a NRF1 and CREB-dependent fashion with NRF1
playing a prominent role (Figure 6B).

NRF1-DRIVEN GENE EXPRESSION IS CALCIUM-DEPENDENT
It is well established that calcium entry through NMDA recep-
tors and L-type calcium channels is the critical signal for
enhanced transcription driven by neural activity involving CREB
(Deisseroth et al., 1996; Hardingham et al., 1999). The effect
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FIGURE 6 | Cycs enhancer-driven GFP expression in hippocampal

neurons requires intact CREB and NRF1 binding sites. (A) Box and
whisker plots showing the relative levels of steady state GFP expression in
neurons infected with reporter viruses containing mutations in the CREB or
NRF1 binding sites or both. Images of a least 25 cells in 10 fields were
analyzed. Mean pixel intensities are in arbitrary units. Between group
statistical significance was determined using the paired sample Wilcoxon
signed rank test, ∗∗∗p < 0.001. (B) Western blot showing effect of
bicuculline and TTX on mutated enhancers. NRF1− enhancer (48 h TTX),
NRF1− enhancer (48 h bicuculline), CRE− enhancer (48 h TTX), CRE−
enhancer (48 h bicuculline), intact enhancer (48 h TTX); intact enhancer
(48 h bicuculline). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as a loading control.

of glutamate on gene expression has been linked to calcium
influx through NMDA receptors, whereas transcription induced
by direct membrane depolarization with potassium is sensitive
to blockade of L-type calcium channels (Bading et al., 1993,
1995). To investigate the involvement of calcium in NRF1-
dependent gene activity, neurons expressing the CRE− Cycs
enhancer were treated with bicuculline for 48 h in the pres-
ence of APV (50 μM final concentration), or the L-type cal-
cium channel blocker nimodopine (10 μM final concentration).
As shown in Figure 7 both nimodipine and APV significantly
reduced GFP expression indicating that NRF1-dependent pro-
moter activity, at least in this context, is regulated by calcium
arising from both NMDA receptors and from L-type calcium
channels.

NRF1-DRIVEN GENE EXPRESSION IS REGULATED BY ERK1/2
Bicuculline-induced bursting activity is sensitive to inhibition
of ERK1/2 (Arnold et al., 2005), and ERK1/2 is activated by
calcium influx in response to neural activity (Wiegert and Bading,
2011). To investigate the involvement of the ERK1/2 kinase in
the regulation of NRF1-dependent transcription, neurons

FIGURE 7 | Increase in Cycs CRE− enhancer-driven GFP expression by

bicuculline is dependent on NMDA and L-type calcium channel

activation. Box and whisker plots showing the relative levels of GFP
expression in neurons infected with the CRE− reporter virus after adding
bicuculline, bicuculline/TTX, bicuculline/nimodipine (10 μM), or
bicuculline/APV (50 μM) for 48 h. Images of at least 25 cells in 10 fields
were analyzed. Mean pixel intensities are in arbitrary units. Between group
statistical significance was determined using the paired sample Wilcoxon
signed rank test, ∗∗∗p < 0.001.

expressing the Cycs CRE− reporter were pre-treated for 30 min
with the MEK1/2 inhibitor SL327 (Z-& E-α-(Amino-[(4-amino-
phenyl)thio]methylene)-2-(trifluoromethyl)benzeneacetonitrile,
10 μM final concentration; Atkins et al., 1998), prior to adding
bicuculline. The kinase inhibitor was added again after 24 h, and
images of individual neurons were acquired 48 h from the start
of the experiment. GFP expression was compared to cultures
that had been treated with TTX or bicuculline alone. As shown
in Figure 8A, inhibiting ERK1/2 activity in the presence of bicu-
culline reduced GFP expression to levels that were statistically
indistinguishable from TTX-treated cells (p = 0.216). In a second
set of experiments GFP expression and ERK1/2 activation was
examined by western blot analysis. We noticed that, following
8 h of exposure to bicuculline GFP expression had not changed,
although phosphorylated ERK1/2 levels had gone up reflecting an
increase in ERK1/2 activation caused by bicuculline (Figure 8B).
Likewise inhibiting ERK1/2 activity had no effect on GFP
expression after 8 h. However, the increase in GFP expression
seen after 48 h was partially suppressed by continuously blocking
ERK1/2 (Figure 8B lane 6), indicating that the ERK1/2 pathway
is involved either directly or indirectly in the up-regulation of
NRF1-dependent transcription by bicuculline. Similarly, directly
inhibiting ERK1/2 with 5-(2-Phenyl-pyrazol[1,5-a]pyridine-3-
yl)-1H-pyrazolo[3,4-c]pyridazin-3-ylamine (Ohori et al., 2005)
also reduced the bicuculline-induced increase in GFP expression
(data not shown).

DISCUSSION
Histochemistical staining for cytochrome c oxidase activity
(Complex IV) has been used extensively to define regions in the
brain that are associated with high levels of neural activity (Wong-
Riley, 1989). To try to relate synaptic activity to mitochondrial
gene expression within individual living neurons, a recombinant
lentivirus reporter was made that expresses a short-lived version
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FIGURE 8 | Increase in Cycs CRE− enhancer-driven GFP expression

by bicuculline is dependent on ERK1/2 activation. (A) Box and whisker
plots showing the relative levels of GFP expression in neurons infected
with the CRE− reporter virus after adding TTX, bicuculline, or bicuculline
plus MEK1/2 inhibitor SL327 for 48 h. Images of a least 50 cells in 20
fields were analyzed. Mean pixel intensities are in arbitrary units.

Between group statistical significance was determined using the paired
sample Wilcoxon signed rank test, ∗∗p < 0.006. (B) Representative
western blot of neuronal cultures treated with bicuculline for 8 and 48 h
in the presence or absence of the MEK1/2 inhibitor SL327.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a
loading control.

of GFP under the transcriptional control of sequences from the
gene encoding cytochrome c, the electron donor to Complex
IV. We found that the Cycs proximal enhancer is responsive to
changes in neural activity, primarily due to the presence of the
NRF1 and two CREB binding sites, which define this enhancer
(Evans and Scarpulla, 1989).

Steady state levels of GFP in morphologically similar neu-
rons appeared to be related to synaptic strength in as much as
higher amplitude mEPSCs were recorded in cells with more GFP
expression compared to ones with less. Stronger unitary con-
nections may be expected to drive higher firing rates, which
would demand more energy. Since most ATP is generated by
oxidative phosphorylation in mitochondria, more mitochondria
or more mitochondria with extensive cristae may exist in neu-
rons with higher firing rates (Perkins et al., 2003). This would
likely require higher steady state transcription of nuclear-encoded
mitochondrial genes including cytochrome c. In an in vivo study
of hippocampus, fast spiking parvalbumin- positive interneurons
strongly immunostained for cytochrome c and contained more
mitochondria than principal cells and other interneurons (Gulyas
et al., 2006). Thus, the reporter virus described here could be
a useful in vivo tool to distinguish between different types of
neurons with varying metabolic demands, and to differentiate
between activity levels in populations of the same type of neuron
(Barth, 2007).

When bicuculline was added to strongly enhance network
activity, and drive up energy demand (Arnold et al., 2005),
Cycs enhancer-dependent GFP expression increased over the 48 h
period of the experiment. There was cell to cell variability between
morphologically similar neurons, which may reflect the differ-
ence in neuronal connectivity between individual neurons or
variability in L-type calcium channel or NMDA receptor expres-
sion (Figure 2A). Nevertheless, overall GFP expression increased
as confirmed by western blot analysis, and elevated GFP expres-
sion persisted even if the bicuculline was removed after 8 h
(Figure 3).

Prolonged exposure to bicuculline causes synaptic scaling, a
phenomenon that maintains a neuron’s intrinsic firing rate in the
face of hyperexcitation (Turrigiano et al., 1998). Measurement
of mEPSCs confirmed that neurons in our cultures exposed to
bicuculline had exhibited synaptic scaling after 48 h. Under these
conditions not only did Cycs enhancer driven GFP expression
increase, but the same result was obtained with Fos and Arc
reporter viruses. Homeostatic adjustment of synaptic strength,
due to prolonged hyperexcitation, therefore, does not appear to
down-regulate these activity-dependent enhancers. It has been
previously shown that Arc levels go up under conditions of home-
ostatic synaptic plasticity (Shepherd et al., 2006). Arc promotes
the removal of AMPA receptors from the postsynaptic membrane,
accounting for the observed decrease in the amplitude of mEP-
SCs following prolonged suppression of GABAergic inhibition
(Shepherd et al., 2006).

In the present work a significant decrease in mEPSC frequency
as well as mEPSC amplitude was observed, which may be related
to the age of the cultured neurons (26 div) (Wierenga et al.,
2006). A decrease in mEPSC frequency is considered to reflect
presynaptic changes, either a decrease in the probability of vesicle
release or a decrease in the number of synapses or both (Pozo and
Goda, 2011). In other work it has been shown that exposing day
18–19 hippocampal neurons to bicuculline led to a decrease in the
number of synaptic spines (Piccoli et al., 2007). Persistent high
GFP expression following bicuculline treatment may be the result
of initially enhanced firing rates (Arnold et al., 2005) coupled
with sustained amplification in gene transcription dependent on
ERK1/2 activation. We found high levels of ERK1/2 activation at
8 h and 48 h after applying bicuculline (Figure 8B).

Removing the CRE sites rendered the Cycs enhancer primar-
ily dependent upon the NRF1 binding site. Co-administering
TTX, APV, or nimodipine antagonized the response of the CRE−
enhancer to bicuculline, indicating that calcium influx through
either NMDA or L-type calcium channels regulated the NRF1-
dependent transcriptional response. In other studies blocking
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L-type calcium channels did not affect CREB-dependent tran-
scription in response to bicuculline (Hardingham et al., 2002),
although bicuculline-induced bursting can lead to calcium entry
through L-type calcium channels (Arnold et al., 2005). Prolonged
hyperactivity in dissociated cortical neurons (>18 div) triggered
by adding the GABAA receptor inhibitor gabazine increased
VGLUT2 expression over 48 h, an effect that was suppressed by a
L-type calcium blocker, and by an ERK1/2 inhibitor (Doyle et al.,
2010).

It has been reported that ERK1/2 activation in neurons is
regulated by cyclin-dependent kinase 5 (CDK5), which phospho-
rylates and inhibits the upstream kinase MEK1 (Sharma et al.,
2002). CDK5 has been implicated in homeostatic synaptic plastic-
ity by acting as a priming kinase for Polo-like kinase 2, which has
been shown to be necessary for synaptic scaling via its dendritic

substrate RapGAP (Seeburg et al., 2008). Thus, CDK5 would be
expected to be activated in neurons chronically exposed to bicu-
culline. On the other hand, because bicuculline-induced bursting
leads to an increase in phosphorylated ERK1/2 in nuclei of hip-
pocampal neurons (Wiegert et al., 2007), high levels of activated
ERK1/2 in the nucleus may persist in the face of down regula-
tion of ERK1/2 by CDK5 in the cytoplasm. Future experiments
involving fractionation of neurons exposed to bicuculline will be
designed to address this question.
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