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Abstract: Despite research into the epidemiological link between exposure to particulate matter (PM)
and renal disorder, there is limited information available on the etiological complexity and molecular
mechanisms. Among the early responsive tissues to PM exposure, the mucosal barrier of the airway
and alimentary tract may be a crucial source of pathologic mediators leading to inflammatory renal
diseases, including chronic kidney disease (CKD). Given that harmful responses and products in
mucosa exposed to PM may enter the circulation and cause adverse outcomes in the kidney, the
aim of the present review was to address the impact of PM exposure on the mucosal barrier and
the vicious feedback cycle in the mucosal environment. In addition to the PM-induced alteration of
mucosal barrier integrity, the microbial community has a pivotal role in the xenobiotic metabolism
and individual susceptibility to PM toxicity. The dysbiosis-induced deleterious metabolites of PM
and nutrients are introduced systemically via a disrupted mucosal barrier, contributing to renal
injuries and pathologic severity. In contrast, the progress of mucosa-associated renal disease is
counteracted by endogenous protective responses in the mucosa. Along with direct elimination of
the toxic mediators, modulators of the mucosal microbial community should provide a promising
platform for mucosa-based personalized interventions against renal disorders caused by air pollution.
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1. Introduction

Given the increasing use of fossil fuels and the rapid expansion of desertification, severe
air pollution has emerged as an issue of primary concern for human health. Global prob-
lems related to airborne particulates have attracted sufficient interest to promote extensive
investigation into their adverse effects on biological systems. Particulate matter (PM) is a
microscopic aerosol mixture of solid particles and liquid droplets found in the air, derived
from natural or anthropogenic origins, including the combustion of fossil fuels and industrial
effluents. Anthropogenic PM consists of complex mixtures of mineral oxides, the oxidation
products of primary gases, including sulfates, nitrates, and elemental or organic carbon such
as volatile organic compounds, and microbial components [1–4]. Based on the size of the
constituent particles, PM is classified into three categories: PM2.5 (particles < 2.5 µm in
diameter), PM10 (particles < 10 µm in diameter), and ultrafine particulates (UFP; particles
< 0.1 µm) [5]. The particle size determines the accessibility of particles to inner parts of the
mucosal surface in the airway [6].

The adverse health outcomes induced by PM include chronic mucosal inflammatory
disorders in the airway and gut, type 2 diabetes (T2D), and cardiovascular and renal
dysfunction [7–10]. Although the ambient particulates may be deposited in the early
exposure site, they can translocate through the airway barrier and cause injuries in the
vasculature and other target organs via oxidative stress [11,12]. After early exposure to
the mucosal tissues of airways or the gut, noxious substances in PM are delivered to
the kidney, the organ specialized for filtration and reabsorption, via the circulation [13].

J. Pers. Med. 2021, 11, 118. https://doi.org/10.3390/jpm11020118 https://www.mdpi.com/journal/jpm

https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0001-8686-8166
https://doi.org/10.3390/jpm11020118
https://doi.org/10.3390/jpm11020118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jpm11020118
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/2075-4426/11/2/118?type=check_update&version=2


J. Pers. Med. 2021, 11, 118 2 of 14

Research regarding the detrimental effects of PM on the kidney has recently been reported,
but there is still limited information available on its pathogenic mechanisms [11,14–17].
However, it is well known that inflammatory and metabolic syndromes, including diabetes
and hypertension, are the prevalent causes of CKD [18,19]. Although inflammation and
metabolic events can account for the epidemiological evidence supporting a substantial
association between exposure to PM and risk of CKD [11,16,17], the mechanistic evidence
depicting the harmful effects of PM on the kidneys is not well understood.

Among the stress sentineling tissues, the mucosal barrier is an early producer of
mediators of inflammatory and metabolic distress in response to external factors, including
microbes and xenobiotics such as PM. The irritated mucosa can transmit stress signals
to reprogram a broad range of pathophysiological events. In the present review, it was
hypothesized that mucosal responses may influence toxic disorders of the kidney as the
ultimate excretion organ. The most distinguishing features of the mucus layer are the
main site for nutrient absorption and the microbiota community, which is crucial for
regulating complex mucosal communications with the renal pathogenesis and individual
susceptibility to environmental factors. Based on the specific early mucosal events, we
reviewed the potent etiologies of acute and chronic renal injuries in response to PM
exposure, which ultimately suggests the need for personalized interventions based on
mucosal communication.

2. Mucosal Etiologies of Renal Injuries Caused by PM
2.1. Mucosal Exposure and Translocation of PM

The airway is the primary route of exposure to PM [20]. The penetration of particles is
associated with their size, shape, and chemical composition. Generally, PM10 can penetrate
the deepest parts of the lungs, such as the bronchioles or alveoli. Average exposure to PM10
is associated with non-accidental mortality in patients with chronic obstructive pulmonary
disease (COPD), especially those diagnosed with asthma-COPD overlap [21]. Moreover,
the adverse effects of PM10 exposure are relatively severe in women and nonsmokers [21].
Fine particulate matter (PM2.5) reaches the gas exchange regions of the lung alveoli, and
only nanoscale particles can pass through the air-blood barrier in the acinar region through
endocytosis or diffusion and affect other organs via the circulation [22–24]. However,
larger particles, such as PM10 can deposit or be internalized by macrophages, causing
detrimental effects on the local tissues and neighboring barrier. Disruption of the barrier
would allow translocation of more PM to the circulation and increase the risk to the
extrapulmonary organs.

Particles in inhaled air are cleared by a series of filtration systems. These particles become
entrapped in the mucosal layer, and mucociliary transport quickly clears the inhaled PM
from the lungs. In the airway regions lacking mucus transport via cilia movement, alveolar
macrophages play a crucial role in the defense by phagocytosing foreign particles [25]. The
biokinetic fate of inhaled ultrafine radiolabeled particles was examined in rodents [23]. The
clearance of an overwhelming proportion of the particles, including ultrafine and micron-sized
particles, is mostly mediated by macrophages that transport particles from the peripheral lungs
to the larynx, with subsequent passage through the gut and fecal excretion [23]. In addition to
gastrointestinal translocation from the airway, PM can enter water and food supply systems
directly, and ultimately reach the gastrointestinal tract in humans [26,27]. Each individual
ingests approximately 1012–1014 particles per day (based on a typical Western diet) and the
gut mucosa can absorb 1% of ingested PM (109–1012 particles per day) given the huge
exposure surface of the gut mucosa. In addition to lung exposure, the gastrointestinal
tract is another primary deposition site of PM that displays potent early stress responses
affecting disease outcomes.

2.2. Effects of PM on the Mucosal Barrier

Extensive parts of the airway and gut linings secrete viscous gel-like substances,
known as mucins, as the first line of defense. They are large, highly glycosylated molecules
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that interact with exogenous substances; this interaction is a critical regulatory step in the
migration of particulates to the underlying epithelia through the mucin mesh. Components
of PM can directly disrupt this mucosal barrier by lowering the functional efficiency of the
mucin structural network. Mechanistically, the collapse phenomenon in the arrangement
of mucin networks is speculated to be due to chemical or physical interactions between
mucins and external particulate components [28]. The dense connectivity of mucin fiber
network loosens as PM-binding increases, with openings for luminal matter, including
microbiota, nutrients, and xenobiotic agents. In addition to the impact on the mucosal bar-
rier, PM ingestion can disrupt epithelial permeability [20,29,30]. Permeated PM generates
reactive oxygen species (ROS) in epithelial cells [31], which decreases barrier integrity by
rearranging or interrupting the epithelial junction in the epithelial lining [32,33]. In vitro
evaluation showed reduced transepithelial resistance of the monolayers and structural
changes in the tight junctions [20]. The deposition of PM correlated with diminished tran-
scription levels of the tight junction protein 1 and occludin, and with histological evidence
of modifications in tight junction organization [20]. Moreover, ingested PM causes gut
permeability and aggravates colonic inflammation owing to alterations in cytokine net-
works [34,35]. In addition to the junctional disruption of the epithelial barrier, PM can cause
epithelial cell apoptosis via ROS generation from the mitochondria induced by nuclear
transcription factor NF-κB activation [20]. Among the various chemical components of
PM, the oxidation products of primary gases are closely associated with a reduction in
lifespan expectancy [36]. Conversely, a reduction in sulfate or ammonium is associated
with an increase in life expectancy. To examine gene regulation, gene expression profiles
were analyzed in cells exposed to PM components, such as sulfate, nitrate, and ammonium
as representative life-threatening oxidation products of the primary gases, and endotoxins
as a representative microbial product (Figure 1).
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Figure 1. Prediction of gene network in PM-exposed mucosa. Gene expression profiles in the
comparative toxicogenomic database in response to oxidation products of the primary gases and
endotoxins as a representative microbial product. Based on PM exposure-linked gene sets, Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis was performed to predict events in the
insulted tissues.

In response to exposure to the PM-derived mixture, a network of target genes was
revealed. As oxidative radical stress is considered to be the etiology of PM-induced
tissue injury, many key network genes are involved in the cell death pathway, including
p53. Moreover, another key feature of the network was the association of exposure to
inflammatory stress signaling (toll-like receptor and NOD-like receptors) and hypoxia
(HIF1 and VEGF pathway). All the molecular associations with cell death, inflammation,
and hypoxia signaling pathways indicate the pathological outcomes in the exposed mucosal
barrier during PM exposure. Furthermore, the disruption of gut permeability and epithelial
injuries is subsequently associated with increased microbial access to the underlying
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mucosal immune tissues and cells, leading to inflammatory responses and changes in the
mucosal microbial community.

2.3. Impact of PM on the Microbial Community

The microbiota harbors a complex and dynamic population of microbes, including
bacteria, fungi, protozoa, and viruses, which form a continuous microbial community [37]
that is built over a lifetime and plays crucial roles in metabolism and immunity in hu-
mans and animals [38]. Microbiota are responsive to changes in the luminal environment,
such as nutrients and xenobiotic agents. Exposure to PM is thus a key cause of bacterial
community changes, which impact immunity and other host physiology. In particular,
PM components can induce oxidative stress in gut microbes, leading to the collapse of
their community and inducing unexpected health risks in hosts, especially in people with
chronic underlying disorders [12]. Long-term exposure to PM2.5 may contribute to in-
creased risks of metabolic disorders, including T2D, in humans [39]. Exposure to PM2.5
was negatively associated with the alpha diversity index of the gut microbiota, and a
lower diversity of the gut microbiota was associated with a higher risk of T2D [39]. In
terms of richness, the composition of Firmicutes, Proteobacteria, or Verrucomicrobia phyla
was negatively associated with both PM concentrations and the risk of T2D. Moreover,
short-term exposure to PM resulted in a dose-dependent reduction in alpha diversity
indices of microbiota in the nasal tract, an early mucosal exposure site in humans [40]
although exposure to biomass fuel or motor vehicle exhaust elevated the abundance and
alpha diversity of the lung microbiota in a rat model of exposure [41]. Depending on
the exposure regimen or host species, different alterations of community patterns occur;
these are a crucial factor in understanding the underlying pathogenesis of related diseases.
Exposure to UFPs elevated cholesterol levels and reduced coprostanol levels in the cecum
of mice [42]. Moreover, atherogenic lysophosphatidylcholine (18:1) and lysophosphatidic
acid were found in the intestine and plasma of mice exposed to UFP. All these atherogenic
lipids, including cholesterol, are potent mediators of pro-inflammatory responses, such
as the recruitment of macrophages and neutrophils in the mucosa barrier. These lipids
were negatively correlated with Actinobacteria, which was decreased by UFP exposure
in a murine model [42]. Human epidemiological assessment in overweight and obese
adolescents exposed to traffic-related air pollution also supported the negative correlation
between changes in the microbiota and metabolic disorders [43]. Overall, the evidence in
mice and humans provided a crucial insight into the contribution of PM-altered microbial
communities to inflammatory cardiovascular diseases such as atherosclerosis. Moreover,
PM-induced alteration of microbial communities can contribute to the metabolic activation
of xenobiotic agents in PM [44]. In addition to effects on the community composition,
PM-exposed gut microbiota displayed altered metabolic activities, which may affect the
metabolism of endogenous biomolecules or the toxicity of PM-derived chemical compo-
nents during mucosal exposure. Polycyclic aromatic hydrocarbons (PAHs) are among the
most widespread organic pollutants generated by the incomplete combustion of fossil fuels
and biomass. Although the parent PAH molecules are not estrogenic, in vitro evaluation in
adult gut microbiota demonstrated the potent conversion of the parent PAHs to estrogenic
hydroxyl metabolites, such as 1-OH pyrene and 7-OH benzo(a)pyrene [45]. In contrast,
microbiota can protect against mutagen formation. For example, 2-nitrofluorene (NF), a
representative nitro-PAH present in urban-air PM and diesel fuel emissions, can be reduced
to 2-aminofluorene by the intestinal bacteria and is further acetylated to hydroxylated
2-acetylaminofluorene in the rat liver [46]. An alternate rat metabolism of NF results in the
formation of mutagenic hydroxylated NF. However, mouse microflora tends to increase
in 2-acetylaminofluorene, another DNA adduct from NF [46,47]. Therefore, depending
on the host microbiota profile and the bioavailability of host cell metabolic enzymes, PM
metabolites may be converted to either detrimental or inactive metabolites. Moreover, the
PM-mediated alteration of the microbial community can determine the fate of PM-derived
xenobiotics in human health and disease (Figure 2).
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Figure 2. Particulate matter (PM)-induced alternation of mucosal microbial community. Host- and
microbiota-derived xenobiotic metabolic enzymes are involved in metabolism of PM constituents.
Moreover, PM can directly alter the microbial community, which inversely determines the fate of
PM-derived xenobiotics or affect host responses during PM exposure.

2.4. Microbiota-Derived Uremic Solutes in Response to PM

The term uremic retention solutes (URS) refers to the components that accumulate in
the blood and tissues during renal disease. Changes in the microbiota composition and com-
munity structure (dysbiosis) are associated with the production of 11 microbiota-derived
uremic solutes [48,49]. Microbiota in normal conditions or dysbiosis can produce p-cresyl
sulfate (PCS) from tyrosine, indoxyl sulfate (IS) from tryptophan, trimethylamine N-oxide
from L-carnitine, dimethylglycine from choline, and glutarate from lysine [50]. Phenyl sul-
fate, cholate, hippurate, γ-guanidinobutyrate, 2-hydroxypentanoate, and phenaceturate are
also considered URS. Moreover, the active metabolites in URS are formed by the combined
actions of the microbial transformation and the host metabolic enzymes. For example,
bacterial tryptophanase metabolizes dietary tryptophan to indole, which is subsequently
hydroxylated to indoxyl by cytochrome P450 (CYP) isozyme 2E1 and finally sulfonated to
indoxyl sulfate by sulfotransferases including SULT1A1 in the liver [51]. Therefore, hepatic
dysfunction in patients with CKD and cirrhosis retards the formation of indoxyl sulfate and
p-cresol sulfate due to impaired hepatic metabolism [52]. URS-induced renal injuries mostly
result from inflammatory responses and radical production. Dysbiosis-induced indoxyl
sulfate acts on the basolateral membrane of renal proximal tubular cells via binding to the
organic anion transporter and causes inflammation and nephrotoxicity. PCS accumulates
in kidney tubular cells, leading to the generation of ROS, proinflammatory cytokines, and
hypoxia factors [53], which is consistent with patterns from the network analysis (Figure 1).

As mentioned earlier, uremic toxins can be exposed to the circulatory system through
the dysbiosis-disrupted leaky mucosal barrier [54]. Mechanistically, uremic toxins and
urea-derived metabolites cause degradation of tight junction proteins [55,56], leading
to increased translocation of luminal toxic metabolites to the vasculature and kidney.
Moreover, mucosal microbiota may be involved in the regulation of xenobiotic metabolic
enzymes and transporters in the liver [57,58]. Antibiotic-treated or germ-free animals show
altered pharmacokinetics compared with intact hosts, which can be attributed to changes
in CYP gene profiles [59]. Microbiota may regulate xenobiotic metabolic enzymes via
microbial metabolites that can act as ligands for receptors involved in the induction of
genes coding for xenobiotic metabolic enzymes or transporters [57,60]. Microbiota-derived
uremic toxins can regulate the expression of genes coding for CYPs and inflammatory
mediators via the aryl hydrocarbon receptor (AhR) [60]. Collectively, the PM-induced
alterations in the microbiota community contribute to the production and metabolism of
URS and PM in the mucosa, which can be translocated to the circulatory system via a
disrupted mucosal barrier and has detrimental effects on the renovascular system (Figure 3).
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Circulating uremic metabolites can also modulate further metabolic and pharmacokinetic
processes by regulating the expression and activities of host xenobiotic metabolic enzymes
and transporters. Furthermore, PM, URS, and the pool of their metabolites may impact the
mucosal barrier, forming a vicious feedback cycle.
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Figure 3. PM-induced alteration in mucosa-kidney axis. PM-insulted mucosal barrier allows the
translocation of PM, uremic retention solutes (URS), and their metabolites which can have detrimental
effects on the mucosa-kidney axis via stress signaling including AhR-linked pathways. Moreover,
invasive microbes and harmful metabolites from the altered microbiota community can contribute
to the systemic and renal inflammation during PM exposure. In addition to renal distress, reactive
oxygen species (ROS), inflammatory mediators and the circulating xenobiotic agents including PM
components and URS injure the mucosal barrier integrity in a feedback way.

2.5. Mechanistisms of Renal and Vascular Injuries in Response to PM

Circulatory PM and uremic metabolites are detrimental to the renal parenchymal and
endothelial tissues in a similar way as the predicted network disruption in the mucosa
(Figure 1). In particular, PM can generate ROS including hydroxyl radical (OH) mainly
from transition metals and quinones in the airway mucosa [61]. In terms of molecular
mechanism of toxicity,·OH is one of strong genotoxic molecules that quickly bind to and in-
jure DNA [62]. Furthermore, PM-derived redox-active compounds and oxidation products
of the lipid membrane can serve as ligands for AhR via transcriptional activation of the
xenobiotic responsive element (XRE), leading to expression of genes involved in diverse
pathologic events in exposed cells [63]. As previously mentioned, URS and other active
microbial metabolites also can contribute to the total pools of AhR ligands during PM ex-
posure. In particular, AhR-XRE signaling mediates expression of ROS-producing metabolic
enzymes including cyclooxygenase, lipoxygenase, CYP and NADPH oxidase [64–69]. In
addition to effects on ROS production and xenobiotic metabolism, AhR-linked signaling is
involved in proinflammatory cytokine production and cell death responses [70,71]. URS-
induced oxidative stress and proinflammatory cytokines cause necrotic and apoptotic death
of the renal tubular and renovascular cells [72,73]. Mechanistically, PM- or URS-activated
AhR can disrupt the mitochondrial membrane potential or trigger other diverse cell death
signaling pathways, which is the crucial step of renal tubular and renovascular tissue
injuries during PM exposure [72–75]. In contrast, PM, URS, and their active metabolites
attenuate the antioxidant capacity in response to the oxidative stress in the mucosa-renal
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axis. For example, phenyl sulfate, IS and PCS decrease glutathione level in the renal tubular
cells [76]. Furthermore, URS-induced chronic distress facilitates progressive interstitial
inflammation and renal fibrosis via tissue fibrotic factors including TGF-β1 and α-smooth
muscle actin, which ultimately hasten CKD progression [77,78]. Taken together, PM and
mucosa-derived metabolites cause renal tubular and endothelial injuries via the oxidative
and proinflammatory stress signaling. Moreover, chronic inflammatory and fibrogenic
processes aggravate the renal distress during PM exposure.

3. Mucosal Interventions for PM-Induced Renal Injuries
3.1. Mucosa-Derived Endogenous Factors

The mucosal microbiota can function as an endocrine organ that metabolically influ-
ences vascular and renal physiology or disease progression by facilitating the production
of metabolites, including short-chain fatty acids (SCFAs), as a result of carbohydrate and
protein metabolism. SCFAs, such as acetate, propionate, and butyrate, may drive the release
of enteroendocrine peptides such as serotonin and peptide YY in the GI tract [79–81]. More-
over, mice exposed to SCFAs experienced reduced ischemia-reperfusion kidney injury,
which was associated with low levels of local and systemic inflammation, oxidative cel-
lular stress, cell infiltration/activation, and apoptosis [82]. In contrast, animals exposed
to PM or cigarette smoke had attenuated levels of SCFAs, and this effect persisted in
their offspring [83,84]. Bacteroides, Bifidobacterium, Propionibacterium, Eubacterium,
Lactobacillus, Clostridium, Roseburia, and Prevotella are the major bacteria related to the
production of SCFAs [85], and PM can suppress SCFA production by directly altering these
bacteria or indirectly inducing dysbiosis in the mucosal microbial community.

An epidemiological evaluation demonstrated that secretion of glucagon-like peptide-1
(GLP-1) from enteroendocrine cells was decreased by PM exposure [86]. Various types of
nutrients, gut bacteria, and bacterial products are known to trigger the secretion of intestinal
GLP-1 [87–89], which has a crucial role in counteracting the progress of metabolic diseases,
including cardiovascular diseases and diabetes [89–91]. Therefore, PM-induced dysbiosis
may alter GLP-1 production and its actions in the kidneys and vasculature. Although the
distribution of GLP-1 receptors in the kidneys is a controversial topic, the GLP-1 receptor
of the renal vasculature was confirmed to be involved in the beneficial action of GLP-1
in the kidneys [92]. In addition to glycemic control as the central action of GLP-1 in the
pancreas, GLP-1 regulates glomerular filtration rate (GFR), but the mechanisms need to be
clearly addressed [93]. Moreover, GLP-1 can control the inflammatory and oxidative stress
occurring during metabolic renal disorders [94,95]. Collectively, gut-derived GLP-1 can
counteract inflammatory and other pathologic outcomes in the gut-kidney axis that may
be altered by PM exposure.

3.2. Muco-Active Supplementation: Probiotics

Probiotic microbes can be beneficial by ingestion to improve the host renal health and
integrity in response to internal or external insults [96]. As mentioned above, the microbial
community is closely related to uremic toxin production and aggravates renal inflammation
because the toxins are closely associate with renal cell toxicity [97]. Suppression of toxin
production delayed the progression of renal failure. Therefore, the gut microbial community
is considered a key target for intervention against mucosa-linked renal dysfunction. As
a potent modifier of the distressed microbial community, probiotic agents containing
Bifidobacteria and lactobacilli can elicit potential benefits in the management of CKD
and uremic toxin-linked disease [98]. In addition to the popular probiotic application,
probiotic supplements of Bacillus pasteurii and sporolactobacillus substantially decreased
blood urea nitrogen levels and improved the life span of nephrectomized animals in the
state of azotemia [99]. In another interventional study, Lebenin, a preparation consisting
of antibiotic-resistant lactic acid bacteria, efficiently reduced the levels of indoxyl sulfate
and p-cresol in patients [100]. However, the efficacy of probiotic application is highly
variable depending on the treatment regimen and individual subject variation. In particular,
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as mucosal dominance of the aboriginal microbial groups can affect the colonization
and maintenance of the alien probiotic species [101,102], more careful and systematic
experimental settings in response to the host and microbiota features are needed to perform
a convincing evaluation of the empiric probiotic treatment.

3.3. Muco-Active Supplementation: Prebiotics and Other Agent-Based Interventions

Prebiotics are non-digestible food ingredients that stimulate the growth and/or ac-
tivity of commensal microbes in the gastrointestinal tract [1]. Prebiotics help the activity
of probiotics as prey of beneficial bacteria. Similar to the actions of probiotics, prebiotics,
including inulin, galacto-oligosaccharides, fructo-oligosaccharides, xylitol, lactulose, and
lactitol, also alter the microbial community. Moreover, synbiotic treatment induces syner-
getic effects beyond the probiotics’ beneficial actions, such as inhibiting harmful bacteria
in the intestines and increasing the beneficial bacterial community. In one clinical evalua-
tion, patients receiving hemolysis who had high concentrations of PCS were treated with
prebiotic oligofructose-enriched inulin (p-inulin) [103]. After p-inulin treatment, although
there was no difference in indoxyl sulfate, there was a marked difference in PCS levels.
The remission in the generation rate and serum concentration of PCS was significantly
associated with prebiotic intervention. As mentioned previously, synbiotic intervention
was also verified to be effective in uremic syndromes in a clinical trial [104]. Synbiotic
treatment with Lactobacillus casei strain Shirota and Bifidobacterium breve strain Yakult as
probiotics and galacto-oligosaccharides as a prebiotic efficiently attenuated serum p-cresol
levels in patients with end-stage renal disease [104]. In addition to the consideration of
the host and microbiota features in the probiotic treatment, an optimized combination of
synbiotic intervention is crucial to achieve proper therapeutic efficacy.

From the perspective of the microbial community, diet is another deterministic factor
that improves mucosa-associated renal distress [105]. Among various dietary interventions,
omega-3 fatty acid-rich fish oil and soybean-based diet ameliorated inflammation (reduced
CRP levels) [106,107]. In addition, diets containing vitamin D and heparin can be used to re-
duce the inflammatory responses in inflammatory diseases by reducing pro-inflammatory
cytokines and increasing anti-inflammatory cytokines. Uremic solutes activated the in-
flammatory response in monocytes, which was counteracted by 25-vitamin D supple-
mentation [108]. Therefore, the combination of dietary application of anti-inflammatory
intervention and a microbiota modifier may be a promising strategy to efficiently mitigate
the clinical outcomes.

3.4. Binders of Uremic Toxins (Sorbents)

AST-120 is a well-known absorbent that can absorb indoxyl sulfates. AST-120 is an
oral intestinal spherical carbon absorbent consisting of porous carbon particles insoluble
in water or common organic solvents. An experimental study using an animal model to
assess the effects of AST-120 showed that rats treated with AST-120 had decreased levels of
indoxyl sulfate in both the serum and urine and reduced expression of profibrotic genes,
such as TGF-β1, ultimately slowing chronic renal failure [109]. In prospective clinical trials
of AST-120 in patients with CKD, the rate of decline in GFR was substantially attenuated
by AST-120 treatment [110]. Moreover, AST-120 retarded CKD progression by delaying
dialysis initiation in patients with CKD, proving a potential intervention against chronic
renal failure [111]. Another potent binder of uremic toxins is sevelamer hydrochloride
(SH), a non-calcium, non-aluminum phosphate binder [37]. In addition to its phosphate
binding ability, SH has the ability to bind uremic toxins. One clinical study showed
that SH markedly reduced serum levels of phosphate and PCS in patients undergoing
hemodialysis [37]. Although SH can be a useful therapeutic agent to bind uremic toxins in
patients with uremic disorders, additional mechanistic and translational evaluations are
warranted in various phases of renal dysfunction to explore the associated complications
and allow safer clinical application.
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4. Conclusions

Early impacted mucosal linings in the lungs and gut are crucial barriers to the sys-
temic translocation of PM and development of extrapulmonary disorders, including kidney
disease, from environmental insult as summarized in the Table 1. In addition to the dis-
ruption of barrier integrity by mucosa-deposited PM, toxic stress can stimulate production
of inflammatory mediators. These mucosal events are also associated with changes in
the mucosal microbial community, which can intrude into the circulation and induce
a proinflammatory attack on renal tissues. Moreover, altered microbial metabolites of
nutrients, including uremic retention solutes, are involved in renal disease progression,
which are also detrimental to the mucosal barrier in a vicious feedback pathway. Both mu-
cosal microbiota and nutrients play pivotal roles in mediating the individual susceptibility
to environment-associated distress. In contrast, mucosa-associated renal disease can be
counteracted by microbial metabolites, such as SCFAs, and host cell-derived endogenous
protective factors, including incretins and protective enteroendocrine peptides. Moreover,
probiotic and prebiotic applications target the microbial community and host immunity.

Table 1. Mucosal etiologies and interventions in response to PM exposure.

Mucosal Etiologies Mucosal Interventions

Detrimental microbial community Probiotic, Prebiotic, and other community
modulators (SCFA, GLP-1)

Input Redox-active compounds (reactive oxygen species,
oxidation end products of lipid and proteins) Endogenous and dietary antioxidants

uremic retention solutes (nutritional and
microbial metabolites) Uremic toxin binders

Proinflammatory mediators Anti-inflammatory agents, microbial and
endogenous regulators (SCFA, GLP-1)

Outcomes
1. Barrier disruption
2. Renal injury, inflammation, fibrosis

1. Maintenance of barrier integrity
2. Limited exposure of renal tissues to

mucosa-derived insults

Personalized modulation of mucosal communication among mucosal cells, microbiota,
nutrients, and other xenobiotics would be a promising intervention against persistent
environmental insults.
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