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Tunneling current and noise 
of entangled electrons in correlated 
double quantum dot
N. S. Maslova1,4, P. I. Arseyev2,4 & V. N. Mantsevich3,4*

We developed general approach for the analysis of tunneling current and its zero frequency noise 
for a wide class of systems where electron transport occurs through the intermediate structure with 
localized electrons. Proposed approach opens the possibility to study electron transport through 
multi-electron correlated states and allows to reveal the influence of spatial and spin symmetry of 
the total system on the electron transport. This approach is based on Keldysh diagram technique in 
pseudo-particle representation taking into account the operator constraint on the number of pseudo-
particles, which gives the possibility to exclude non-physical states. It was shown that spatial and spin 
symmetry of the total system can block some channels for electron transport through the correlated 
quantum dots. Moreover, it was demonstrated that the stationary tunneling current and zero 
frequency noise in correlated coupled quantum dots depend on initial state of the system. In the frame 
of the proposed approach it was also shown that for the parallel coupling of two correlated quantum 
dots to the reservoirs tunneling current and its zero frequency noise are suppressed if tunneling occurs 
through the entangled triplet state with zero total spin projection on the z axis or enhanced for the 
tunneling through the singlet state in comparison with electron transport through the uncorrelated 
localized single-electron state. Obtained results demonstrate that two-electron entangled states in 
correlated quantum dots give the possibility to tune the zero frequency noise amplitude by blocking 
some channels for electron transport that is very promising in the sense of two-electron entangled 
states application in quantum communication and logic devices. The obtained nonmonotonic behavior 
of Fano factor as a function of applied bias is the direct manifestation of the possibility to control the 
noise to signal ration in correlated quantum dots. We also provide detailed calculations of current 
and noise for both single type of carriers and two different types of carriers in the presence and in the 
absence of Coulomb interaction in Supplementary materials.

Electronic current noise is of great importance in fundamental science, technology research and various appli-
cations. It can be used to probe fundamental quantum effects in electronic  transport1–5, and can be also treated 
as undesirable effect in electronic devices as it prevents observing the measured signal. The role of fluctuations 
increases with a decrease in the system size and dimensionality, making current and noise in nanosystems very 
 prominent6–11. In nanoscale junctions tunneling current noise can appear both due to the applied bias voltage or 
to the temperature gradient in the contact  leads2,12,13. When a device is voltage biased, non-equilibrium fluctua-
tions become dominant and the shot-noise appears in the  system14. Moreover, inter-particle interactions can 
strongly modify the noise  spectrum15–17. In the absence of Coulomb correlations tunneling current noise through 
the intermediate system with localized electrons was studied both experimentally and  theoretically18–21. The zero 
frequency noise in general case contains classical contribution and quantum corrections. It can be described 
by the Landauer  formalism2,22. In this formalism the zero frequency noise is expressed through transmission 
probabilities for each tunneling channel.

Finite frequency quantum noise determines the light emission spectra in atomic scale tunneling  contacts23–29. 
In the absence of electron-phonon and Coulomb interaction the edge of noise and light (plasmonic) emission 
spectrum is given by the value of applied bias (noise spectrum amplitude vanishes when frequency exceeds the 
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value of applied bias). In the presence of inter-particle interaction the spectrum broadens and its edge position 
depends on the type of  interaction23,30.

Recent experiments and theoretical investigations indicated that the processes involving interaction of tun-
neling electrons with plasmon-polaritons excited in the leads result in photon emission with overbias energies. 
Besides the influence of Coulomb correlations and electron-phonon interaction on finite frequency noise spec-
trum they also affect the properties of zero frequency  noise31–35. The simplest structures for zero frequency noise 
properties investigation are single or double correlated quantum dots localized in the tunneling contact. For 
two correlated quantum dots tunneling current and zero frequency noise depend on the contact geometry and 
results are quite different for sequential and parallel  configurations36. A sequential transport in a system of two 
strongly coupled quantum dots was studied  in37. It was shown that the shot noise in the system is very sensitive 
to the internal electronic level structure of the coupled dot system and its specific coupling to the electrodes. In 
the Coulomb blockade regime super-Poissonian noise appears. In this case the Fano factor takes values larger 
than  unity8,38. The enhanced Fano factor can also be found in symmetric systems inside the Coulomb blockade 
region where the current is much  suppressed39,40. In the Coulomb-coupled double quantum dots noise spectrum 
can be used as a possible indicator of the entanglement in the transport  experiments41 as shot-noise spectrum 
exhibits resonances at the transition frequencies of the system and contains useful information on its relaxation 
and dephasing  properties42–44.  In34 authors demonstrated that in a weak dissipation regime the dephasing and 
relaxation rates of the two-level system can be extracted from noise measurements. Contrary, in the strong dis-
sipation regime the localization-delocalization transitions becomes visible in the low-frequency noise. The zero 
frequency noise in the system of two weakly coupled quantum dots in both configurations was analyzed in the 
regime, when applied bias is much smaller than the tunneling widths of localized electrons energy  levels35. As 
interaction between quantum dots is weak, they can not be considered as a single complex with its own set of 
multi-electron states. So, Kondo correlations between the localized and conduction electrons in the leads can 
influence on the zero frequency noise. In this case current noise was analyzed using slave-boson mean-field 
 approach45,46. In such an approach even the constraint on the possible physical states is taken into account only 
for the averaged pseudo-particle occupation numbers.

For modern electronic devices the situation when quantum dots are strongly coupled and there exists a full 
set of multi-electron states is of great interest. In such system there are single-electron and multi-electron states 
with particular spin and spatial symmetry, which result in a well defined selection rules for electron’s transitions. 
The most interesting states in coupled quantum dots system are two-electron states with opposite spins, which 
can form singlet state (total spin is zero) and triplet state (total spin is unity)47. Such states are entangled spin 
states and they can be well initialized, investigated and processed  experimentally48,49. Pairwise entanglement 
between electrons in coupled quantum dots can be detected in two mesoscopic wires by measurement of the 
current noise in one of the wires as it was shown  in50. The possibility to suppress shot noise in tunneling junc-
tion was demonstrated  in1,24,51.  In52 authors performed configuration interaction calculations on a singlet-triplet 
double quantum dot and revealed the possibility to switch the system between different regimes by tuning the 
interdot bias. Switching between different transport regimes also results in the noise characteristics of the studied 
system. The measurements of the cross correlations between temporal current fluctuations in two capacitively 
coupled quantum dots in the Coulomb blockade regime were performed  in53. It was shown that the sign of the 
cross-spectral density can be tuned by both gate voltage and source-drain bias.

In the present paper we developed a general approach for analysis of tunneling current and its noise spectra 
for a wide class of systems where electron transport occurs through the intermediate structure with local-
ized electrons. Proposed approach opens the possibility to study electron transport through multi-electron 
correlated states and allows to consider the influence of spatial and spin symmetry of the total system on its 
tunneling characteristics. This method is based on Keldysh diagram technique in pseudo-particle representa-
tion taking into account operator constraint on the number of pseudo-particles, which gives the possibility to 
exclude non-physical states. In the frame of proposed approach we demonstrated that for the parallel coupling 
of two interacting quantum dots with Coulomb correlations to the reservoirs tunneling current and its zero 
frequency noise are suppressed if tunneling occurs through the triplet state with zero spin projection on the z 
axis or enhanced for the tunneling through the singlet state in comparison with electron transport through the 
uncorrelated localized electron state.

The suggested generalized approach allows both to reproduce well known exact results for tunneling through 
a single-level uncorrelated quantum dot and to analyze beyond the mean-field approximation more complicated 
systems with strong Coulomb correlations. It also gives the possibility to determine the contribution of each 
multi-electron channel to tunneling current and its noise spectrum.

Theoretical model
We consider a well-known system of two coupled single-level quantum dots (impurity atoms) connected sym-
metrically to two electronic reservoirs (see Fig. 1)54. The Hamiltonian of the system,

is written as a sum of the Hamiltonian describing the quantum dots

the reservoir part

(1)Ĥ = Ĥdot + Ĥres + Ĥtun

(2)Ĥdot =
∑

lσ

εl ĉ
†
lσ ĉlσ +

∑

lσ

Uln̂
σ
l n̂

−σ
l + T

∑

σ

(ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ ),
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and the tunneling Hamiltonian

where εl ( l = 1, 2 ) is the spin-degenerate single-electron level and Ul is the on-site Coulomb repulsion for dou-
ble occupation of each quantum dot. The creation/annihilation of an electron with spin σ = ±1 within a dot 
is denoted by operators ĉ†lσ /ĉlσ and n̂σl = ĉ†lσ ĉlσ is the corresponding occupation number operator. Operator 
ĉ†k(p)σ /ĉk(p)σ creates (annihilates) an electron with spin σ and momentum k(p) in the reservoir. Coupling between 
the dots T and the tunneling transfer amplitudes to the reservoirs tLl and tRl are considered to be independent of 
momentum and spin. eV is an external bias voltage applied to one of the reservoirs. For simplicity we consider 
nearly identical quantum dots ( ε1 = ε2 = ε and U1 = U2 = U  ) and assume the symmetric coupling to both 
reservoirs: electrons can transfer from both quantum dots to the reservoirs and back with the same tunneling 
amplitude tL(R)1 = tL(R)2.

When interaction between quantum dots exceeds coupling strength to the reservoir ( T ≫ tL(R)1, tL(R)2 ), it is 
reasonable to use the basis of exact eigenfunctions and eigenvalues of coupled quantum dots neglecting interac-
tion with the reservoirs. In this case all energies of single- and two-electron states are well known (further we 
will not consider three- and four-electron states):

In the case of one electron in the system, there exist two single-electron states with energies εi = ε ± T 
( i = a, S ) and the wave function

where |0 ↑�|00� and |00�|0 ↑� are the basis functions corresponding to the presence of a single electron in each 
quantum dot. For resonant case in the symmetric (antisymmetric) state the coefficients in expression (5) read 
µS(a) = ±νS(a) = 1√

2
 . There also exist six two-electron states: two of them are states with the same spin projec-

tion T+ = | ↑ 0�| ↑ 0� ; T− = | ↓ 0�| ↓ 0� , which correspond to the existence of two electrons localized in dif-
ferent quantum dots and four states with the opposite spin projections: functions | ↑↓�|00� ; |00�| ↑↓� describe 
two electrons localized in the same dot with the opposite directions of spin, and functions | ↓ 0�|0 ↑� ; |0 ↑�| ↓ 0� 
correspond to electrons localized in different dots. The two-electron wave function reads:

For low energy and excited singlet and triplet states coefficients αj , βj , γj and δj are determined by the eigenvalues 
and eigenvectors of 4x4 matrix of Ĥdot Hamiltonian in the basis | ↑↓�|00� , | ↓ 0�|0 ↑� , |0 ↑�| ↓ 0� and |00�| ↑↓�:

These are low energy singlet S0 and triplet T0 states and excited singlet ( S0∗ ) and triplet ( T0∗) states. For the triplet 
initial state T0 coefficients α = δ = 0 and β = −γ = 1√

2
 . So, four two-electron states with opposite spins have 

the following energies: 2ε ; 2ε + U  and 2ε + U
2
±

√

U2

4
+ 4T2.

Further, we will consider only the lower energy singlet S0 and triplet T0 states because excited S0∗ and T0∗ 
states are separated by Coulomb gap. One can also exclude states T± at low temperature (in all the calculations 
temperature is considered to be 0.01ε ) by introducing weak exchange interaction with constant Jz > 0 in the 
following form:

(3)Ĥres =
∑

pσ

εpĉ
†
pσ ĉpσ +

∑

kσ

(εk − eV)ĉ†kσ ĉkσ ,

(4)Ĥtun =
∑

lpσ

tLl(ĉ
†
pσ ĉlσ + ĉ†lσ ĉpσ )+

∑

lkσ

tRl(ĉ
†
kσ ĉlσ + ĉ†lσ ĉkσ ),

(5)�σ
i = µi|0 ↑�|00� + νi|00�|0 ↑�,

(6)�σ−σ
j = αj| ↑↓�|00� + βj| ↓ 0�|0 ↑� + γj|0 ↑�| ↓ 0� + δj|00�| ↑↓�.

(7)







2ε + U − T − T 0

−T 2ε 0 − T
−T 0 2ε 0

0 − T − T 2ε + U






.

(8)Ĥex = Jz(n̂
σ
1 − n̂−σ

1 )(n̂σ2 − n̂−σ
2 ).

Figure 1.  Scheme of two interacting quantum dots (impurity atoms) symmetrically coupled to reservoirs.
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Correlated quantum dots kinetics can be analyzed by means of the pseudo-particle  formalism45,46. In this theoreti-
cal approach, pseudo-particles are introduced for each eigenstate of the system. As we neglect excited double-
occupied electron states as well as three- and four-particle states due to the presence of Coulomb correlations, 
the electron operator ĉ†lσ (l = 1, 2) should be rewritten as a combination of pseudo-particle operators:

where f̂ +iσ (f̂iσ ) are pseudo-fermion creation (annihilation) operators for electronic states with one electron and 
b̂†(b̂) , d̂†σσ (d̂σσ ) , d̂†σ−σ

j (d̂σ−σ
j ) are slave-boson operators, corresponding to the states without electrons or with 

two electron. Aσ l
i  , Bσ−σ l

ji  and Bσσ li  are matrix elements of the creation operators ĉ†lσ between the states with n and 
n+ 1  electrons17. Constraint on the possible physical states has the form

where N̂b = b̂†b̂ , N̂iσ = f̂ †iσ f̂iσ and N̂σ−σ
j = d̂†σ−σ

j d̂σ−σ
j  . As we excluded T± states, terms containing operator 

d̂†σσ in expressions (9)–(10) should be also omitted. In pseudo-particle representation intermediate system 
Hamiltonian Ĥdot has the form of non-interacting pseudo-particles:

with Eσ−σ
j  being the two-electron states energies. All the correlations are now included in the constraint (10). 

Interaction with the leads becomes nonlinear in pseudo-particle approach and can be obtained by substituting 
expression for electron operators given by Eq. (9) in the tunneling Hamiltonian (4). We set � = 1 and e = 1 in 
what follows. The tunneling current operator is

The current noise is characterized by the set of correlation functions

where indexes α,β = L,R . In expressions for tunneling current operator and current noise in pseudo-particle 
representation all localized electron operators ĉlσ should be replaced using expression (9) with constraint (10)

where

with indexes i = S, a and j = S0,T0 . For the resonant case, when ε1 = ε2 the following expressions for tunneling 
amplitudes are valid for a single electron states tLa = 0 and tLS =

√
2tL . Tunneling amplitude from symmetric 

single-electron state is enhanced due to constructive interference between electrons. For two-electron states 
one can obtain tLT0a = tL , tLT0S = tLS0a = 0 and tLS0S =

√
2tL(α + β) . So, two independent tunneling channels 

appear: the first one through the triplet state T0 and antisymmetric single electron state a and the second one 
through the singlet state S0 , symmetric single electron state S and empty state. In the case of tunneling through 
the T0 state one of the electrons with spin σ can transfer to the lead and coupled quantum dots system remains in 
the antisymmetric single electron state a with the opposite spin −σ . This single electron in antisymmetric state 
a can not transfer to the lead because transitions between antisymmetric and empty states are restricted by the 
selection rules. For the singlet S0 state electron with spin σ can transfer to the lead leaving the second electron 
with opposite spin in the symmetric single electron state S. Further, this electron can also tunnel to the lead and 
quantum dots system remains in the empty state.

It follows from the general principles of statistical physics that the correlation function in the steady 
state depends only on the difference of times τ = t ′ − t . It is instructive to introduce the Fourier transform of 
the correlation function in the form

where α,β = L,R . Although in the steady state the current through the structure is the same, the current 
fluctuations are not homogeneous in space in general. Hence, generally in the presence of intermediate system 
SLL  = SRR  = SLR  = SRL , although at ω = 0 all components are the  same17.

(9)ĉ†lσ =
∑

i

Aσ l
i f̂ †iσ b̂+

∑

jiσ

Bσ−σ l
ji d̂†σ−σ

j f̂i−σ +
∑

iσ

Bσσ li d̂†σσ f̂iσ ,

(10)N̂b +
∑

iσ

N̂iσ +
∑

jσσ
′
N̂σσ

′

j = 1.,

(11)Ĥdot =
∑

iσ

εi f̂
†
iσ f̂iσ +

∑

j=S0,T0

Eσ−σ
j d̂†σ−σ

j d̂σ−σ
j

(12)ÎL(t) =
∑

k

˙̂nk = tL
∑

k,l,σ

[ĉ†kσ (t)ĉlσ (t)− h.c.].

(13)Sαβ(t, t
′) = < Îα(t)Îβ(t

′) > − < Îα(t) >< Îβ(t
′) >,

(14)ÎL(t) =
∑

k,i,σ

tLi f̂
†
iσ (t)b̂(t)ĉkσ +

∑

k,i,j,σ ,σ ′
tLijd̂

†σσ ′
j f̂iσ ′ ĉkσ − h.c.,

(15)
tLi =tL(µi + νi),

tLij =tL
(

αjµi + βjνi + δjνi + γjµi

)

(16)Sαβ(ω) =
∫ ∞

−∞
Sαβ(t, t + τ)eiωτdτ ,
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Current and noise in the system of two coupled QDs interacting with the reservoir
We now analyze current and zero frequency noise for two quantum dots symmetrically coupled to both leads 
tL(R)1 = tL(R)2 = tL(R) (see Fig. 1). Further for simplicity we will consider resonant case ε1 = ε2 = ε . Symmetric 
properties of the total system results in the selection rules for electron transitions determined by the correspond-
ing matrix elements. This results in the following expressions for the tunneling rates. The tunneling rate between 
single-occupied antisymmetric state a and empty state in the case of symmetric coupling is 
γ a
L(R) = γL(R)|µa + νa|2 = 0 , γL(R) = π t2L(R)νL(R) . The tunneling rate between double-occupied singlet state S0 

and antisymmetric state a is γ S0a
L(R) = |α + β|2γ a

L(R) = 0 . So, in this case only transitions between T0 and a± states 
are a l lowed.  For electron transit ions between T0 and a± states  tunneling rates  are 
γ T0a
L(R) = γL(R)|βT0νa + γT0µa|2 = γL(R) . For single-electron symmetric two-electron states S tunneling rates are 

defined as: γ S0S
L(R) = γL(R)|α + β|22 , γ S

L(R) = γL(R)|µS + νS|2 = 2γL(R) and γ S0S
L(R) = 0 . So, there exist two independ-

ent channels for tunneling: T0 − a channel corresponds to the electron transitions in coupled quantum dots 
between two-electron triplet state T0 and antisymmetric single-electron state a, and S0 − S − 0 channel corre-
sponds to the electron transitions between two-electron singlet state S0 , symmetric single electron state S and 
empty state. We will consider the situation when applied bias voltage eV strongly exceeds all the tunneling rates, 
so the Kondo effect is not significant for such a situation. First of all we consider the system to be initially pre-
pared in a single electron antisymmetric state. It can be done by means of the external laser pulse, when the reso-
nant excitation of the coupled quantum dots system occurs (the frequency of the laser pulse is in the resonance 
with the antisymmetric single electron state energy level, consequently, the εa state becomes occupied)54. Another 
possibility to prepare system in the εa state is to use gates structure. Changing the gate voltage one can organize 
the situation when at the initial time moment antisymmetric single electron state is localized below the Fermi 
level and, consequently, is occupied. Further tuning of gate voltage results in the Fermi level position changing 
in such a way that it is localized below the εa energy level. In this case tunneling current flows through the T0 − a 
channel. For calculation of tunneling current and zero frequency noise in T0 − a channel we determine pseudo-
particle Green’s functions T0< = −NT0

(T0A − T0R) , N<
a±σ = Na(N0A

a±σ − N0R
a±σ ) and T0R(A) = 1

ω−ET0±iγ T0a
 , 

N
0R(A)
a±σ = 1

ω−εa±iγ T0a
 . The pseudo-particle occupation numbers can be found from kinetic equations shown in 

Supplementary Appendix I:

where NT0a
T = γ T0a

L �T0a
k +γ T0a

R �T0a
p

γ T0a
L +γ T0a

R

 and NT0a
T ≡ NT (ET0 − εa) . Functions �T0a

k(p) ≡ �k(p)(ET0 − εa) read

with energy of the triplet state being ET0 = 2ε and fk(p)—is the Fermi distribution function of electrons in the 
lead k(p).

Tunneling current is determined by the diagrams shown in Fig. 2. The real electron Green’s functions in the 
leads for a given spin σ are determined as:

Details of tunneling current calculations for each spin channel for eV ≫ γL(R) are shown in Supplementary 
Appendix II. Expression for the tunneling current reads

(17)

NT0 = NT0a
T

2− NT0a
T

,

Na =1− NT0a
T

2− NT0a
T

,

(18)

�k(p)(ET0 − εa) =
1

2π
i

∫

dεk(p)fk(p)(εk(p))×
[

1

ET0 − εa + i(γL + γR)− εk(p)
− 1

ET0 − εa − i(γL + γR)− εk(p)

]

(19)

J
<(>)
kσ (ω) =

∫

dǫkG
<(>)
kσ (ω, k),

G<
kσ (ω) =fkσ (ω)

[

GA
kσ (ω)− GR

kσ (ω)
]

,

G>
kσ (ω) =(fkσ (ω)− 1)

[

GA
kσ (ω)− GR

kσ (ω)
]

,

J
<(>)
Tσ (ω) =

γLJ
<(>)
kσ (ω)+ γRJ

<(>)
pσ (ω)

γL + γR
.

Figure 2.  Diagrams contributing to the tunneling current through the T0 − a channel.
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where γ T0a = γ T0a
L + γ T0a

R . 
Similarly one can obtain expression for the zero frequency noise spectra. The leading terms are given by 

the diagrams shown in Fig. 3. Quantum corrections contain maximally crossing diagrams, which are depicted 
in Fig. 4. Fixing the sign of spin index σ for the Green’s function of electrons in the leads J<kσ (ω) automatically 
determines the signs of spin index σ for all pseudo-particle Green’s functions N±σ and electron Green’s functions 
in the leads J<(>)

Tσ  in maximally crossing diagrams. Expression for the total zero frequency noise reads

When the energy difference between T0 state and antisymmetric single electron state a is out of the interval 
[0, eV] ( ET0 − εa < 0 and ET0 − εa > eV ) tunneling current does not flow through the T0 − a channel ( IT0a

σ = 0 
and ST0a(0) = 0 ). If the energy difference between T0 state and antisymmetric single electron state a belongs to 
the interval [0,  eV] ( 0 < ET0 − εa < eV  and (|ET0 − ε0|)/γL(R) ≫ 1 ) tunneling current is expressed as 
IT

0a
σ ∼ I1

2−NT0a
T

 . Tunneling current I1 is a current through the single-level quantum dot without Coulomb correla-
tions for particular spin channel. The explicit expression for the tunneling current I1 can be found in Supple-
mentary Appendix II. In this limit one can also simplify expression for the tunneling current noise

The zero frequency noise S1(0) corresponds to tunneling through the single-level quantum dot without Cou-
lomb correlations for particular spin. The explicit expression can be found in Supplementary Appendix II. In 
the symmetry case between tunneling rates occupation number is NT0a

T ∼ 1/2 . So, for symmetric coupling 
tunneling current IT0a

σ /γ T0a ∼ 2/3 · I1/γ and ST0a
σ (0)/γ T0a ∼ 2/3 · S1(0)/γ . When tunneling occurs through 

the channel formed by the triplet state T0 and antisymmetric singly-occupied state a zero frequency tunneling 
current noise is suppressed in comparison with tunneling current noise obtained for tunneling through the 
single-level localized state.

Now let us consider tunneling current and zero frequency noise, when electron transitions occur between 
singlet two-electron state S0 , single-electron symmetric states S± and empty state ( S0 − S and S − 0 ). Such transi-
tions determine tunneling current and zero frequency noise if quantum dots are initially prepared in symmetric 
single-electron state S. Such initial state can be prepared by means of the laser pulse excitation and further 
switching on gate voltage, which governs coupling between the dots and the  leads54. Due to symmetric properties 
of the total system in the resonant case ( ε1 = ε2 = ε ) only transitions between S0 , S± and empty state are allowed 
with corresponding tunneling rates γ S0S

L(R) = 2γL(R)|α + β|2 and γ S
L(R) = γL(R)|µS + νS|2 = 2γL(R) . Tunneling rate 

for transitions between S± single-occupied state and empty state increases twice due to constructive interference 
of tunneling electrons from two quantum dots. Transitions between S0 − a± are forbidden due to the selection 

(20)IT
0a

σ =
4γ T0a

L γ T0a
R

(

�T0a
k −�T0a

p

)

γ T0a
(

2− NT0a
T

) ,

(21)ST
0a(0) =

∑

σ

SσT0a(0) = 2
4γ T0a

L γ T0a
R

γ T0a(2− NT0a
T )

[

1− 2γ T0a
L γ T0a

R

(γ T0a)2

]

[

(�T0a
k )2(1−�T0a

p )2 + (k ↔ p)
]

.

(22)ST
0a(0) = 2S1(0)

2− NT0a
T

.

Figure 3.  Leading diagrams contributing to the zero frequency noise in the T0 − a channel.

Figure 4.  Maximally crossing diagrams contributing to the zero frequency noise quantum corrections in the 
T
0 − a channel.
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rules. For calculation of tunneling current and zero frequency noise in S0 − S − 0 channel we determine pseudo-
particle Green’s functions S0< = −NS0(S0A − S0R) , N<

S±σ = NS(N0A
S±σ − N0R

S±σ ) and S0R(A) = 1

ω−ES0±iγ S0S
 , 

N
0R(A)
S±σ = 1

ω−εa±iγ S0S
 . One should also introduce functions BR(A) = 1

ω±iγ  , B< = b(BR − BA) . The pseudo-particle 
occupation numbers can be found from kinetic equations shown in Supplementary Appendix I.

where NS0S
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S
k+γ S

R�
S
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R
 and NS0S

T ≡ NT (ES0 − εS) , NS
T ≡ NT (εS) . Functions 

�S0S
k(p) ≡ �k(p)(ES0 − εS) and �S

k(p) ≡ �k(p)(εS) are determined by Eq. (18) with the corresponding energies 
changing.

Tunneling current in S0 − S − 0 channel can be calculated using diagrams shown in Fig. 5. For each spin 
projection tunneling current reads

where γ S = γ S
L + γ S

R and γ S0S = γ S0S
L + γ S0S

R  . Calculation details are shown in Supplementary Appendix III.
Similarly, the zero frequency noise also has two contributions: intermediate system state changes between 

S0 − S or between S − 0 , when electron tunnels to the leads. The leading terms in zero frequency noise for both 

(23)
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Figure 5.  Diagrams contributing to the tunneling current through the S0 − S − 0 channel.

Figure 6.  Leading diagrams contributing to the zero frequency noise in the S0 − S − 0 channel.

Figure 7.  Maximally crossing diagrams contributing to the zero frequency noise quantum corrections in the 
S
0 − S − 0 channel.
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contributions are shown in diagrams depicted in Fig. 6. Quantum corrections contain maximally crossing dia-
grams shown in Fig. 7. Fixing the sign of spin index σ for the Green’s function of electrons in the leads J<kσ (ω) 
automatically determines the signs of spin index σ for all pseudo-particle Green’s functions N±σ and electron 
Green’s functions in the leads JT<(>)

σ  in maximally crossing diagrams. The detailed calculations are presented in 
Supplementary Appendix III. So, the expression for the zero frequency noise reads.

For ES0 − εS > eV  and 0 < εS < eV  only electron transitions between S and empty states contribute to tun-
neling current and noise. Thus:

and

For symmetric tunneling contact ( γL = γR ) tunneling occupation numbers corresponding to the energy 
ES0 − εS aspire to zero ( NS0S

T → 0 ) and tunneling occupation number corresponding to the energy εS is close 
to 1/2 ( NS

T → 1/2 ). So, tunneling current and zero frequency noise can be estimated as IS0−S−0
σ ∼ 4/3 · I1 and 

Sσ (0) ∼ 4/3 · S1(0).
When both the energy differences between the double-occupied singlet state ES0 and single-electron energy 

levels εS , εa are in the interval [0, eV] ( 0 < ES0 − εs , εs < eV  ), both contributions to the tunneling current and 
zero frequency noise are significant: IS0−S−0

σ = IS−0
σ + IS

0−S
σ  . In the limit of strong Coulomb interaction ( U ≫ T ) 

coefficients α and β can be estimated as α ≪ 1 and β ∼ 1√
2
 , so tunneling rates are of order of γ S0S

L(R) ∼ γ S
L(R)/2 

and in this case

Total tunneling current IS0−S−0
σ  is

Corresponding zero frequency noise SS0−S−0
σ (0) reads

For symmetrical coupling ( γL = γR ) tunneling current and zero frequency  noise can be estimated as: 
IS

0−S−0
σ ∼ 3/2 · I1 and SS0−S−0

σ (0) ∼ 3/2 · S1(0).  
Tunneling current through the coupled quantum dots and current noise spectra for U/T ≫ 1 are depicted 

in Figs. 8 and 9 depending on the symmetry between the left and right leads—the ratio γL/γ . Tunneling rate γL 
describes tunneling transfer between the filled states in the left lead and double quantum dot system. We per-
formed a comparison with a simple case when tunneling current flows through the single level in the absence of 
Coulomb correlations. When the system is initially prepared in a single-electron antisymmetric state the electron 
transitions between triplet two-electron state T0 and antisymmetric state a are allowed due to the selection rules 
based on the symmetry properties of the total system. So, only T0 − a channel contributes to the tunneling cur-
rent. As can be seen from Fig. 8 tunneling current is suppressed in comparison with the case when tunneling 
occurs through the single-level due to the destructive interference (see red dashed and blue dashed-dotted curves 
in Fig. 8). Moreover, the maximum value of tunneling current is achieved for asymmetric coupling with the leads 
when γL/γ = 2−

√
2 , contrary to the tunneling through the single-level, when maximum value corresponds to 

symmetric coupling with γL/γ = 1/2 . Zero frequency noise in the T0 − a channel is also suppressed in compari-
son with the single-level case. The shift of its maximum value for the asymmetric coupling is more pronounced 
in comparison with the shift of the tunneling current (see red dashed and blue dashed-dotted curves in Fig. 9).

Another situation occurs when the system is initially prepared in the symmetric single-electron state. In this 
case in coupled quantum dots the transitions between singlet two-electron state S0 and symmetric single-electron 
state S are allowed as well as transitions between single-electron state S and empty states. Thus, depending on 
the applied bias voltage one of these channels or both of them can contribute to the tunneling current and 
zero frequency noise. Tunneling current for S0 − S − 0 channel is enhanced as well as zero frequency noise in 
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comparison with the simple case of tunneling through the single-electron energy level due to the constructive 
interference as well as zero frequency noise spectra (see black solid and blue dashed-dotted curves in Figs. 8 and 
9). Relative contributions of electron transitions between S0 and S states and S and empty states to the tunneling 
current and zero frequency noise are shown in Fig. 10. Tunneling current reaches its maximum for the asym-
metric coupling between left and right leads when γL/γ =

√
2− 1 , so coupling with the filled lead is weaker 

than with the empty one contrary to the case of tunneling through the T0 − a channel when current maximum 
is achieved for stronger coupling with the filled lead. Zero frequency current noise demonstrates similar depend-
ence on the coupling asymmetry between the left and right leads of tunneling contact.

To analyze the role of Coulomb interaction we calculated the dependencies of tunneling current on the value 
of Coulomb correlations for the symmetric tunneling contact. Tunneling current as a function of Coulomb 
interaction ( 2U/γS ) for the S0 − S − 0 channel 2IS0−S−0/γS (red dashed curve) and for the T0 − a channel 
IT

0a/γ T0a = 2IT
0a/γ S (blue dashed-dotted curve) is shown in Fig. 11. Currents are compared with the value 

of tunneling current through single-level quantum dot with Coulomb interaction (see black curve in Fig. 11). 
Tunneling rate γ T0a = γ S/2 is independent on Coulomb interaction as well as energies ET0 , εa and occupation 

Figure 8.  Tunneling current as a function of tunneling contact asymmetry 
( γL/γ = γ T

0
a

L
/γ T

0
a = γ S

0
S

L
/γ S

0
S = γ S

L
/γ S ) for a single type of carriers I1/γ (blue dashed-dotted curve), for 

the T0 − a channel IT0
a/γ T

0
a (red dashed curve) and for the S0 − S − 0 channel IS0−S−0/γ S

0
S (black solid 

curve). U/T ≫ 1 . Temperature is equal to 0.01ε.

Figure 9.  Zero frequency noise as a function of tunneling contact asymmetry 
( γL/γ = γ T

0
a

L
/γ T

0
a = γ S

0
S

L
/γ S

0
S = γ S

L
/γ S ) for a single type of carriers S1/γ (blue dashed-dotted curve), for 

the T0 − a channel ST0
a/γ T

0
a (red dashed curve) and for the S0 − S − 0 channel SS0−S−0/γ S

0
S (black solid 

curve). U/T ≫ 1 . Temperature is equal to 0.01ε.
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number NT0a
T  . Thus, tunneling current through the T0 − a channel does not depend on Coulomb interaction. 

Tunneling current through the S0 − S − 0 channel is sensitive to the value of Coulomb interaction because tun-
neling rate γ S0S depends on Coulomb interaction as well as the singlet state energy ES0 and occupation number 
NS0S
T  . For 2U/γ S ≫ 1 the following ratio between tunneling rates occurs γ S0S ≃ γ S/2 , while for small Coulomb 

interaction γ S0S ≃ γ S . Tunneling current through the S0 − S − 0 channel is the largest one for all the values of 
Coulomb correlations (see red dashed curve in Fig. 11a). It slightly decreases with the growth of 2U/γ S . Fig-
ure 11b shows the dependence on Coulomb interaction of relative contributions of electron transitions between S0 
and S states and S and empty states to the tunneling current. Current through the T0 − a channel does not depend 
on the strength of Coulomb interaction and its amplitude is the smallest one (see blue dashed dotted curve in 
Fig. 11a). Tunneling current through the single-level quantum dot with Coulomb interaction I1/γ is calculated 
over the expression (26) in Supplementary Appendix III and is shown by the black curve in Fig. 11a. It demon-
strates most pronounced dependence on the value of Coulomb interaction and is suppressed for strong Coulomb 
interaction in comparison with the situation when Coulomb interaction is absent. For strong Coulomb correla-
tions tunneling current value in this case tends to the value of tunneling current through the T0 − a channel.

We would like to summarize obtained results in a Table 1.

Fano factor
Let us now analyze the dependence of tunneling current, zero frequency noise and Fano factor on the applied 
bias voltage. In the most simple case of single type of carriers tunneling current dependence on the applied bias 
voltage has a very simple  form55,56:
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Figure 10.  (a) Relative contributions IS−0/γ S
0
S and IS0−S/γ S

0
S to the total tunneling current and total 

tunneling current IS0−S−0/γ S
0
S ; (b) Relative contributions SS−0/γ S

0
Sand SS0−S/γ S

0
S to the total noise and 

total noise SS0−S−0/γ S
0
S as a functions of tunneling contact asymmetry ( γL/γ = γ S
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L
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0
S and γ S

0
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U/T ≫ 1 . Temperature is equal to 0.01ε.
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where tunneling rate γ = γL + γR is directly the sum of tunneling rates from the quantum dot to the left and 
right leads of tunneling contact. The zero frequency noise dependence on the applied bias voltage can be also 
written in the explicit  form57,58:

where function �(eV) has the following form

(32)
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Figure 11.  Tunneling current as a function of Coulomb interaction ( 2U/γS ) for a single-level in the quantum 
dot I1/γ (black curve), for the S0 − S − 0 channel 2IS0−S−0/γ S (red dashed curve) and for the T0 − a channel 
I
T
0
a/γ T

0
a = 2I

T
0
a/γS (blue dashed-dotted curve) for symmetric coupling between the left and right leads. 

Temperature is equal to 0.01ε.

Table 1.  Currents and noise maximum values as a functions of contact asymmetry.

Contact symmetry Maximum values of currents Maximum values of noise

γL/γ = 0.5 I1/γ S1/γ

γL/γ > 0.5 I
S
0−S−0/γ S

0−S
S
T
0−a/γ T

0−a

γL/γ < 0.5 I
T
0−a/γ T

0−a
S
S
0−S−0/γ S

0−S
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Expressions (31)–(32) can be applied both for the analysis of tunneling current and zero frequency noise spectra 
in a wide range of system parameters for arbitrary value of applied bias voltage. A well-known Landauer–Büttiker 
formalism can be used in the limit of small values of applied bias, when the ration eV/γ ≪ 1 occurs. In the limit 
ε/γ ≪ eV/γ ≪ 1 expressions (31)–(32) directly reproduce the Landauer–Büttiker formalism and expressions 
for tunneling current and zero frequency noise have the following form

and

In the limit eV/γ ≪ 1 ≪ ε/γ one can get another expressions for tunneling current and zero frequency noise, 
which also reproduce the Landauer–Büttiker formalism

and

So, the proposed approach directly reproduces the Landauer–Büttiker formalism for eV/γ ≪ 1 and extends it 
for larger values of applied bias, it gives the possibility to analyze tunneling current and noise spectra even in 
the limit when eV/γ ≫ 1.

Let us now analyze the I–V characteristics and the dependence of zero frequency noise on the applied bias for 
the T0 − a and S0 − S − 0 channels. Expressions for the tunneling current and zero frequency noise dependen-
cies on the applied bias voltage in the case of tunneling through the T0 − a channel follow from (20), (31) and 
(21), (32), correspondingly, and have the following form

and

where NT0a
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Expression for tunneling current IT0a
1 (eV) is given by (31) with the following changes of energy ε → ET

0a and 
tunneling rate γ → γ T0a . Function �(eV ,ET

0a) is determined by expression (33) with the same changes for 
energy and relaxation rate as for the tunneling current IT0a

1 (eV) . The dependencies of tunneling current and 
zero frequency noise on the applied bias are shown in Fig. 12. Tunneling current demonstrates a typical step like 
dependence on the applied bias. The behavior of zero frequency noise is a non-monotonic one. It first increases 
with the growth of applied bias, reaches maximum and decreases to the zero value when noise is nearly absent 
in the system with further monotonic growth. Green circle in Fig. 12 shows the area of system parameters where 
Landauer–Büttiker formalism can be applied.

We also calculated the dependence of Fano factor F(eV) = S(0,eV)
I(eV)

 both on the energy of the single occupied 
state ( ε1 = ε2 = ε ) and the applied bias voltage. The dependence of Fano factor on the applied bias voltage for 
two limiting cases ( ε/γ ≫ 1 and ε/γ ≪ 1 ) is shown in Fig. 13 by solid black and dashed red curves correspond-
ingly. In the limit ε/γ ≫ 1 Fano factor demonstrates non-monotonic behavior. For ε/γ ≫ 1 the maximum value 
of Fano factor corresponds to the zero value of applied bias. The growth of applied bias leads to the decreasing 
of Fano factor, it reaches minimum value and then monotonically increases to 1/2. In the limit ε/γ ≫ 1 Fano 
factor reveals monotonic behavior. It is equal to zero for eV = 0 and it monotonically aspires to 1/2 with the 
growth of applied bias.

For a fixed value of applied bias in the limit of eV/γ ≪ 1 the dependence of Fano factor on the energy of 
the single occupied state ( ε1 = ε2 = ε ) also reveals monotonic behavior. It starts from zero value and aspires 
monotonically to the maximum value equal to unity (see solid black curve in Fig. 14).

(34)
I1(eV)

γ
≃ 4γLγR

γ 2

eV

γ

(35)
S01(0, eV)

γ
≃ 4γLγR

γ 2

(

1− 4γLγR

γ 2

)

eV

γ
.

(36)
I1(eV)

γ
≃ 4γLγR

ε2 + γ 2

eV

γ

(37)
S01(0, eV)

γ
≃ 4γLγR

ε2 + γ 2

(

1− 4γLγR

ε2 + γ 2

)

eV

γ
.

(38)
IT

0a(eV)

γ T0a
= 1

π

4γ T0a
L γ T0a

R

(γ T0a)2[2− NT0a
T (eV)]

[

arctan

(

eV − ET
0a

γ T0a

)

− arctan

(

−ET
0a

γ T0a

)]

(39)
ST

0a(eV)

γ T0a
= IT

0a(eV)

γ T0a



1−
�

4γ T0a
L γ T0a

R

(γ T0a)2

�2
�(eV ,ET

0a)

IT
0a

1 (eV)/γ T0a



,

(40)

�k(p)(ET0 − εa) =
1

2π
i

∫

dεk(p)fk(p)(εk(p))×
[

1

ET0 − εa + i(γL + γR)− εk(p)
− 1

ET0 − εa − i(γL + γR)− εk(p)

]

.



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9336  | https://doi.org/10.1038/s41598-021-88721-7

www.nature.com/scientificreports/

Expressions for the tunneling current and zero frequency noise dependencies on the applied bias voltage in 
the case of tunneling through the S0 − S − 0 channel follow from (24), (31) and (25), (32), correspondingly and 
have the following form

Figure 12.  Tunneling current and zero frequency noise as a functions of applied bias for symmetric tunneling 
contact in the limit ε/γ ≫ 1 for the T0 − a channel. Tunneling current is shown by the solid black line and 
zero frequency noise is depicted by the red dashed curve. Green circle shows the system parameters where 
Landauer–Büttiker formalism can be applied. Temperature is equal to 0.01ε.

Figure 13.  Fano factor as a functions of applied bias for symmetric tunneling contact for both T0 − a and 
S
0 − S − 0 channels in two limiting cases ε/γ ≫ 1 and ε/γ ≪ 1 for the T0 − a channel. The limiting case 
ε/γ ≫ 1 is shown by the solid lines (black line corresponds to the T0 − a channel and blue line depicts results 
obtained for the S0 − S − 0 channel) and the limiting case ε/γ ≪ 1 is depicted by the dashed curves (black 
line corresponds to the T0 − a channel and blue line depicts results obtained for the S0 − S − 0 channel). 
Temperature is equal to 0.01ε.
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and
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Figure 14.  Fano factor as a functions of energy for the symmetric tunneling contact in the limiting case 
eV/γ ≪ 1 for the T0 − a channel—black solid curve and for the S0 − S − 0 channel—red dashed curve. 
Temperature is equal to 0.01ε.

Figure 15.  Tunneling current and zero frequency noise as a functions of applied bias for symmetric tunneling 
contact in the limit ε/γ ≫ 1 for the S0 − S − 0 channel. Tunneling current is shown by the solid black line 
and zero frequency noise is depicted by the red dashed curve. Green circle shows the system parameters where 
Landauer–Büttiker formalism can be applied. Temperature is equal to 0.01ε.
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Expressions for tunneling current IS
0−S

1 (eV) and IS−0
1 (eV) are given by (31) with the corresponding chang-

ing of energies ε → ES
0S and ε → ES and tunneling rate γ → γ S0S . Function �(eV ,ES

0S) is determined by 
expression (33) with the same changes for energy and relaxation rate as for the tunneling current IS−0

1 (eV) . The 
dependencies of the tunneling current and zero frequency noise on the applied bias are shown in Fig. 15. Tun-
neling current demonstrates a typical step like behavior while the zero frequency noise reveals a non-monotonic 
behavior. Contrary to the results obtained for the T0 − a channel zero frequency noise for the S0 − S channel has 
two local minima and maxima. It first increases with the growth of applied bias, twice reaches maximum and 
minimum with further monotonic growth. Green circle in Fig. 15 shows the range of system parameters where 
Landauer–Büttiker formalism can be applied.

The dependence of Fano factor on the applied bias voltage for two limiting cases ( ε/γ ≫ 1 and ε/γ ≪ 1 ) 
is shown in Fig. 13 by solid blue and dashed green lines. In the limit ε/γ ≫ 1 Fano factor demonstrates non-
monotonic behavior. For ε/γ ≫ 1 the maximum value of Fano factor corresponds to the zero value of applied 
bias. The growth of applied bias leads to the decreasing of Fano factor, it twice reaches local minima and local 
maxima and then monotonically increases to 1/2. In the limit ε/γ ≫ 1 Fano factor reveals monotonic behavior. 
It has zero value for eV = 0 and monotonically aspires to 1/2 with the growth of applied bias. It is clearly evident 
that in the regime when eV/γ ≪ 1 Fano factor for the T0 − a channel is smaller than for the S0 − S − 0 channel, 
while in the situation when ε/γ ≫ 1 there exist parameters ranges when Fano factor for the T0 − a channel is 
larger than for the S0 − S − 0 channel.

For the fixed value of applied bias in the limit of eV/γ ≪ 1 the dependence of Fano factor on the energy of 
single-electron state ( ε1 = ε2 = ε ) was also analyzed. It starts from zero value and aspires monotonically to its 
maximum value equal to unity (see solid black curve in Fig. 14). It is necessary to mention that in a considered 
parameters range Fano factor for the T0 − a channel is smaller than for the S0 − S − 0 channel.

Conclusions
A general approach for analyzing tunneling current and its zero frequency noise in various systems where elec-
tron transport occurs through the intermediate structure with localized electrons was developed. The applica-
tion of suggested approach allows to analyze electron transport through multi-electron states with Coulomb 
correlations beyond mean-field approximation and opens the possibility to study the influence of spatial and 
spin symmetry of the total system on the tunneling characteristics. The proposed approach is based on Keldysh 
diagram technique in pseudo-particle representation with operator constraint on the total number of pseudo-
particles. It was shown that for the system of two correlated quantum dots each coupled to both leads, tunneling 
current and its zero frequency noise strongly depend on initial system state, which determines the path of allowed 
transitions between multi-electron states in quantum dots—the tunneling channel. If tunneling current flows 
through the entangled triplet state with zero total spin projection on the z axis both current and zero frequency 
noise are suppressed. Contrary, if the tunneling current flows through the singlet two-electron state and sym-
metric single electron state, both tunneling current and zero frequency noise are enhanced in comparison with 
electron transport through single uncorrelated localized electron state. We also revealed that the maximum 
value of tunneling current is achieved for the asymmetric coupling between the left and right leads. If triplet 
two-electron state is involved in the tunneling process current and zero frequency noise maximum values are 
achieved for stronger coupling with the filled lead, while for the singlet state current and zero frequency noise 
maximum values correspond to the stronger coupling with the empty lead. It was also found that tunneling 
current through the triplet two-electron—antisymmetric single-electron state does not depend on the value 
of Coulomb interaction. Tunneling current trough the singlet two-electron—symmetric single-electron state 
decreases with the growth of Coulomb interaction. The obtained nonmonotonic behavior of Fano factor as a 
function of applied bias reveals the possibility to control the noise to signal ration in correlated quantum dots.
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