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Abstract: Four Ni catalysts and one Mo–Ni catalyst supported on montmorillonite were synthesized,
characterized by various techniques and evaluated, under solvent-free conditions, for the production
of green diesel from waste cooking oil. The optimum Ni content was found to be 20 wt.%. The
addition of 2 wt.% Mo to the catalyst resulted in a considerable increase in the amount of green diesel
hydrocarbons. The Mo species, moreover, led to a decrease in the (C15 + C17)/(C16 + C18) ratio,
which is beneficial from the viewpoint of carbon atom economy. The promoting action of Mo was
mainly attributed to the synergy between the oxygen vacancies on the surface of the well-dispersed
Mo(V) and Mo(VI) oxides and the neighboring Ni0 sites. The optimum reaction conditions, for
achieving a proportion of liquid product in the green diesel hydrocarbons (C15–18) equal to 96 wt.%,
were found to be 350 ◦C, 3 g of catalyst per 100 mL of waste cooking oil and 13 h reaction time.
These conditions correspond to an LHSV of 2.5 h−1, a value that is considered quite reliable from
the viewpoint of industrial applications. Thus, the cheap and abundant mineral montmorillonite is
proved a promising support for developing efficient Ni–Mo catalysts for green diesel production.

Keywords: green (renewable) diesel; nickel catalysts; montmorillonite; waste cooking oil; selective
deoxygenation

1. Introduction

Fossil fuels are the primary energy sources for the transportation sector which con-
sumes about 28% of the global energy production [1]. Their consumption is gradually
increasing to meet the energy demands of the Earth’s growing population. As the amount
of these fuels is not unlimited, their increasing consumption will lead to the progressive
depletion of oil reserves during the 21st century [2,3]. In addition, the emission of carbon
dioxide from the combustion of fossil fuels is responsible for global warming and thus
for climate change [2,3]. In view of the above, the production of transportation fuels from
renewable “carbon neutral” resources such as biomass is indispensable for the progressive
minimization of the use of fossil fuels. Two types of biomass are currently used for the
production of transportation fuels: bioethanol as a substitute for gasoline and biodiesel
as a substitute for fossil diesel. The first is produced from sugar and starch by yeast
fermentation and the second from the natural triglycerides contained in vegetable oils
and animal fats via transesterification with methanol. However, biodiesel (a mixture of
fatty acid methyl esters) presents unfavorable cold flow properties and delivers lower fuel
mileage compared to fossil diesel. This is due to the presence of oxygen in its ester structure.
Therefore, it should be blended with petrol diesel in proportions up to 20% in the usual
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combustion engines [2]. The second problem encountered when using bioethanol is also
due to its oxygen content. As well as these problems, the production of the aforementioned
“first-generation biofuels” using sugar, starch and edible vegetable oils competes for land
and water with the production of food. The lignocellulosic biomass of plant waste products
(consisting of 40–50% cellulose, 25–35% hemi-cellulose, 15–20% lignin and small amounts
of other components [4]) is recognized as a promising alternative source of transport fuels
for overcoming the aforementioned competition with food production [5]. In spite of an
intensive research effort over the last decades, the complex structure of lignocellulosic
biomass, mainly that of lignin, has not so far allowed the development of a cost-effective
process [6]. However, research continues aimed at developing more efficient catalysts for
transforming lignin to hydrocarbons [7]. Triglyceride biomass is attractive because it has a
much simpler structure than lignocellulosic biomass. Moreover, the ratio of oxygen to the
combustible carbon and hydrogen atoms in a molecule of triglyceride is relatively small.
This justifies the intensive research effort over the last decades regarding the transformation
of natural triglycerides and related compounds into n-alkanes in the diesel range (green
diesel) via hydrotreatment [8–11]. Green diesel, with a cetane number of 85–99 outperforms
petroleum-derived fuels with a cetane number of 45–55, and after a mild hydroisomer-
ization it can be used as stand-alone fuel in conventional diesel engines. Based on the
triglyceride feedstock used, green diesel can be classified into four generations (first gener-
ation: edible vegetable oils; second generation: non-edible vegetable oils; third generation:
residual vegetable oils and animal fats; and fourth generation: algal oils [12]). Although
the feedstocks used in most studies are fresh edible vegetable oils and model compounds,
there are increasing numbers of studies where non-edible vegetable oils such as jatropha
oil are used [12–18]. More usefully, there are increasing numbers of studies dealing with
the utilization of residual fatty raw materials for the production of third-generation green
diesel, such as waste cooking oils [19–22], yellow grease and hemp seed oils [23], brown
grease oil [24], distilled fatty acids [24–27], oil from chicken fat [28,29] and oil extracted
from spent coffee grounds [30–34].

The production of green diesel by hydrotreatment of natural triglycerides requires
oxygen removal without fragmentation of the side chains of triglycerides through so-called
selective deoxygenation (SDO). This was initially studied over noble metals, mainly Pd
supported on carbon [35,36] and Pt supported on various supports [37–39]. Although
these catalysts are very efficient, their high price increases the cost of the procedure. The
classical Ni–Mo or CoMo/γ-Al2O3 sulfided catalysts are also efficient for SDO [40–42].
Nevertheless, when using these catalysts in a stand-alone process we must add sulfur
compounds to the feedstock in order to maintain the stability of the catalyst’s sulfided
state and hence its high activity. Obviously, the presence of sulfur in the end product
could lower its quality. In view of the above, the research effort was progressively shifted
to the cheaper and quite efficient supported nickel catalysts acting in their reduced state.
The research development, reviewed up to 2016 by our group [11], continues intensively
today. The SDO proceeds through the following reaction network over the metallic nickel
nanoparticles (Figure 1) [11,22,43]: the unsaturated side chains of triglycerides are quickly
saturated, and this is followed by the rapid progressive decomposition of the O-C bonds
on the glycerol backbone side, resulting in di- and mono-glycerides and then propane,
releasing one molecule of fatty acid after each decomposition. The fatty acids might then be
decarboxylated to n-alkanes and/or hydrogenated/dehydrated to fatty aldehydes, which
then are decarbonylated to n-alkanes. Although both pathways lead to the formation of
n-alkanes with one carbon atom fewer than that of the triglyceride chain (odd number of
carbon atoms), the second pathway is much more probable, prevailing in the whole reaction
network over the reduced nickel catalysts. Alternatively, the aldehydes are reduced to
fatty alcohols which then are dehydrated, and the produced olefins are hydrogenated to
n-alkanes with a number of carbon atoms equal to that of the triglyceride chain (even
number of carbon atoms). The intermediate alcohols may react with the intermediate fatty
acids leading to long-chain esters. These may undergo SDO, resulting again in n-alkanes.
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Figure 1. SDO reaction network. TG, TGS, DGS, MGS, PE and ME are the initial triglycerides,
the saturated triglycerides, the saturated diglycerides, the saturated monoglycerides, the propyl-
esters and the methyl-esters, respectively. The other molecules are represented by their chemical
formulas [43]. (Molecules written in green, red and blue are final, intermediate and gas-phase
products, respectively).

Although the reduced nickel catalysts are very promising for SDO, they present some
drawbacks such as the non-negligible activity regarding C-C hydrogenolysis at moderate
temperatures and methanation of the CO produced. Both increase the hydrogen con-
sumption, and the former is also related to a decrease in carbon yield and an increase in
carbon deposition (deactivation). Several methodologies have been developed to minimize
these problems involving the use of suitable supports, nickel loading, preparation meth-
ods and optimized experimental conditions (mainly reaction temperature and hydrogen
pressure) [11], as well as modification of the structure of the supported nickel through de-
velopment of nickel phosphide [44–46], nitride [47,48] or carbide catalysts [32,48]. Another
very promising prospect for overcoming the above drawbacks and further increasing the
efficiency of nickel catalysts is the use of promoters, among which molybdenum oxides are
the most effective [20,21,49–65]. The literature survey indicated that excellent promoting
action is observed in molybdenum oxides, mainly for catalysts with a Ni/(Ni+Mo) atomic
ratio close to 0.85–0.95 [20,21,49,50,52,55,56,59,62,63].

Both the unpromoted and promoted nickel catalysts used to date for green diesel pro-
duction are usually supported on synthetic supports (γ-alumina, silica, silica–alumina, syn-
thetic zeolites, active carbons, carbon nanotubes, zirconia, titania, ceria, etc. [11,20,21,49–64]).
Studies using cheap minerals as natural supports are very scarce [65–67]. Taking into ac-
count the fact that larger and larger amounts of catalysts will be required for green diesel
production, the use of minerals seems to be attractive for decreasing the catalyst cost in
the context of sustainable development and the cyclic economy. This motivated a relevant
research program undertaken by our group. In the frame of this program, we have success-
fully developed nickel catalysts supported on mineral palygorskite and mordenite, for the
production of third-generation green diesel [65–67].

In the present work, we extend our studies by developing nickel and molybdenum–nickel
catalysts supported on mineral montmorillonite for the production of third-generation
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green diesel. Montmorillonite is the main ingredient of bentonite, a well-known rock [68].
Greece is the second-highest exporter of bentonite in the world, after the United States,
with exports exceeding one million tons per year and total feedstocks of 100 million tons.

The structure of montmorillonite is illustrated in Figure 2. It can be seen that the
montmorillonite unit involves two adjacent triple layers (crystals) separated by a region
containing exchangeable cations (e.g., Na+ or Ca2+), together with water molecules [69].
Each triple layer is composed of two layers of tetrahedral SiO4 units which are connected
through a layer of octahedral AlO6 units. Several Al3+ ions are replaced by Mg2+ and/or
Fe2+ ions and several Si4+ ions are replaced by Al3+ ions. Thus, a negative charge is devel-
oped which is compensated by the aforementioned exchangeable cations. It is important
to note that acid sites are developed on the montmorillonite surface. An improvement in
the physicochemical properties of mineral montmorillonite can be achieved via treatment
with acidic solutions [70–74]. In a previous study, we investigated the influence of various
parameters of the acid treatment of mineral montmorillonite (originating from soils in the
Greek islands) on its physicochemical properties and catalytic efficiency in the transforma-
tion of limonene into high-added-value isomers and p-cymene [75]. This was done in the
context of the development of catalysts/catalytic supports based on mineral mordenite and
palygorskite for the production of green diesel [65–67] and green products [76–78], as well
as on montmorillonite for the production of green products by valorizing renewable/waste
raw materials [75].
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whereas the unit is repeated several times along the c-axis. This creates plate-shaped particles.

Having utilized mineral montmorillonite successfully for the production of green
products by valorizing renewable/waste raw materials [75], it is reasonable to ask whether
this very cheap mineral could also be used for the development of supported Ni and Mo–Ni
catalysts for the production of third-generation green diesel using waste cooking oil (WCO)
as the feedstock. Answering this question is the main goal of the present study. It should
be noted that, to the best of our knowledge, no articles have been presented so far in the
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literature dealing with the production of third-generation green diesel accelerated by nickel
catalysts supported on mineral montmorillonite. Another important question is whether
the well-known promoting action of molybdenum species in supported nickel catalysts
is also valid for nickel catalysts supported on montmorillonite. In order to investigate
the aforementioned issues, we adopted the following experimental methodology. First,
we studied the effect of nickel loading on the physicochemical characteristics and the
catalytic efficiency for the production of third-generation green diesel using waste cooking
oil (WCO) as the feedstock. This was realized by preparing, characterizing through various
techniques and evaluating nickel catalysts with different loadings, which allowed the most
promising loading to be selected. Using this loading, we then synthesized, characterized
and evaluated the corresponding molybdenum–nickel catalyst, which proved to be much
more efficient than the corresponding unpromoted nickel catalyst. Finally, we evaluated
the promoted catalyst under different reaction conditions (temperature, catalyst mass and
reaction time) in order to investigate the effect of these conditions on catalytic efficiency.
The ultimate goal was the development of an efficient catalyst supported on mineral
montmorillonite for the production of third-generation green diesel.

The mineral montmorillonite (MM) treated with hydrogen chloride aqueous solu-
tion was denoted MM(H) and the solid produced (following the preparation protocol for
supported nickel catalysts but without adding nickel) from this treated montmorillonite
was denoted 0NiMM(H). Four monometallic catalysts with different nickel contents in
the range 10–40 wt.% Ni were synthesized by deposition–precipitation using the MM(H)
as a support, in order to investigate the effect of nickel loading, denoted 10Ni/MM(H),
20Ni/MM(H), 30Ni/MM(H) and 40Ni/MM(H). Finally, one bimetallic catalyst was syn-
thesized by co-deposition–precipitation using the MM(H) as a support, in order to inves-
tigate the molybdenum promoting effect, denoted 20Ni 2Mo/MM(H). We note that the
Ni/(Ni+Mo) atomic ratio in the bimetallic catalyst was equal to 0.94.

2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. Texture

The textural characteristics of the supports and the catalysts are given in Table 1.
Inspection of this table shows that the greater portion of the BET specific surface area
(SBET) for the samples MM and MM(H) was due to mesopores (2–50 nm) and macropores
(50–100 nm), estimated by the BJH specific surface area (SBJH). The microporous specific
surface area (Smicro), determined for pores in the range 0.0–1.7 nm, was smaller.

Table 1. Physicochemical characteristics of the supports and the catalysts.

Sample SBET
(m2g−1)

Smicro
(m2g−1)

SBJH
(m2g−1)

SNi
0

(m2g−1) 1
PV

(cm3g−1)
MPD
(nm)

MCSNi
0

(nm)

MM 62 19 43 - 0.16 9.3 -
MM(H) 136 22 114 - 0.22 5.6 -

0Ni/MM(H) 48 12 36 - 0.15 9.7 -
10Ni/MM(H) 62 19 43 6.7 0.14 7.4 10.0
20Ni/MM(H) 90 36 54 14.8 0.15 7.5 9.1
30Ni/MM(H) 104 40 64 16.3 0.15 7.9 12.4
40Ni/MM(H) 83 29 54 17.2 0.14 5.8 15.7

20Ni2Mo/MM(H) 100 15 85 14.7 0.18 6.4 9.2
1 SNi

0: specific surface area per gram of catalyst exposed by the supported nickel nanoparticles (active surface)
calculated from XRD data on the mean crystal size of metallic nickel (MCSNi

0) in the catalysts.

This is also visualized in the pore volume distribution curves (Figure 3), which show
pores in the range of 2–6 nm centered at about 3.0 nm, accompanied by many pores in the
range of 10–100 nm. The mean values of pore diameters (MPD), given in Table 1, are in
good agreement with the pore volume distribution curves. The acid treatment drastically
increased the SBJH value and thus the value of SBET (Table 1). This is related to the increase
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in the pore volume in the aforementioned range of 2–6 nm of the small mesopores (Figure 3)
and was attributed to the reorganization/dislocation of the triple layers of montmorillonite
(Figure 2) inside a plate-shaped particle of this mineral [75]. Heating at 500 ◦C upon
activation of the samples 0Ni/MM(H)–40Ni/MM(H) resulted in reverse reorganization
of the triple layers of montmorillonite and a decrease in the pore volume of the small
mesopores in the range of 2–6 nm (Figure 3). This was reflected in a decrease in the SBJH
value. It may be seen that the presence of nickel species on the support surface decelerates
the aforementioned decrease of the pore volume in the range of 2–6 nm (Figure 3) and thus
the decrease in the SBJH value (Table 1). For example, SBJH takes the value of 36 m2g−1 in the
sample without nickel, 0Ni/MM(H), and 54 m2g−1 in the sample with the maximum nickel
loading, 40Ni/MM(H). Another significant observation is that the presence of nickel in the
samples above 10 wt.% Ni causes an increase in the pore volume in the micropore range, as
shown by extrapolating the pore volume distribution curves to micropores (Figure 3).
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Figure 3. Pore volume distribution of the supports and the catalysts.

This is reflected in the impressive increase in the Smicro value (Table 1), which is
maximized in the sample 30Ni/MM(H) and can be attributed to some kind of pillaring
of micropores brought about by the nickel species inserted inside them. Consequently,
the aforementioned deceleration of the decrease in the SBJH value and the considerable
increase in the Smicro value due to the presence of nickel species results in an increase in
the BET specific surface area, which is maximized in the sample 30Ni/MM(H) (Table 1).
The above effects are more pronounced in the bimetallic MoNi catalyst, 20Ni2Mo/MM(H),
which exhibits the highest pore volume in the small mesopore range of 2–6 nm and in pores
smaller than 10 nm (Figure 3), and thus the highest values of SBJH and SBET (Table 1) among
the catalysts studied. This beneficial role of molybdenum species regarding the texture of
the catalysts is in line with the literature [11].

2.1.2. Phase Identification

The XRD patterns of the samples studied (Figure 4) show the presence of mineral
montmorillonite (2θ values: 6.99, 14.05, 19.69, 20.73, 21.90, 26.49, 28.32, 34.71, 54.01 and
61.74◦; JCPDS # 01-073-1490) [75,79,80], as well as the presence of supported nickel nanopar-
ticles (2θ values: 44.5, 51.8 and 76.3◦; JCPDS 04-0850) [79,81,82]. The absence of peaks due
to the molybdenum species in the promoted sample, 20Ni2Mo/MM(H), strongly suggests
the high dispersion of these species.
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Figure 4. XRD patterns of the samples ((a) supports and (b) catalysts).

The application of the Debye–Scherrer equation to the XRD peaks at 2θ < 10◦ allowed
the determination of the mean size of the support nanocrystals. This ranged randomly
between 14.2 and 14.4 nm, irrespective of the acid activation and heat treatment of the
mineral or the presence of metallic nickel nanoparticles. Moreover, the fact that there was
no change in the position of the montmorillonite XRD peaks in the range of 14.05–61.74◦

shows that the montmorillonite crystal structure inside the triple layers (Figure 2) is not
affected by the aforementioned factors. In contrast, the position of the peak at 2θ = 6.99◦,
corresponding to the (0 0 1) orientation in MM, was decreased to 2θ = 5.54◦ after the acid
treatment (MM(H)). This peak was shifted to 2θ = 9.05◦ after activation, irrespective of the
nickel and molybdenum content. The (0 0 1) orientation corresponds to the c-axis illustrated
in Figure 2, while the distance between the crystal planes represents the distance between
the down edges of the up and down triple layers, which involves the interlayer region
(d-dimension in Figure 2). Therefore, the decrease in the 2θ value after the acid treatment
indicates that the replacement of the Na+ and Ca2+ ions located in the interlayer region
by H2O/H3O+ caused an increase in its width. In fact, the length of the d-dimension, as
determined by XRD, increased from 1.3 to 1.6 nm due to the acid treatment. In contrast,
the increase in the 2θ value after activation indicates a significant decrease in the interlayer
width, presumably due to the removal of interlayer water molecules. In fact, the length of
the d-dimension decreased from 1.6 to 1 nm due to the activation.



Molecules 2022, 27, 643 8 of 23

The application of the Debye–Scherrer equation to the XRD peaks at 2θ = 44.5◦ allowed
the determination of the mean size of the supported nickel nanocrystals (MCSNi

0, Table 1).
This size increased with the nickel content. The presence of molybdenum species did not
affect the size of the nickel nanocrystals with respect to the corresponding unpromoted
sample. Taking into account the mean size of the nickel nanocrystals, we calculated the
specific surface area of the exposed nickel (SNi

0) (active surface). It can be observed that
this increased considerably from the sample with 10% Ni to the sample with 20% Ni, and
then increased slightly with nickel content. The presence of molybdenum species did not
affect this parameter (Table 1).

The structure of the catalysts was also investigated by electron diffraction. Two typical
electron diffraction patterns are illustrated in Figure 5. The presence of metallic nickel,
detected in both samples, is in full agreement with the XRD results. In the unpromoted
samples, NiO nanocrystals were also identified, though these were not detectable by XRD
presumably due to their very small size. This phase was not identified in the promoted
sample. The diffraction at about 0.45 nm, detected in the promoted sample, could be
attributed to the (1 0 0) crystal plane of the montmorillonite used as the support (JCPDS #
01-073-1490).

Molecules 2022, 27, x FOR PEER REVIEW 8 of 24 
 

 

The application of the Debye–Scherrer equation to the XRD peaks at 2θ < 10° allowed 

the determination of the mean size of the support nanocrystals. This ranged randomly 

between 14.2 and 14.4 nm, irrespective of the acid activation and heat treatment of the 

mineral or the presence of metallic nickel nanoparticles. Moreover, the fact that there was 

no change in the position of the montmorillonite XRD peaks in the range of 14.05–61.74° 

shows that the montmorillonite crystal structure inside the triple layers (Figure 2) is not 

affected by the aforementioned factors. In contrast, the position of the peak at 2θ = 6.99°, 

corresponding to the (0 0 1) orientation in MM, was decreased to 2θ = 5.54° after the acid 

treatment (MM(H)). This peak was shifted to 2θ = 9.05° after activation, irrespective of the 

nickel and molybdenum content. The (0 0 1) orientation corresponds to the c-axis illus-

trated in Figure 2, while the distance between the crystal planes represents the distance 

between the down edges of the up and down triple layers, which involves the interlayer 

region (d-dimension in Figure 2). Therefore, the decrease in the 2θ value after the acid 

treatment indicates that the replacement of the Na+ and Ca2+ ions located in the interlayer 

region by Η2Ο/Η3Ο+ caused an increase in its width. In fact, the length of the d-dimension, 

as determined by XRD, increased from 1.3 to 1.6 nm due to the acid treatment. In contrast, 

the increase in the 2θ value after activation indicates a significant decrease in the interlayer 

width, presumably due to the removal of interlayer water molecules. In fact, the length of 

the d-dimension decreased from 1.6 to 1 nm due to the activation. 

The application of the Debye–Scherrer equation to the XRD peaks at 2θ = 44.5° al-

lowed the determination of the mean size of the supported nickel nanocrystals (MCSNi0, 

Table 1). This size increased with the nickel content. The presence of molybdenum species 

did not affect the size of the nickel nanocrystals with respect to the corresponding un-

promoted sample. Taking into account the mean size of the nickel nanocrystals, we calcu-

lated the specific surface area of the exposed nickel (SNi0) (active surface). It can be ob-

served that this increased considerably from the sample with 10% Ni to the sample with 

20% Ni, and then increased slightly with nickel content. The presence of molybdenum 

species did not affect this parameter (Table 1). 

The structure of the catalysts was also investigated by electron diffraction. Two typ-

ical electron diffraction patterns are illustrated in Figure 5. The presence of metallic nickel, 

detected in both samples, is in full agreement with the XRD results. In the unpromoted 

samples, NiO nanocrystals were also identified, though these were not detectable by XRD 

presumably due to their very small size. This phase was not identified in the promoted 

sample. The diffraction at about 0.45 nm, detected in the promoted sample, could be at-

tributed to the (1 0 0) crystal plane of the montmorillonite used as the support (JCPDS # 

01-073-1490). 

  
(a) (b) 

Figure 5. Typical electron diffraction patterns of the samples (a) 20Ni/MM(H) and
(b) 20Ni2Mo/MM(H).

2.1.3. Morphology and Mapping at Nanoscale and Microscale

The morphology of the supports and catalysts at the nanoscale was studied using
TEM. Representative TEM images are illustrated in Figure 6. It may be seen that the
samples MM, MM(H), 20Ni/MM(H) and 20Ni2Mo/MM(H), taken as examples, exhibited
a plate-shaped morphology at the nanoscale that was due to sets of montmorillonite units,
as depicted in Figure 2. In contrast, the supported nickel nanoparticles exhibited a rather
granular morphology. The particle size distributions of granular nanoparticles obtained
in the samples 20Ni/MM(H) and 20Ni2Mo/MM(H) are also illustrated in Figure 6. It
can be seen that the size of the most of nickel nanoparticles was in the range of 6–12 nm,
with a mean value of about 10 nm. This is similar to the mean size of nickel nanocrystals
determined by XRD for these samples (Table 1). Moreover, it can be seen that the presence
of molybdenum species did not influence the nickel particle size distribution and the mean
size of the nickel nanocrystals to any great extent, in full agreement with the XRD results
(Table 1).
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Examining the mineral montmorillonite at the microscale, we observed that agglom-
erates of the plate-shaped support nanoparticles, as determined by TEM (Figure 6), con-
stituted flower-like assemblies, as shown in the representative SEM images recorded at
much lower magnification for the three samples taken as examples (Figure 7). A similar
morphology was observed at even smaller magnification.
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The SEM–EDX mapping of the nickel and molybdenum at the microscale showed a
rather uniform distribution for both metals above the support particles. A typical map is
shown for the bimetallic sample, 20Ni2Mo/MM(H), in Figure 8. It is important to observe
that the nickel and molybdenum species are located very close together, at least at the
microscale. This observation is important for interpreting the promoting action of the
molybdenum species.
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Figure 9 illustrates the H2–TPR curves recorded for the 20Ni/MM(H) and 20Ni2Mo/MM(H)
samples. These indicate that the reduction temperature of 500 ◦C selected for the activation
of the catalysts was sufficient for almost complete reduction of the supported Ni phase.
An inspection of the curve corresponding to the unpromoted sample indicates at least
four kinds of nickel species reduced at different temperatures. The first reduction peak at
about 280 ◦C was attributed to the reduction of NiO interacting weakly with the support,
indicating that a fraction of the nickel phase is not well dispersed on the support sur-
face [83–85]. The second and third peaks at 370 and 435 ◦C were attributed to the reduction
of NiO species exhibiting medium and strong interactions with the support surface, thus
indicating high dispersion of the active phase [83–85]. The final peak at 620 ◦C could be
attributed to the reduction of Ni2+ species incorporated in the support lattice, creating
a mixed phase [83–85]. The aforementioned first reduction peak (280 ◦C) disappears in
the H2–TPR curve of the promoted sample, indicating a favorable influence of the Mo
promoter on the dispersion of the nickel active phase. This is also confirmed by the shift
observed in the maxima of the second (370→ 390 ◦C) and third (435→ 440 ◦C) reduction
peaks at higher temperatures. A similar shift was observed for the high-temperature peak,
which was shifted from 620 (in the curve of the unpromoted sample) to 645 ◦C, probably
indicating a strong interaction between the nickel and molybdenum phases.
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Figure 9. H2–TPR profiles of the 20Ni/MM(H) and 20Ni2Mo/MM(H) samples.

Figure 10 illustrates the temperature-programmed desorption profiles of chemisorbed
ammonia on 0Ni/MM(H), 20Ni/MM(H) and 20Ni2Mo/MM(H) catalysts. In this figure,
three types of acid sites can be observed, developed on the catalyst surface. The first peak,
centered at 100–200 ◦C, is assigned to the desorption of ammonia from Lewis acid sites, as
the weak coordinate bonds break at low temperatures. The second and third peaks around
200–370 ◦C and 370–650 ◦C are due to the desorption of ammonia molecules from Brønsted
intermediate and strong acid sites, respectively [86]. The deposition of the nickel phase on
the support surface increased the weak and intermediate acidity, while it diminished the
strong acidity of the support. This indicates that Ni2+ species are preferentially deposited
on the strong Brønsted acid sites of the support, probably following an ion-exchange
mechanism. The addition of the promoter (Mo species) further increased the weak acid
sites of the corresponding catalyst.
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Figure 10. NH3-TPD profiles of 0Ni/MM(H), 20Ni/MM(H) and 20Ni2Mo/MM(H) samples.

Figure 11 indicates that the addition of the Mo promoter to a nickel catalyst supported
on montmorillonite favors the reduction of the Ni phase, in accordance with the electron
diffraction results (Figure 5). Regarding the Mo species, the XPS analysis of the Mo3d peaks
revealed that most of the Mo species are in the oxidation states (VI) and (V), while only a
few are in the metallic state.
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Figure 11. Deconvoluted XPS Ni2p and Mo3d peaks of the 20Ni/MM(H) and 20Ni2Mo/MM(H) catalysts.

2.2. Catalyst Evaluation

Table 2 illustrates the evaluation parameters determined with regard to the SDO
of WCO over the catalysts studied (reaction conditions: 100 mL of WCO, PH2 = 40 bar,
T = 310 ◦C, H2 flow = 100 mL/min and reaction time = 9 h). It can be seen that the main
products of the reaction are fatty acids, fatty acid–fatty alcohol esters and n-alkanes (C15,
C16, mainly C17 and C18). The intermediates (fatty acids and fatty acid–fatty alcohol
esters) and final products (n-alkanes) are compatible with the SDO network over the nickel
catalysts described in detail in the Introduction (Figure 1). Moreover, the reaction kinetics
curves (amount of a given product versus time) (Figure 12) pass through a maximum for the
intermediate products, whereas they increase monotonically for the n-alkanes, in line with
the well-established network over nickel catalysts (Figure 1) [11,43]. This clearly shows
that this network is also valid for nickel catalysts supported on mineral montmorillonite.

Table 2. Conversion of WCO (% XWCO) and composition of the liquid mixture obtained upon SDO
of WCO at 310 ◦C for 9 h, over the catalysts studied.

Sample XWCO
%

Acids
(wt.%)

Esters
(wt.%)

n-Alkanes
(wt.%) (C15 + C17)/(C16 + C18)

10Ni/MM(H) 73.8 27.3 41.5 5 2.2
20Ni/MM(H) 77.9 26.7 43.0 8.2 2.2
30Ni/MM(H) 100 3.9 87.7 8.4 1.9
40Ni/MM(H) 100 3.5 87.4 9.1 1.8

20Ni2Mo/MM(H) 100 1 78.5 20 1.3
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Figure 12. Conversion (%) of WCO achieved over the 20Ni2Mo/MM(H) catalyst and the liquid
product distribution (wt.%) obtained at various reaction times (reaction conditions: 100 mL of WCO,
PH2 = 40 bar, T = 310 ◦C and H2 flow = 100 mL/min).

The activity of the catalysts, determined by the % conversion of the WCO, increased
with the nickel content and reached 100% over the catalyst containing 30 wt.% Ni. The
catalyst efficiency, expressed as the % composition of the liquid phase in the n-alkanes,
increased considerably with nickel content from 10 to 20 wt.% Ni and slightly for higher Ni
contents, following the slight increase observed for the active surface in the range of nickel
content of 20–40 wt.% (Table 1). Therefore, a close relation between the catalytic efficiency
and active surface is anticipated, indicating that nickel is the active phase (Figure 13). The
value of the ratio (C15 + C17)/(C16 + C18) was higher than unity in all cases, indicating
that SDO mainly proceeded through the decarbonylation of the intermediate aldehydes
(see Figure 1).
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The above results indicated that a loading of 20 wt.% Ni was quite sufficient for a Ni
catalyst supported on montmorillonite, for SDO of WCO under solvent-free conditions.
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Based on this finding and on the relevant literature [20,21,48–63], a catalyst containing
20 wt.% Ni and 2 wt.% Mo co-deposited on the montmorillonite surface was also syn-
thesized and studied. In this catalyst the atomic ratio Ni

Ni+Mo was equal to 0.94, which is
considered very suitable according to the literature [20,21,49,50,52,55,56,59,62,63].

The presence of Mo species resulted in an increase in the % WCO conversion from
77.9% to 100% and a drastic increase in the amount of the n-alkanes from 8.2 to 20 wt.%
(Table 2, Figure 13). Therefore, the promoting action of the Mo species was clearly demon-
strated for the first time for nickel catalysts supported on montmorillonite. The increase
in the amount of n-alkanes is the most important evaluation parameter, as it reflects the
increase in the green diesel yield. Moreover, the presence of the Mo species resulted in a
considerable decrease in the (C15 + C17)/(C16 + C18) ratio (Table 2), indicating that this
favors the SDO pathway taking place through the dehydration of the intermediate alcohols,
in agreement with the literature [20,21].

The promoting action of molybdenum could be partly attributed to the increase in
the nickel dispersion implied by the H2-TPR profiles (Figure 9) and the increase in the
reduction of the well-dispersed NiO (not detectable by XRD (Figure 4) but visible by
electron diffraction (Figure 5)) deduced via XPS (Figure 11). However, taking into account
the fact that the promoted and the corresponding unpromoted catalysts exhibited almost
the same active surface (Table 1) and similar nickel particle size distributions (Figure 6),
the molybdenum promoting action cannot be mainly attributed to structural Mo effects
on the supported nickel nanoparticles. This can be inferred from the observation that
the efficiency over the promoted catalyst was much higher than that expected on the
basis of the active surface (Figure 13). Our results indicate that the support surface of the
promoted catalyst is covered by well-dispersed metallic nickel nanoparticles (XRD, XPS)
and very well-dispersed Mo(V) and Mo(Vi) molybdenum oxides (XPS), besides the metallic
Mo nanoparticles. Moreover, the SEM–EDX mapping of the nickel and molybdenum
showed that the nickel and molybdenum species are located very close together, at least
at the microscale (Figure 8). Based on the above, and taking into account the relevant
literature [20,49,53], it seems that the Mo promoting action can be mainly attributed to the
synergy between the oxygen vacancies situated on the surface of the molybdenum oxides
and the neighboring metallic nickel sites. The intermediate fatty acids are adsorbed on
the oxygen vacancies through the hydroxylic oxygen of the C-OH group. Thus, the C-O
bond is activated, facilitating its attack by hydrogen atoms formed through the dissociative
adsorption of hydrogen molecules on nickel sites. This attack results in the transformation
of the fatty acids to the corresponding fatty aldehydes. Consequently, the slowest step of
the SDO network presented in the Introduction (Figure 1) is accelerated, justifying the Mo
promotion. The aldehydes are also adsorbed on oxygen vacancies via the oxygen of the
C=O bond, which is activated. This accelerates their reduction to the corresponding fatty
alcohols, explaining the increasing participation of the dehydration pathway in the whole
SDO network (Figure 1).

In an attempt to increase further the green diesel yield obtained over the 20Ni2Mo/MM(H)
catalyst, various reaction parameters were investigated. A recently published and very
systematic work on this subject [55] showed that increasing the reaction temperature in the
range of 280–340 ◦C significantly increased the yield of hydrocarbons. Moreover, increasing
the catalyst amount up to 5% results in an increase in the amount of hydrocarbons obtained
in the liquid mixture. In addition, a residence time of about half an hour is enough for
obtaining the maximum amount of hydrocarbons at the fairly high H2 pressure of 60 bar,
in the presence of 5% catalyst.

In view of the above, we firstly performed catalytic tests at higher reaction temper-
atures (330 and 350 ◦C). Figure 14a shows that an increase in the reaction temperature
resulted in a decrease in the amount of intermediate esters and a considerable increase
in the amount of green diesel hydrocarbons (C15, C16, C17 and C18) from 20 to 37%.
Taking into account the fact that the esterification reactions are endothermic [87], one
may conclude that the diminution in the amount of esters, as the temperature increases,
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is not due to the effect of temperature on the reaction equilibrium but on the kinetics
of the relevant reactions. A small amount of the intermediate alcohols was identified at
330 ◦C, in agreement with the SDO mechanism described in the Introduction (Figure 1).
Inspection of Figure 14b shows that an increase in the reaction temperature favors the
production of hydrocarbons with an even number of carbon atoms, implying a shift of the
SDO pathway from the decarbonylation of the intermediate aldehydes to the dehydration
of the intermediate alcohols. Moreover, this can be related to the decrease in the amount of
esters with increasing reaction temperature, as the SDO of the intermediate esters favors
the production of hydrocarbons with even numbers of carbon atoms (see the SDO network
in Figure 1 and [22,43]). The production of C18 and C16 hydrocarbons instead of C17 and
C15 hydrocarbons is obviously beneficial from the viewpoint of carbon atom economy.
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Figure 14. Composition of the liquid phase in n-alkanes, acids, alcohols and esters (a) and n–alkanes
distribution (b), obtained for various reaction temperatures over 1 g of the 20Ni2Mo/MM(H) catalyst,
after 9 h of reaction (reaction conditions: 100 mL of WCO, PH2 = 40 bar, H2 flow = 100 mL/min).

At this point, it should also be mentioned that a very small amount of cracking
products (<1%) was detected in the liquid reaction product, and only in the case of the
20Ni2Mo/MM(H) catalyst working at the high temperature of 350 ◦C.

In order to increase even further the green diesel yield obtained over the 20Ni2Mo/MM(H)
catalyst, catalytic tests were performed at 350 ◦C with three different values of the catalyst
mass. As expected, an increase in the catalyst mass caused an increase in the amount of
green diesel hydrocarbons from 37 to 64% (Figure 15a).
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Figure 15. Composition of the liquid phase in n-alkanes, acids, alcohols and esters obtained for
(a) various catalyst masses of the 20Ni2Mo/MM(H) catalyst at 350 ◦C after 9 h and (b) various
reaction times over 3 g of the 20Ni2Mo/MM(H) catalyst at 350 ◦C (reaction conditions: 100 mL of
WCO, PH2 = 40 bar, H2 flow = 100 mL/min).

Finally, we investigated the effect of reaction time on the catalytic efficiency. The
results are illustrated in Figure 15b. It can be seen that an almost full transformation of
the WCO to green diesel (96%) was obtained over the promoted catalyst at 350 ◦C, for a
reaction time of 13 h and a ratio of WCO volume to catalyst mass of 100 mL/3 g. This result
shows the very high efficiency of the promoted catalyst, taking into account the fact that the
latter two parameters correspond to an LHSV value equal to 2.5 h−1, which is considered
quite a reliable value from the viewpoint of industrial applications.

The comparison of the present results with current literature results in the domain
of the SDO of triglycerides and related compounds over nickel catalysts clearly revealed
that the catalytic behavior of nickel species supported on mineral montmorillonite was
similar to that exhibited over synthetic supports such as γ-alumina [20,21,49–51,63], sil-
ica [52,53,56,57,60], zirconia [88], ceria [64], zeolites [54,58,59,63], active carbons [62,63] and
mineral palygorskite [66,67], from the viewpoint of the SDO network. Moreover, the cat-
alytic efficiency obtained in the present study over nickel species supported on post-treated
mineral montmorillonite was comparable to those obtained over nickel species supported
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on synthetic supports, though a rigorous comparison is very difficult to achieve due to
the quite different evaluation conditions adopted in each case. Moreover, the comparison
of the present results regarding the Mo–Ni bimetallic catalyst with the corresponding
catalysts supported on various synthetic supports [20,21,49–65] showed that the Mo pro-
moting action was also clearly manifested over nickel catalysts supported on mineral
montmorillonite.

3. Materials and Methods

Following the approach adopted in this study, as outlined in the Introduction, the
experimental part of the work involved the following steps. (i) The acid treatment with
2N HCl aqueous solution of the mineral montmorillonite to improve its textural charac-
teristics. This treatment had been previously tested successfully [75]. (ii) The preparation
of supported nickel catalysts with various nickel loadings in the range 10–40 wt.%, which
had been proved very suitable in the case of nickel catalysts supported on mineral paly-
gorskite [66,67]. (iii) The evaluation of these catalysts for selecting the most promising
loading. (iv) The preparation of a molybdenum-promoted nickel catalyst based on the most
promising loading of the unpromoted nickel catalyst, synthesized with the optimum atomic
Ni/(Mo+Ni) ratio [20,21]. (v) The evaluation of the Mo–Ni catalyst that had proved to be
the most active in the temperature range 310–350 ◦C, which is considered appropriate for
SDO [11] (the upper limit of this range is critical because at higher temperatures extended
fragmentation of the triglyceride side chains is probable). (vi) The evaluation of the Mo–Ni
catalyst at the most promising reaction temperature (350 ◦C) for different reaction times
and volume of WCO/mass of catalyst ratios, in order to optimize the catalytic efficiency.
(vii) The characterization of the catalysts using various methods in order to rationalize the
catalytic efficiency at each step of the study.

3.1. Feedstock

The WCO was purchased from the CollectOil company (Patras, Greece). It was
filtered several times using filters of different sizes and then centrifuged. The feedstock
characteristics have been reported in a previous contribution [89].

3.2. Catalyst Preparation
3.2.1. Acid Treatment of Mineral Montmorillonite

The mineral montmorillonite (MM), originating from soils of the Greek island Milos
in the Aegean Sea, was provided by the Imerys company (Paris, France). This was treated
with 2N HCl aqueous solution in order to improve its physicochemical properties. In
a typical experiment, 5 g of the montmorillonite and 100 mL of the acid solution were
added to a round-bottomed flask. The acid treatment was performed at 70 ◦C for 6 h.
The suspension was cooled at room temperature and then filtered under vacuum using a
Büchner funnel sintered disc with a porosity of 2 (40–90 µm). The solid in the filter was
washed several times with distilled water in order to remove the acid remaining inside
its pores. The wet solid obtained was dried overnight at 110 ◦C and then ground to a
fine-grained texture. More details of the acid treatment of mineral montmorillonite have
been reported elsewhere [75].

3.2.2. Synthesis of the Catalysts

Monometallic Ni catalysts supported on montmorillonite were synthesized following
the deposition–precipitation method. A suitable amount of nickel nitrate hexahydrate
(Chem-Lab NV) was added to a spherical flask containing 50 mL of water with a weighed
amount of montmorillonite suspended in it. Then, 50 mL of urea (Duchefa) in aqueous
solution was added. The concentration of the solution was adjusted to obtain a molecular
ratio of ammonia/NO3

− ions equal to 3. After the installation of a reflux condenser and a
magnetic stirrer, the flask was immersed in a heated oil bath (80 ◦C), and the suspension
remained at this temperature for 10 h. The temperature was then decreased to room
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temperature and the suspension was filtered. The solid obtained was washed with triply
distilled water and dried at 110 ◦C overnight. The MoNi bimetallic catalyst was synthesized
following a co-deposition—precipitation methodology involving the dissolution of suitable
amounts of nickel nitrate hexahydrate and ammonium heptamolybdate tetrahydrate (Alfa
Aesar) in a spherical flask containing 50 mL of water. The rest of the procedure was identical
to that described above.

3.2.3. Activation of the Catalysts

The activation procedure, performed in a fixed-bed quartz reactor, involved two steps.
In the first step, carried out under a flow of argon (30 mL/min), the temperature was
increased at a rate of 5 ◦C/min from room temperature up to 400 ◦C and then held constant
for 1 h. The nickel hydroxide, formed via deposition–precipitation, was decomposed to
nickel oxide in this step (oxidic precursors). The activated catalysts were obtained in the
second step by reducing the oxidic precursors at 500 ◦C for 2.5 h under a flow of hydrogen
(30 mL/min).

3.3. Catalyst Characterization
3.3.1. N2 Adsorption—Desorption Isotherms

The BET specific surface area (SBET) and the pore volume distribution (PVDBJH) of the
activated samples were determined using N2 adsorption—desorption isotherms recorded
on a Micromeritics apparatus (TriStar 3000 porosimeter) (Norcross, GA, USA). The PVDBJH
was determined following the BJH methodology based on the N2 desorption curve.

3.3.2. X-ray Diffraction

The crystal phases and the crystal sizes of the activated samples were determined
via XRD. The X-ray diffraction patterns were recorded in the 2θ range of 5–80◦ using a
Bruker D8 Advance diffractometer. This was equipped with a Ni-filtered CuKa (1.5418 Å)
radiation source (step size 0.02◦, time per step 0.5 s) (Karlsruhe, Germany).

3.3.3. Scanning and Transmission Electron Microscopy

A scanning electron microscope (JEOL JSM-6300) (Peabody, MA, USA) equipped with
an energy-dispersive spectrometer (EDS) was used for determining the morphology and
the elemental mapping in the activated samples. A JEOL JEM-2100 system operating at
200 kV (resolution: point 0.23 nm, lattice 0.14 nm) was used for obtaining the TEM images
and electron diffraction data. The TEM images were recorded using an Erlangshen CCD
Camera (Gatan Model 782 ES500W, Pleasanton, CA, USA).

3.3.4. Hydrogen Temperature Programmed Reduction

The H2-TPR experiments were performed in order to investigate the reducibility of
two precursor (oxidic) samples. To record the H2-TPR curves, a quantity of the sample,
taken before activation, was placed in a quartz micro-reactor, and a H2–He mixture was
passed through the reactor for a certain time at room temperature. The temperature was
then increased to 1000 ◦C at a constant rate of 10 ◦C/min. The decrease in hydrogen
concentration in the gas mixture due to the reduction of the sample was monitored using a
TCD. The gas mixture in the reactor outlet was dried in a cold trap placed before the TCD.

3.3.5. Ammonia Temperature Programmed Desorption

The NH3-TPD experiments were carried out in order to determine the distribution of
the surface acid sites developed on two activated samples. A certain quantity of the solid
was placed in a quartz micro-reactor and He was passed through to remove the adsorbed
species. A stream of NH3 was fed in at room temperature. Then, this was switched to He
to remove the physisorbed NH3. The temperature was then increased up to 900 ◦C at a rate
of 10 ◦C/min, and the amount of desorbed NH3 was determined at the reactor outlet using
a TCD.
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3.3.6. X-ray Photoelectron Spectroscopy

The photoemission experiments were carried out in an ultra-high vacuum system
(UHV) consisting of a high-pressure cell and preparation and analysis chambers. The base
pressure in the analysis chamber was 1 × 10−9 mbar. The analysis chamber was equipped
with a dual-anode Mg/Al X-ray gun and a SPECS Phoibos 100 1D-DLD energy analyzer.
A monochromatized MgKα line at 1253.6 eV and an analyzer pass energy of 15 eV were
used in the XPS measurements, giving a full width at half maximum (FWHM) value of
0.9 eV for the Ag3d5/2 peak. The XPS core level spectra were collected and analyzed using
SpecsLab Prodigy commercial software (version 4.86.2) (SPECS GmbH, Berlin). The atomic
ratios were calculated from the intensities (peak areas) of the XPS peaks weighted with
the corresponding relative sensitivity factors (RSF). The samples were in powder form
and pressed into pellets (stainless steel). Prior to XPS analysis, the samples were heated at
500 ◦C in a H2 atmosphere for 5 h in the high-pressure cell.

3.4. Catalyst Evaluation

The catalyst efficiencies for the transformation of WCO into third-generation green
diesel were evaluated in a semi-batch reactor (300 mL, Autoclave Engineers, Erie, PA, USA)
working at various temperatures (310–350 ◦C) at a hydrogen pressure of 40 bar. The reactor
was loaded with a feedstock volume of 100 mL and a catalyst mass of 1–3 g. Then, it was
heated at a temperature rate of 10 ◦C/min to the desired reaction temperature under an
Ar flow (100 mL/min) to purge the dead volume from the ambient air. When the desired
reaction temperature was achieved, the Ar stream was changed to H2 at the same flow
rate, controlled by a mass flow controller (Brooks 58505 S, Smethwick, UK). The reaction
was monitored for 9 h. The best catalyst was evaluated for up to 13 h. At the exit of the
reactor, a cold trap was used to collect water and organic products evaporated under the
reaction conditions. Liquid samples were withdrawn from the reactor every hour and the
reaction products were determined via gas chromatography. A Shimadzu GC-2010 Plus gas
chromatograph was used, equipped with a flame ionization detector and a suitable column
(ZB-5HT Inferno, Zebron, l: 30 m, d: 0.32 mm, tf: 0.10 µm). The reaction products were also
identified via gas chromatography–mass spectrometry using a Shimadzu GCMS-QP2010
Ultra apparatus.

4. Conclusions

The catalytic efficiency increased significantly with nickel content from 10 to 20 wt.%
Ni, and then slightly from 20 to 40 wt.% Ni, following the trend of increase observed for
the nickel active surface. The addition of 2 wt.% Mo to the catalyst containing 20 wt.%
Ni resulted in a considerable increase in the amount of green diesel hydrocarbons in the
reaction product from 8.2 to 20%. Thus, the Mo promoting action was demonstrated
for nickel catalysts supported on montmorillonite. The Mo species, moreover, led to a
considerable decrease in the (C15 + C17)/(C16 + C18) ratio, indicating that Mo favors
the SDO pathway taking place through the dehydration of the intermediate alcohols.
The promoting action of Mo was attributed mainly to the synergy between the oxygen
vacancies situated on the surface of the very well-dispersed Mo(V) and Mo(VI) oxides and
the neighboring metallic nickel sites, and only secondarily to the structural Mo effects on the
supported nickel nanoparticles. An increase in the reaction temperature from 310 to 350 ◦C
caused an additional increase in the green diesel hydrocarbons in the reaction product from
20 to 37% and a drastic decrease in the (C15 + C17)/(C16 + C18) ratio from 1.3 to 0.25. The
latter is beneficial from the viewpoint of carbon atom economy. Furthermore, an increase in
catalyst mass from 1 to 3 g per 100 mL of WCO resulted in a drastic increase in green diesel
hydrocarbons in the reaction products from 37 to 64%. Finally, an increase in the reaction
time from 9 to 13 h led to an almost full transformation of the WCO to green diesel (96%).
This result is very important, considering the solvent-free reaction conditions as well as the
fairly high WCO-volume-to-catalyst-mass ratio (33.3 mL/g) and the reaction time of 13 h,
which correspond to a LHSV equal to 2.5 h−1. This value is considered to be quite reliable
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from the viewpoint of industrial applications. Thus, the cheap and abundant mineral
montmorillonite is a promising support for developing efficient nickel—molybdenum
catalysts for third-generation green diesel production.
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