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Abstract: Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a
signaling molecule and a primary energy source that coordinates the source and sink development.
Alteration in source–sink balance halts the physiological and developmental processes of plants,
since plant growth is mostly triggered when the primary assimilates in the source leaf balance with
the metabolic needs of the heterotrophic sinks. To measure up with the sink organ’s metabolic
needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and
utilization at the sink level becomes imperative. However, environmental cues that influence sucrose
balance within these plant organs, limiting positive yield prospects, have also been a rising issue
over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon
assimilation, the pathways actively involved in the transport of sucrose from source to sink organs,
and their utilization at the sink organ. We further emphasize the impact of various environmental
cues on sucrose transport and utilization, and the strategic yield improvement approaches under
such conditions.

Keywords: photosynthetic carbon assimilation; source-to-sink relationship; sucrose transporters;
sucrose utilization; environmental factors; sucrose transports

1. Introduction

Plant growth and development are adversely affected when photo-assimilates are
not appropriately apportioned. A balanced distribution and allocation of carbon (C) to
various plant organs is crucial for plant growth, since the translocation of carbohydrates
from the photosynthesizing “source” leaves provide substrates required for the growth of
nonphotosynthesizing “sink” organs. During photosynthesis, carbon dioxide (CO2) can be
efficiently converted into 3-phosphoglyceric acid and glyceraldehyde-3-phosphate, which
act as a precursor for starch and sucrose biosynthesis. A portion of the plant photosynthates
is stored in the form of starch within the chloroplast. At night, these stored reserves are
remobilized as sucrose to support plant growth and metabolism [1,2]. Sucrose is the
transportable form of carbon predominantly utilized at the sink to supply the energy
required for plant biomass production [3].

Sucrose also acts as the signaling molecule that coordinates roots (sink) and shoots
(mainly source) development [4,5]. Alteration in the sucrose source–sink balance impedes
plant growth and development [6]. Plant growth is greatly enhanced when the primary
assimilates in the source tissues balance with the metabolic needs of the heterotrophic
sinks. The translocation of photo-assimilate to the sink and its utilization at the sink level
is mainly altered by environmental factors. However, little attention has been directed
toward the influence of these environmental factors on photo-assimilate transport and
utilization at the sink level. Thus, a conceptual understanding of the source–sink interaction
is paramount for optimizing plant growth under fluctuating environmental conditions.
To fully understand the interaction between the partitioning of photo-assimilates, plant
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growth, and environment (Figure 1), the following sections focus on: (1) strategies to
improve the capacity and efficiency of photosynthetic C assimilation, (2) how changes
in sucrose utilization when manipulating photosynthesis affect plant growth, (3) sucrose
transport from the source to the sink organs, and (4) utilization of sucrose at the sink organs.
We also summarized the impact of environmental cues on the translocation of sucrose to
the sink and its utilization at the sink level. In addition, the strategic approaches involved
in crop-yield improvement are discussed.
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Figure 1. Sucrose utilization at the source and sink level. To fully optimize crop yields through sucrose utilization, improving
photosynthetic carbon assimilation for sucrose synthesis, transport of sucrose to the sink, and its utilization at the sink level
become imperative. Given the efficient utilization of sucrose, other environmental factors can disrupt sucrose distribution
within plant organs.

2. The Definition of Terminologies in Source-to-Sink Interaction

Manson and Maskell proposed “source and sink” in plants a few decades ago [7]. The
terms “source production” and “sink utilization” of photo-assimilates are now frequently
used in research related to plant resource allocation. “Source” tissue is the producer and
exporter of photo-assimilates, while “sink” tissue is the importer and consumer of the
assimilates [8]. Examples of source tissues of carbon (C) are fully expanded (older) leaves
and green parts of plants, whereas sink tissues are roots, tubers, fruits, and seeds. Of all sink
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tissues, roots are the major putative source of inorganic nitrogen (N), whereas fully mature
leaves are the main producers of organic nitrogen. The developing tubers/fruits/seeds
serve as sinks for organic and inorganic N. Another term used in source–sink interaction is
mass-flow, a transport system that links the source with the sink organ. In this context, flow
refers to the xylem and phloem transport systems. The phloem sieve tube is involved in
the movement of most organic nutrients basipetally to the sink organ, whereas the xylem
transports nutrients from the sink to the source tissues [9].

3. Improving the Capacity and Efficiency of Photosynthetic Carbon Assimilation

Efficient photosynthetic carbon (C) assimilation is crucial for the overall yield of the
reproductive sink organs [10]. One of the major bottlenecks of photosynthesis is the reaction
of enzyme ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) with oxygen,
leading to photorespiration, which reduces the efficiency of photosynthesis. RuBisCO
has a slow catalytic rate of fixing CO2 with a turnover frequency of 3–10 per second [11]
compared to most enzymes. Furthermore, RuBisCO demands a substantial amount of N
and water from the plant, consuming 25% of N in a typical C3 plant. As such, reducing
photorespiration is a prerequisite to improving photosynthetic efficiency, since improved
photosynthetic efficiency is strongly related to water-use efficiency (WUE) and N-use
efficiency (NUE). When the stomata open in C3 plants, CO2 moves in, and oxygen (O2)
exits the cells. Upon closure of the stomata aperture under dry and harsh conditions, O2
accumulates to reduce the efficiency of the C3 pathway. Any component that indirectly
influences stomatal conductance, such as root architecture, may increase water availability
and promote C assimilation [12]. A reduction in stomatal resistance via the opening of the
stomata aperture promotes higher CO2 uptake for photosynthetic C input at the expense
of substantial water loss and adversely affects plants in semiarid or arid environments [13].
However, improving the conductance of CO2 from the substomatal spaces to Rubisco
should possibly increase photosynthesis without adversely affecting water use [14]. Some
other plants that have evolved adaptation to withstand harsh and dry conditions are
C4 and crassulacean acid metabolism (CAM) plants. The C4 photosynthetic mechanism
allows plants to pump CO2 into specialized cells in the bundle sheath cells to shield
plants from the clusters of oxygen that might result from stomatal closure during dry
conditions [14,15]. This allows C4 plants to withstand habitats that may be too harsh for
C3 species because of their improved water- and nutrient-use efficiency [16,17]. Genetic
approaches have also been established to pinpoint the anatomical development of C4
(Kranz anatomy), but the introduction of the functional C4 system has become a dilemma.
If this is obtainable, the introduction of the C4 system into the ancestral C3 plants can
minimize the amount of Rubisco and nitrogen fertilizer required and enhance water-use
efficiency [16]. Nevertheless, plants without C4 evolution still undergo a highly rated
selection potential for photosynthetic efficiency, nitrogen-use efficiency, and water-use
efficiency with transgenic approaches [18].

Over the past four decades, studies have identified a broad range of strategic ap-
proaches to improve photosynthetic efficiency, as summarized in Table 1. These approaches
are summarized into five distinct categories: (i) those focusing on a more catalytic version
of RuBisCO and individual enzymes of the Calvin-Benson cycle [19,20], (ii) those engineer-
ing CO2-concentration mechanisms (CCMs) into the C3 photosynthetic pathway [21–23],
(iii) strategies required to speed up the adaptation of the photosynthetic system under
natural shaded or fluctuating light conditions by increasing the quantity of the photosys-
tem subunit [24], (iv) those engineering synthetic bypass systems for photorespiration
to optimize the uptake of CO2 [25], and (v) those that correlate the swiftness in stom-
atal response and photosynthetic C assimilation at the expense of water loss [26]. More
recently, transgenic approaches have revealed that a reduction in stomatal aperture can
increase WUE while enhancing C assimilation or crop yields [27]. Another photosynthetic
carbon-improvement approach is to ensure that photosynthesis is less affected by feedback
regulation when sinks lack the potential to fully utilize all the sugars supplied by the
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source leaves. Significant progress has been made in studying the extant of sink regulations
for decades; a deeper insight into how sugar is sensed and the signaling pathway will
be required to activate the signaling pathway and fine-tune the feedback regulation of
photosynthesis. Another alternative way of alleviating photosynthetic feedback inhibition
is by increasing photosynthate transport and utilization at the sink organs, which will be
discussed in subsequent sections.

3.1. Impact of Global Warming on the Strategies to Improve Photosynthetic Carbon Assimilation

To meet the global food production demand, crop yields of most staple crops must
increase by over 60–110% in the next 30 years [28]. At the same time, atmospheric CO2 has
been envisaged to reach 550 ppm in 2050 [29], and this is usually accompanied by rising
terrestrial air temperature, all in the name of global warming [30]. Today, the increasing
threat of global warming is becoming more alarming, and the looming effect of these
greenhouse gases can halt the positive yield prospect of our future crops. Thus, approaches
to increase crop yields need to consider the future impact of global warming on crop yields.
A more realistic approach to enhancing crop yields in the future is through improving
photosynthetic carbon efficiency [31].

As mentioned above, various photosynthetic improvement strategies have been pro-
posed (see Table 1), some of which have been examined under various climatic condi-
tions, such as high atmospheric CO2 and temperature. Accelerating the rate of ribulose-
1,5-bisphosphate (RuBP) regeneration [32,33] is a more promising strategy to offset the
predicted climatic change [32,33]. With the current ambient atmospheric condition, C3
photosynthesis is limited by the carboxylation capacity of RuBisCO. However, it has been
envisaged that in the future, elevated CO2 and higher temperatures will shift the leaf pho-
tosynthesis model of carbon uptake and assimilation [34] toward the regeneration capacity
of RuBisCO [35]. In case there are no other changes, a higher temperature would accelerate
the activity of RuBisCO while reducing its specificity for CO2 as compared to O2. However,
this will narrow the range of internal CO2 under which RuBisCO is limiting and reduce
the CO2 at which RuBP regeneration becomes limiting. In principle, the positive impact of
the increased capacity for RuBP regeneration (which is one of the important improvement
strategies) would therefore be greatest under both rising CO2 and elevated temperature
conditions. With this progress, future crops will be well adapted to the forecasted high
climatic conditions (elevated CO2 and temperature).

The overexpression of the redox-regulated Calvin cycle enzyme, sedoheptulose-1,7-
bisphosphatase (SBPase), is another strategy used in improving photosynthesis and yield
of Arabidopsis [36], tobacco [37,38], tomato [39], and wheat [40]. Based on the research
progress made on these crops, Köhler et al. [41] further tested the impact of climatic
change on the SBPase enzyme. They overexpressed cyanobacterial bifunctional fructose-
1,6/sedoheptulose-1,7-bisphosphatase (FBPase/SBPase) in soybean (Glycine max) grown
in the field during three growing seasons under rising CO2 of 600 ppm and elevated
temperature of +3.4 ◦C. The resultant effect was further compared with normal ambient
conditions (control). All the overexpressing lines had a significantly higher carbon as-
similation rate across the treatments. Under ambient CO2, elevated temperature led to
significant seed-yield reductions in both the control and the overexpressing genotypes.
However, under elevated CO2 and increased temperature, the transgenic lines maintained
higher seed-yield levels, while wild-type plants exhibited reduced seed yields compared
with plants grown under elevated CO2 alone. These findings suggest that manipulating
the photosynthetic carbon-reduction cycle could avert the proposed detrimental effects
of future climatic change in plants. More studies should document the impact of global
warming on strategies to improve carbon assimilation to ascertain future sustainability.

3.2. Photosynthetic Carbon Assimilation Contributes to Sustainable Development Goals

Imagine a world free of malnutrition and poverty, where people work to deliver
shared prosperity in harmony with nature. This ideology moved society into declaring
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the future it wants, and the plans made were facilitated by the United Nations (UN) to
launch the Sustainable Development Goals (SDGs). The UN 2030 agenda is a positive
pathway to a sustainable livelihood, inclusive society, and sustainable environment. At
the core of this agenda, there are 17 sustainable development goals [42], all of which must
be globally achieved by the year 2030. Since photosynthesis is the underlying basis for
greater crop-yield output [43], improving photosynthetic carbon assimilation is, therefore,
a chief contributor to SDGs. Even though the objectives of the SDGs are intertwined, SDG 2,
“end hunger, achieve food security and improved nutrition, and promote sustainable
agriculture”, and SDG 13, “take urgent action to combat climate change and its impacts”,
explicitly explain the contribution of improved carbon assimilation to achieving them.

Hunger is a global epidemic affecting underdeveloped, developing, and even devel-
oped nations. Globally, over 820 million people are severely food-insecure and malnour-
ished [44]. In developed countries where food supply seems adequate, discrepancies in
food prices add to the global hunger crisis due to increased food costs [45] and concerns of
uncertainty. Furthermore, with the challenges of unemployment, high medical bills, and
living expenses, millions of people are struggling to feed their families. Hence, in a bid to
survive, people instead opt for cheaper undernourished foods to prevent starvation. It is
imperative, therefore, to ask why the hunger crisis prevails.

Climate change plays an integral part in this global challenge, as it negates plant
health, leading to drought, thereby limiting food production. Since plants have more
potential to effectively resist atmospheric CO2 under ambient atmospheric CO2, increasing
the number of plants will increase the absorption of atmospheric CO2. With recent research
developments (Table 1), genetic engineering of CO2-concentration mechanisms (CCMs) into
the plants and other strategies to improve carbon assimilation could be effective means to
offset the impact of global warming on plants, ensuring food availability and sustainability.
Facilitating these strategies could translate to greater yield output, consequently eradicating
hunger, malnutrition, and poverty, thereby contributing directly to SDGs 1, 2, and 13.
Although several studies have been conducted on photosynthetic-improvement strategies,
including the genetic-engineering approach and RuBisCO regeneration, research efforts
should be intensified on breeding plants that can readjust to the predicted 550 ppm CO2
in the future. If hunger could be eradicated and the impact of global warming combated,
people will have access to basic nutrition, health, education, sustainable energy, and an
inclusive society, among other benefits. Importantly, the implementation of this plan starts
with us.



Int. J. Mol. Sci. 2021, 22, 4704 6 of 29

Table 1. Approaches employed to improve photosynthetic carbon assimilation in different plants.

Host Species Strategies Summary of Findings References

C3 and C4 plants

Modification of in vitro assay method to
measure the variability in carboxylase and

decarboxylase activity of C3 and C4
leaf extract.

RuBisCO activation status is lower in mature
C4 monocot leaves than in C3 monocots. [19]

Rice Model analysis conducted on both pot and
experiments under various nitrogen rates.

Improved carboxylation rate due to higher
RuBisCO content in mutant plants. [46]

Tobacco

Expression of zeaxanthin and violaxanthin in
the xanthophyll cycle coupled with an
increased amount of the photosystem

II subunit.

Greater than 15% increase in plant biomass. [24]

Potato Overexpression of pyrophosphatase in
mesophyll cells.

Enhanced source and sink capacity and a
doubling in starch yield of tuber. [47]

Wheat Overexpression of Brachypodium distachyon
sedoheptulose-1,7-biphosphatase.

Increased leaf photosynthesis, biomass, and
crop-yield potential. [40]

Tobacco Overexpression of Arabidopsis
sedoheptulose-1,7-bisphosphatase (SBPase).

Improved photosynthetic capacity and
crop yield. [38]

Arabidopsis

Independent or synergetic alteration of
sedoheptulose 1,7-bisphosphatase (SBPase),
glycine decarboxylase H-protein (GDC-H)

protein, and fructose 1,6-bisphophate
aldolase (FBPA).

Enhanced carboxylation efficiency, vegetative
biomass, and maximal seed-yield increase. [36]

Potato
Expression of polyprotein comprising three

subunits of Escherichia coli glycolate
dehydrogenase (GlcDH).

High carbohydrate levels synthesized in the
source leaves were utilized by the sink organ,
facilitating a 2.3-fold increase in tuber yield.

[48]

Arabidopsis
Expression of a synthetic, light-gated K+

channel BLINK1 in guard cells surrounding
stomatal pores.

BLINK1 facilitates a 2.2-fold increase in
biomass in fluctuating light without the cost

of water use by the plant.
[27]

4. Alterations in Carbohydrate Partitioning When Manipulating Photosynthesis
Affect Plant Growth

Crop yields depend on photo-assimilates synthesized through photosynthesis (source
capacity) and their utilization at the sink organ. Thus, experimental manipulations of
source activity and sink strength explain the strong coordination between carbohydrate
utilization at the sink level and photosynthesis. Photosynthetic products are primarily
translocated to the sink organ in the form of sucrose (synthesized at the source leaves)
for sink growth development. Thus, any activity that improves photosynthesis could
also increase plant growth. In most cases, low sink activity resulting from sink removal
or the integration of nutrient deficiency enhances carbohydrate accumulation in source
leaves, and photosynthesis becomes downregulated [49,50]. A decline in photosynthesis
could also occur when sucrose export from the source leaves to the sink organs becomes
inhibited due to the downregulation of sucrose transporter genes [51]. In both cases of
decreased sink activity or restrictions in sucrose transport, sucrose accumulates at the
source leaves, increasing the expression of genes involved in carbohydrate storage and
utilization, while repressing photosynthetic genes expression and final plant growth [52].
However, increases in sink demand have also been reported to improve photosynthetic
activity and sink growth [53,54]. For example, 50% of blueberry plants were defoliated due
to increased sink demand, but high photosynthetic capacity and yield were maintained [54].
Kaschuk et al. [53] have also shown that increased sink demand due to N2 fixation in
soybean (Glycine max) relative to the nitrate-fed plants underpinned the observed increase
in photosynthetic capacity and delayed leaf senescence. As such, plant breeders aiming
at improving crop yield should be cognizant of the fruit pool size and photo-assimilate
delivery from source leaves to sink organs (fruits).
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The growth of plants at elevated CO2, which alters source supply, has revealed the
strong association between source photosynthesis and sink demand. In most C3 plants,
elevated CO2 directly enhances photosynthesis, which has led to increased carbohydrate
supply in leaves, and an ultimate increase in crop yields [55]. Previous studies have shown
that photosynthetic stimulation by elevated CO2 may be limited by the sink’s capacity
to utilize or store additional photosynthates in C3 plants [56]. The initial increase in the
photosynthetic rate was then greatly reduced by the suppression of photosynthetic activity
due to the negative feedback caused by limited sink capacity. This is an indication of photo-
synthetic limitation by the sink after the initial limitation of carbon partitioning and growth
by the source activity. Subsequent findings have revealed that the degree of photosynthetic
stimulation by the interacting elevated CO2 and environmental, experimental, or genetic
factors determines the sink strength [57,58]. For example, faba beans grown under an
elevated CO2 (700 ppm) environment and exposed to well-watered versus drought treat-
ments exhibited increased photosynthate accumulation in the leaves, leading to feedback
inhibition of photosynthesis [58]. Similarly, poplar (Populus spp.) trees, which export more
than 90% of photosynthate during the day, maintain high stimulation of photosynthesis
at elevated CO2 [59]. Thus, maintaining the photosynthetic stimulation at elevated CO2
could be strongly associated with the capacity of the sink organ to utilize or reserve the
additional carbohydrate [57,58].

Synthesis and degradation of starch is also a clear indication of carbon supply and
utilization, especially in Arabidopsis [52,60]. The fixed carbon obtained during photosynthe-
sis could be converted to sucrose (usually stored in the cytosol) and starch (majorly stored
within the chloroplast of most plants) in the source leaves. In most plants, source leaves
(older leaves) majorly export all the fixed carbon to sink leaves and other reproductive parts
of plants for growth and other metabolic activities. Plants accumulate starch more rapidly
during the day and degrade it at night to support growth and metabolism. The leftover
starch is reserved until dawn. The rate of starch synthesis and degradation across a range
of photoperiods is adjusted to avoid carbon starvation [60,61]. Weraduwage et al. [62]
reasoned that the optimal partitioning of carbon to starch would occur when the carbon
available for growth was constant day and night. As such, the budgeted carbon for growth
should be the same during the day and at night because all the energy from growth is
majorly attributed to this fixed carbon [61]. The growth derived for carbon usage may
be more efficient than that obtained at night if ATP can directly optimize growth. On the
other hand, the carbon budget for growth at night could also be greater than that during
the day because sucrose synthesized during the day requires one ATP plus the energy
demand in the tricarboxylic cycle. However, carbon primarily stored as starch and then
transformed to sucrose requires one and two-thirds (assuming two-thirds of the nighttime
export is maltose and one-third is glucose) [62]. Thus, the photosynthetic products are
strictly adjusted based on the plants’ demand. Interestingly, increase in starch content
at the end of the light period (which supports carbon metabolism and growth at night)
decreased with biomass accumulation across 94 Arabidopsis accessions [63]. This indicates
that plants with a strong affinity for starch accumulation exhibit reduced growth, while
plants with improved growth rates incur better carbon-use efficiency, re-emphasizing the
relationship between photosynthetic machinery and plant growth.

5. Transport of Sucrose to the Sink

The need for a high C assimilation rate elucidated above can only be effective if the
increased C supply can be utilized by downstream transport and plant metabolic processes.
Thus, all photo-assimilates not required for leaf function are turned into sucrose or amino
acids and translocated to the sink organ via the phloem [2]. Up to 80% of photosyntheti-
cally fixed carbon can be exported from mature leaves. However, the quantity of sucrose
available for export from source leaves anchors on factors including photosynthetic activ-
ity (primarily the carbon-fixation), partitioning between the starch synthesis within the
chloroplast and triose-phosphates moved out of chloroplast for sucrose synthesis, and
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temporary accumulation of sucrose in the vacuole [64]. The synthesized sucrose is then
exported to various plant organs depending on demand, while other redundant sucrose is
converted into starch and stored for further utilization. Alteration in any of these afore-
mentioned factors can affect the quantity of sucrose available for export, thereby changing
the source–sink balance [64].

Photo-assimilate transport comprises short-distance (e.g., loading/unloading of su-
crose) and long-distance transport [65]. Phloem cells that convey organic materials and
sugars within the plant are called sieve elements. The known mechanisms of active phloem
loading presently are: (i) symplasmic loading, where de novo-synthesized sucrose has
to exit the mesophyll cells and transfer from cell to cell via plasmodesmata (PD) (which
acts as the bridge across the cell walls) into the sieve elements (Figure 2); (ii) apoplastic
loading; which involves the movement of sucrose from mesophyll cells to companion cells
against a concentration gradient (Figure 2); and (iii) “polymer trapping”, which involves
the conversion of sucrose into larger sugar polymers such as stachyose, verbascose or
raffinose symplasmically supplied by intermediate cells [64,66]. All these aforementioned
pathways follow the three phloem sections (collection, transport, and release phloem) to
effectively unload sucrose at the sink organ. These entail sucrose loading into the collection
phloem (embedded at the leaf blade) [67], which signifies the first step of long-distance
transport (Figure 2). The subsequent step is the transport of sucrose via the transport
phloem (path of sucrose transport) connecting the source leaves with sink organs, and then
the final delivery of sucrose via the release phloem to the sink organs (Figure 2) [64,67].

In various loading-pathway routes, specific transporters are needed to efficiently
transport sucrose across plasma or within the intracellular compartment. Thus, these
sucrose transporters serve as significant regulators of sugar flux and accumulation [68,69].
These transporters are localized in the three phloem sections, and their function cannot
be underestimated, especially in tree crops where sucrose loading is symplastic in the
collection phloem [70,71]. Nevertheless, sucrose is removed from the phloem via either a
symplastic or an apoplastic pathway in the release phloem, albeit the preliminary steps
are often symplastic [72]. Thus, disruption in the symplastic pathways in sink organs
like developing seeds requires an apoplastic step to efficiently transport photo-assimilates.
It is noteworthy to mention that regulating these sucrose transporter genes significantly
improve crop yields [69]. A good example is the sucrose transporter (OsSUT2), which
functions in the transport of sucrose from the vacuole across the tonoplast. Disruption in
the function of the OsSUT2 transporter restrains sugar transport basipetally from source
leaves to sink organs; thus causing major physiological disorder and rice yield loss [73].
This indicates the crucial roles of sucrose transporters displayed in phloem loading and
unloading at the sink organ. During the early stages of the tuber developmental stage
in potato, tuber-specific inhibition of SUT1 reduces the fresh weight, demonstrating the
potential role of SUT1 in phloem unloading [9]. More research attention have been directed
towards a new class of sugar transporters, Sugars Will Eventually be Exported Transporters
(SWEETs), in Arabidopsis AtSWEET10–15 [74], and rice OsSWEET 11 and 14 [75] which are
responsible for sucrose export from the transport phloem to the apoplast. The Arabidopsis
double mutant, atsweet11 or 12, exhibits impaired ability to expunge sucrose out of the
leaves. This inhibition resulting from starch accumulation leads to downregulation of
photosynthesis, demonstrating that sucrose export by the SWEET family plays an imper-
ative role in photosynthetic improvement. Sucrose unloaded into the apoplastic space
is assimilated by the sink cells or bonded by invertase to hexose transported by specific
carriers (Figure 2). As such, sucrose can either be stored for sink growth and development
or left in the vacuole of the storage cells of some crop species, such as sugar cane and sugar
beet [76].



Int. J. Mol. Sci. 2021, 22, 4704 9 of 29

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW  9 of 29 
 

 

 
Figure 2. Schematic diagram of symplastic and apoplastic transport of sugar from source to sink organ. Figure 2. Schematic diagram of symplastic and apoplastic transport of sugar from source to sink organ.



Int. J. Mol. Sci. 2021, 22, 4704 10 of 29

6. Sucrose Utilization at the Sink

Photo-assimilates are symplasmically unloaded from the phloem through plasmodes-
mata (PD), which serves as a bridge connecting the surrounding cells to sink organs [68].
The sucrose delivery by the release phloem (Figure 2) improves physiological growth
of sink organs. The homogenous distribution of assimilates within the sinks is a major
driver of plant productivity, and it is expressed as the harvest index (HI). The HI is cal-
culated as the proportion of harvested dry weight divided by overall plant dry weight
or above-ground dry weight. Thus, plants with high HI have a greater percentage of its
photo-assimilates diverted back to the sink [64].

There exist fluctuations in carbon partitioning and shifts between the symplastic and
apoplastic pathways throughout plant developmental processes. The pathway through
which sucrose is unloaded depends on the specific sink involved and its developmental
stages [77,78]. For example, sucrose unloading is apoplastic during the fruit developmental
stage in apple [79]. In potato [80] and white mature jujube [77], the mode of phloem
unloading transits from apoplastic to symplastic. Contrary to this, sucrose unloading is
symplastic during the early and middle stages of grapefruit development, but subsequently
switches to apoplastic during the fruiting stage [81]. The switch to a symplasmic unloading
pathway route is mainly based on the amount of plasmodesmata [77], an indication that
symplasmic unloading strongly exceeds the transport capacity of the apoplastic pathway.
At the sink level, sucrose is broken down into glucose and fructose by invertase (INV) [82]
to control sugar fluxes by increasing apoplasmic levels of hexoses in the apoplast (Figure 2).
Sucrose can also be degraded into uridine diphosphoglucose (UDPG) and fructose by
sucrose synthase (SUS), albeit the energy demand for degradation is higher in INV than SUS.
INV is encoded in cell-wall invertase (CWIN), which plays an imperative role in apoplasmic
phloem unloading in sink organs. CWIN-derived glucose predominates the sink tissues to
trigger cell division during early seed development, whereas sucrose synthase synthesizes
starch, cellulose, and protein during the late developmental stages for sink strength [83,84].
Cell-wall invertase also increases sucrose unloading to the sink organ by converting sucrose
to hexoses (Figure 2). Since plants are highly susceptible to sucrose imbalance in the sink
organ, promoting the activity of endogenous CWIN by silencing its inhibitor is a potential
molecular strategy to lessen the effect of sink abortion.

7. Influence of Environmental Factors on Photo-Assimilate Transport

Plants undergo a wide range of environmental changes all through their life-cycle,
and have evolved diverse strategies to withstand such changes. The impact of environ-
mental factors on photo-assimilate transport within the source and sink is discussed in the
subsequent sections.

7.1. Effects of Carbon Dioxide

Nowadays, the atmospheric concentration of carbon dioxide (CO2) is approximately
twice that which prevailed over the past few centuries [1] due to the impact of fossil
combustion and inappropriate use of agricultural lands. Indeed, the concentration of CO2
in the atmosphere increased from approximately 315 ppm a few decades ago to an average
of 390 ppm in these present days. The concentration has been envisaged to be within the
range of 540 to 970 ppm before the end of the century. Despite the pressure imposed by this
increased atmospheric CO2 on the global climate, its impact on plant photosynthesis cannot
be underestimated. A rise in CO2 could promote photosynthetic rates and carbohydrate
production, and positively affect phloem transport and growth. However, these factors
depend on either the short- or long-term CO2 enrichment terms. Most plants subjected to
short-term CO2 treatment effectively accumulate carbohydrates in the leaves, increasing
biomass partitioning between their source and sink organs (Figure 3). However, prolonged
exposure (long-term effects) of some other plant species to elevated CO2 concentration
reduces the initial stimulation of photosynthesis and decreases the photosynthetic rate [85].
For example, an increase in the CO2 concentration of soybean plants subjected to 27 days of
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treatment from 400 to 1000 ppm resulted in a drastic reduction in photosynthetic rate [86,87],
which subsequently affected the crop yield. This reduced net photosynthetic rate may be
due to the reduced concentration and activity of RuBisCO [88] or the source–sink imbalance
emanating from leaf carbohydrate accumulation under increased CO2 concentration [89].
This reduction in the net photosynthetic rate observed during long-term exposure could
also be advantageous, as it potentially enhances the remobilization of assimilates from the
source leaves to the sink for proper readjustment of the source–sink balance [90].
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Source–sink imbalance is mostly apparent during plant exposure to elevated CO2,
when photosynthetic rate outweighs the transport capacity or the capacity of sinks to
utilize assimilates for growth. This incapability results in carbohydrate accumulation in
photosynthetically source leaves [90]. Contrary to this opinion, CAM plant Opuntia ficus-
indica exposed to long-term high CO2 concentration was not affected by the photosynthetic
rate [91]. In fact, after three months of subjecting the plant to double CO2 concentration
of 750 mol/mol, the glucose, starch, and malate contents in the basal cladodes increased
significantly compared with the low CO2 concentration of 370 mol/mol; however, the
sucrose content was not affected [91]. The sucrose content in mother cladodes was not
affected because it was translocated to daughter cladodes by an active phloem transport,
thereby resulting in a marked increase in the biomass of daughter cladode after three
months of exposure to high CO2 concentration [87,91]. The impacts of elevated CO2 on
photosynthetic carbon assimilation are not the same, since some plant species are easily
affected by elevated CO2 than other plant species. Thus, variations in plant species response
to elevated CO2 are mainly engendered by diverse plant photosynthetic types.

Triose phosphate utilization (TPU) explains the response of photosynthesis to car-
bon source–sink imbalances at elevated CO2. Although several studies have shown that
elevated CO2 treatment [92–95], experimental manipulation (pruning) of source–sink car-
bon [96,97], or a synergetic impact of both can influence source–sink balance [98,99], more
exciting advances have recently emerged. Fabre et al. [100] explored the impact of source–
sink imbalances on photosynthesis, which is best predicted by the limitation of triose
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phosphate utilization. They also investigated the response of TPU on photosynthetic regu-
lation under such imbalances. The group hypothesized that there is a linear relationship
between the source–sink ratio and TPU limitation in rice leaves. To test this hypothesis,
they subjected rice plant to elevated CO2 in order to achieve increased source capacity, and
also pruned the panicle (sink) to decrease the sink. They observed a genuine association be-
tween the source–sink balance and TPU capacity. There was a negative correlation between
TPU capacity and the flag-leaf sucrose concentration (increase in sucrose decreases the
TPU), and a linear correlation between TPU and photosynthesis (photosynthesis decreased
during the day along with TPU) (Figure 3). This reduction in TPU is associated with the
accumulation of sucrose in the flag-leaf resulting from sink limitation. As such, TPU could
be adjusted to be slightly higher than the photosynthetic rate or vice versa, albeit the case
might be different in plants whose sink adjustment and assimilate transport to increased
assimilation potential is poor.

7.2. Effects of Light

Light is one of the most paramount factors affecting shoot and root development
during early seedling development [101]. Energy derived from light facilitates carbohy-
drate synthesis during photosynthesis. When seedlings are kept in the dark or shaded
from light at the early germination stage, a larger quota of the C assimilate previously
stored in the cotyledons are used up for hypocotyl elongation (Figure 3), inhibiting the
root growth. Growing seedlings under the shade with a low ratio of red to far-red light
induces hypocotyl elongation to promote shoot over root growth (Figure 3) [101]. This
occurrence moves cotyledons, as well as the shoot apex, toward the light. Subsequently,
the de-etiolated seedling begins photosynthesizing to produce sucrose, since the deliv-
ery of assimilate to the root is subject to changes in sucrose availability. Studies have
revealed that photosynthetic transport of sucrose from the shoot (cotyledon) to the root
functions as a direct signal to activate and enhance root elongation of Arabidopsis in a
light-dependent manner [4]. This finding and other related findings [102,103] support the
efficacy of carbon resources in coordinating long-distance transport in the presence of light,
as the illumination of shoot promotes root growth via shoot-to-root signaling.

To cope with nights characterized by lack of sunlight and prevailing darkness, plants
devised a coping strategy similar to that of a battery. During the day, a portion of plant
photosynthates is allocated for storage in the form of starch. At night, in the absence of
light and photosynthesis, these stored resources are reallocated to sustain plant growth and
metabolism (Figure 3) [104,105]. Starch degradation at night clearly explains the carbon
economy of the plant, as well as plant growth. Starch degradation, carbon availability, and
growth at night progressively decrease as the photoperiod becomes shortened [60]. Plant
growth rate anchors majorly on the amount of starch available at dusk and the length of
the dark periods [60,106]. In short photoperiods, starch is mostly exhausted at dusk due to
carbon limitation in plants during this period, causing severe growth inhibition [107–109].
If the duration of the night is suddenly extended, starch will be completely consumed
within 1 to 2 h, the amount of sucrose becomes drastically reduced, catabolism will be
activated, and ultimately growth becomes inhibited. As such, proper coordination of
starch degradation and growth is an expedient to preventing either the accumulation of
sugar or its depletion to a point where catabolism is activated. This coordination could
be obtainable if: (1) the circadian clock acts directly to regulate plant growth rate and
timing, and (2) the coordination could also occur through an indirect action of the clock by
regulating the rate of starch degradation and determining the amount of sucrose available
for growth [109]. Unlike the short photoperiod, during which growth decreases in the
early hours of the day, plants subjected to longer photoperiods exhibit increased growth
during the night and at the start of the day. There is a more pronounced lag before
starch accumulation commences again [60]. The delay in starch accumulation is mostly
accompanied by increased sucrose synthesis and other soluble metabolites, indicating that
growth is not carbon-limited. Future research should focus on the cause of this delay; this
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could have been due to limitations arising from starch accumulation or introduction of
degraded starch towards the end of the light period.

Light also regulates phloem loading of sucrose from the photosynthesizing leaves,
either “apoplastically” or “symplastically” [110,111]. Apoplastic loaders (pea and spinach)
and symplastic loaders (pumpkin and Verbascum phoeniceum) acclimatize to photosynthesis
differentially in response to light environment. Thus, increased cell-wall invagination,
indicating no greater starch levels, was observed in the leaves of apoplastic loaders trans-
ferred from low to high light condition [112]. However, in symplastic loaders, there was no
increase in the plasmodesmatal frequencies per loading cell, thereby accumulating sugar
in the source leaves [112,113]. This modification is consistent with the limitation in carbon
export capacity to increase plasmodesmata density in mature leaves.

7.3. Effects of Temperature

Extremes of temperature are harmful to plant health. Thus, maintaining a favorable
leaf temperature is essential for plant growth because photosynthesis can be maximized
within a relatively narrow temperature range [1]. Most biochemical reactions of pho-
tosynthesis are disrupted (Figure 3), since photosynthesis is a temperature-dependent
process [114]. Temperature also affects the membrane integrity of the chloroplast [1] and
irreversibly disrupts RuBisCO activity (Figure 3) [115]. Recently, cocoa seedlings subjected
to an elevated temperature of approximately 39 ◦C heat treatment against 36 ◦C in chamber
control were negatively affected by the photosynthetic rate and biomass accumulation [116].
In addition, wheat plants subjected to heat stress also exhibited disruption in floret settings,
resulting from limitation in photo-assimilate supply at the source leaves and varying pho-
toperiodic sensitivity [117]. This implies that photo-assimilate supply and the quantity of
reserved assimilate stored in the vegetative tissue are key determinants of floret formation
and subsequent grain (sink) development under heat stress [118,119]. Although ample
evidence exists regarding the negative impact of heat stress on crop yields [120–122], little is
known about the source–sink metabolite dynamics and crop-yield interaction [123]. More
recently, Impa et al. [124] examined the metabolic changes in six winter wheat genotypes
by investigating the post-heading high night temperature (HNT) effect on carbon balance,
sink–source metabolic changes, and other yield-related traits relative to the control ex-
periment (at 15 ◦C minimum night temperature). In the same study, a marked increase
in proteinogenic amino acids and carbohydrates, such as sucrose, glucose, fructose, and
raffinose, was detected in the spikes (sinks) during HNT relative to the control condition.
However, a drastic reduction of the tricarboxylic acid cycle intermediate compounds was
found in the source leaves (Figure 3). To this end, changes in carbohydrate metabolism
and tricarboxylic acid cycle intermediate in the spikes and leaves provide insight into
metabolites involved in HNT response [124]. Wang et al. [125] investigated the effects of
heat stress on 38 wheat varieties (with different levels of thermo-tolerance) to unravel the
proteomic and metabolomic changes induced by this stress during the grain-filling stage.
They observed a marked increase in the free amino acid levels and a drastic reduction in
the content of carbohydrate metabolism and tricarboxylic acid (TCA)-related metabolite in
response to heat stress. This result suggested a plausible wide range of mechanism for heat-
adaptive metabolism required to maintain the grain-filling process in plants [125]. Plant
breeders should focus on the integration of this metabolomic and other omic approaches;
this could provide an insight into the appropriate markers that can be used to address the
issue of climate change in this century.

Low temperature also poses a major threat to sugar transport within different cell
types (intermediary cells, parenchyma transfer cells, sieve elements) in diverse manners.
Plants with a symplastic minor-vein configuration seem to be dominant in tropical and
sub-tropical regions, whereas plant species with an apoplastic configuration are mostly
found in temperate zones. Hence, one would believe that the symplastic loaders can be
more cold-sensitive than apoplastic loaders [64]. The sensitivity of herbaceous species
and deciduous trees with symplastic phloem-loading to cold was due to the collapse of
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intermediary cells under low temperatures, eliminating photo-assimilate transport and
starch accumulation in the chloroplast [113]. These ultrastructural changes have also been
found in broad leaf evergreen species (Ajugareptans, Aucubajaponica, and Hederahelix) that
have a symplastic phloem-loading mode. At low temperature, leaves of this latter plant
exhibit a higher exudation rate, but neither shows any symptoms of frost injury nor starch
accumulation in the chloroplasts. Therefore, removing redundant photo-assimilates from
cold-acclimated source leaves might be crucial to maintaining the functional and structural
integrity of the plant [126]. However, physiological studies [127] showed no significant
variation between symplastically and apoplastically phloem-loading species in response to
cold, since the carbohydrate available for export in phloem-loading modes of both species
was closely related. This has led to the hypothesis that there is a relationship between the
phloem-loading mode and the growth architecture instead of the geographical distribution
of both species.

Although low temperature drastically reduces plant growth rate and final biomass,
even in plants well acclimated to low-temperature regimes, some geophytes still exhibit in-
creased growth rate and a much larger storage organ under such a temperature regime [128].
This observed positive growth effect in storage organs was correlated with enhanced leaf
longevity and extensive periods of carbon assimilation, which is partly related to im-
proved biomass in the storage organ [128]. In the same study [128], higher temperatures
halted corm (sink) growth (Figure 3) even before the first visual signs of leaf senescence
became apparent, suggesting the great influence of sink activity on leaf longevity in spring
ephemerals (Crocus vernus). As such, leaf senescence is induced by sink limitation once the
carbohydrate reserves are replenished [129]. It can be inferred that the larger storage organs
could have resulted from increased overall sink strength at low temperature gradients in
these species. The production of a larger storage organ under a lower-growth tempera-
ture regime (8/6 ◦C) was also affirmed in Erythronium americanum. The increased growth
rate observed at lower temperature gradients could be attributed to the delay in starch
accumulation, leading to improved source–sink balance and delayed leaf senescence [130].

7.4. Effects of Drought

Considerable proportions of our global agricultural lands are prone to drought.
Drought has been extensively reported to directly facilitate a wide range of yield-reduction
symptoms in plants. These symptoms include photosynthetic inhibition [131], physiolog-
ical metabolic disorders [132], and increased oxidative stress [133]. In a bid to survive,
plants have evolved a series of morphological and physiological adaptive mechanisms to
withstand a water-deficit condition [134]. When a plant root directly senses a water deficit,
the biomass allocated to the root increases over that allocated to the shoot, facilitating
increased root-over-shoot growth in rice [134,135], Arabidopsis thaliana [136], wheat [137],
and soybean [138]. This case of plants’ response to drought is an indication that a higher
root-to-shoot ratio could be an adaptive parameter to improve plants’ tolerance to drought
stress [139]. Hence, maintaining an efficient root (sink) system is a precursor to increasing
water uptake while preventing water loss in response to drought stress.

Excessive transpiration disrupts the synthesis of photosynthetic products (Figure 3),
inhibits carbon utilization at different sink tissues [113]. Most research has documented that
most drought-induced sugar metabolism and phloem loading alters carbohydrate levels
in leaves at different plant developmental stages [140,141]. Plants subjected to drought
stress usually have accumulated soluble sugars, including sucrose, stored in their source
leaves (Figure 3). The accumulation of this stored sucrose in the source leaves act as an
imperative energy derivative strategy which improves plant tolerance to drought stress
condition [142]. Interestingly, sucrose could also be accumulated in the leaves if there is
a low demand for sucrose at the sink cell [136]. Thus, sucrose accumulation in the leaves
could be drought-induced or result from low-sink demand (Figure 3).

Drought stress also stimulates leaf senescence and enhances reserve remobilization,
since these play an integral role in plant development and other fundamental strategies re-
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quired for stress mitigation [143,144]. The concentration of sugar can also influence leaf de-
velopment, with senescence being the fundamental causal signal and the primary substrate
responsible for carbon remobilization to alleviate the drought-stress effect [145]. Trans-
genic tomato plants overexpressing Arabidopsis hexokinase (HXK) exhibit increased sugar
contents, which suppresses photosynthetic activity and increases leaf senescence [146].
Meanwhile, drought-induced leaf senescence promotes the redistribution of assimilates
to developing grains and increases rice grain-filling rate [147]. For instance, water deficit
during grain-filling decreases seed size in soybean due to the reduction in the period of
grain-filling [148,149]. Seed growth anchors majorly on the amount of assimilate supplied
from the maternal plant (source activity) and the assimilate demand within the embryonic
tissues (sink activity), indicating the pivotal role of both source and sink activity in enhanc-
ing seed growth under a drought condition. Thus, Westgate et al. [148] hypothesized that a
rapid reduction of sucrose within the embryo depicts source limitation, whereas a delay in
sucrose uptake connotes sink limitation. Despite the reduction in sucrose concentration
caused by water deficit, the dry weight of the seed increases at or close to the control rate,
thereby triggering the remobilization of reserve carbohydrates from all source organs to
improve seed growth [148]. Drought could also impede fruit growth and development
caused by both sink and source limitations (Figure 3) [150]. A well-ripened grape berry
under drought is an excellent example of a sugar sink that exhibits a great yield reduction
while increasing the total sugar content of the remaining berries [64]. The most drought-
sensitive stage is the early developmental stage of grape berry; however, drought has no
effect on sugar accumulation at this stage. This is an indication that sink strength within
each of these berries is determined majorly by sink activity, rather than the berry size
resulting from sugar accumulation [151]. For efficient crop-yield improvement, an in-depth
understanding of the effect of drought on sugar accumulation at that early developmental
stage (crucial stage) is required.

7.5. Effects of Nutrient Availability

Humans respond to nutrient deficiency, becoming malnourished under such condi-
tions. Plants are not left out of this; any shortage in nutrient supply can dramatically affect
resource allocation, resulting in stunted growth and severe yield loss (Figure 3). The effects
of nutrient starvation on long-distance transport and assimilate allocation within plant tis-
sues have been extensively studied [152]. Hu et al. [153] suggested that nutrient starvation
can greatly influence the distribution of photo-assimilates directly through phloem loading
and transport, or indirectly by reducing sink demand. Hossain et al. [154] also reported
that the supply or deprivation of macronutrients affects the root-to-shoot partitioning of
dry matter, especially in higher plants. All these findings point toward the imperative
role of mineral nutrients in biomass reallocation and crop-yield improvement. Nutrient
imbalance affects photosynthetic activity and carbohydrate accumulation in the leaves and
root, and alters the shoot-to-root biomass ratio (Figure 3).

The efficient use of nitrogen (N) has been a bottleneck affecting global agricultural
systems. N deficiency drastically reduces the photosynthetic rate, the number of flowers,
and crop yields due to the decrease in the amount of RuBisCO protein and activity [155,156].
Roots subjected to N deficiency accumulate more photosynthetic products such as sucrose
and sorbitol. Thus, unloading of photosynthates to the roots primarily serves as an energy
source and signal molecule involved in root growth, thereby increasing the root-to-shoot
biomass ratio [155]. Increased root carbon boosts the chances of the root to forage for more
N in the soil or nutrient solution, indicating the relationship between the signaling roles of
sugar and nitrate (NO3

−) in improving shoot and root growth. However, plants subjected
to low N concentration exhibit a reduced growth rate due to shortage in the supply of amino
acid pool needed to sustain protein synthesis essential for the formation of new tissues.
As such, the starch content in the leaves increases significantly. However, the mechanism
behind this sugar accumulation in response to the deficit is yet to be clarified. Taken
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together, N-deficiency could result in biomass reduction, starch accumulation in the leaves,
and greater carbon reallocation to the root, leading to increased root-over-shoot growth.

On the other hand, excessive N supply is mainly characterized by a wide range of
ammonium (NH4

+) toxicity symptoms, including ion imbalance, leaf chlorosis, pH regu-
lation disorder, and physiological metabolic disorder [157]. The excessive N-replete also
affects the net carbon assimilation rate via its effects on the photosynthetic component [158].
Studies have also reported that excessive N supply reduces the root carbon by diverting
unassimilated NO3

− acropetally back to the shoot via xylem to promote shoot develop-
ment, thus retaining more photosynthetic carbon in the shoot [159,160]. The development
in the shoot organ only stimulates vegetative growth, reducing the number of flowers and
fruit yield. This suggests that a balanced distribution of sucrose between the source leaves
and flowers might act as major yield-determinant factors [158], since the flowering process
depends on sucrose supply. In contrast to the findings regarding lower root:shoot ratio, a
higher root:shoot ratio was observed under excessive NH4

+ compared with NO3
− in to-

bacco [161] and cucumber [162]. The shift in biomass partitioning favoring the root implied
accelerated phloem transport of assimilates to the root under NH4

+ nutrition. The dynamic
changes in root:shoot biomass ratio observed in most of these plant species resulted from
the alteration in carbon partitioning between the root and shoot when different N rates
were applied.

Besides nitrogen, phosphorus (P) is the second macronutrient required for plant
growth and yield. P deficit directly affects photosynthesis due to the inorganic phosphate
(Pi) availability in the chloroplast, resulting in reduced carbon assimilation in the leaves.
Similar to N deficiency, phosphorus limitation induces carbohydrate accumulation, increas-
ing the root:shoot ratio. Sucrose transport across the phloem is often stable and sometimes
increases during the early phosphorus-deficit phases [163]. The significance of sucrose
transport in P-deficiency signaling has been clearly demonstrated in white lupin [164]. Liu
and colleagues argued that the expression of white lupin phosphate transporter, LaPTI,
and a secreted acid phosphatase gene, LaSAP1, responsible for phosphate acquisition, is
rapidly induced by phosphate deficit. Phosphate-deficient plants were then treated by
stem-girdling to hinder shoot–root sucrose transport, but no induction of either LaPT1
or LaSAP was observed. As such, the amount of sucrose in the leaf translocated to the
roots was reduced by 95% in stem-girdled plants, indicating the importance of sucrose
transport in plants subjected to phosphate-starved condition. However, the response of
nitrogen (N) and phosphorus (P) deficiency seems similar due to the starch accumulation
in the leaves and carbon sequestration in the root, increasing the root-to-shoot biomass
ratio. However, N and P limitations are shaped differently in response to plant growth,
since both macronutrients perform different functions in the machinery of plant energy
metabolism, photosynthesis, and respiration [165].

Potassium (K+) is another macronutrient whose availability also affects the source-
to-sink relationship. Potassium deficiency reduces the photosynthetic rate and plant
growth due to the sucrose sequestration in the leaves [166,167]. One would think that
increased sugar concentration in the leaves could enhance root sugar content; instead,
root sugar and growth are disrupted, since sugar translocation is halted due to higher
sugar content in the leaves. Hence, sucrose and starch concentrations in K-depleted plant
roots are significantly reduced compared with the K-repleted counterpart [166]. A good
explanation for this is that the reduction in sucrose exported to the K-deficient root is
attributed to the changes in the concentration of K+, which could affect phloem-loading of
sucrose [168]. A member of Arabidopsis potassium-transporter family, AKT2/3, has been
identified as the photosynthate-induced phloem potassium channel, which affects sucrose-
loading and long-distance transport by regulating the activity of sucrose/H+ symporter
via the phloem potential [169,170]. The authors revealed that a significant fraction of net
photosynthetic CO2 leaking out of sieve tubes seemed not to be effectively loaded (retrieval)
into the phloem of the mutant. Hence, akt2/3 exhibits a drastic reduction in the amount
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of sucrose in the phloem sap. These scenarios reduce the root-over-shoot biomass ratio of
K-depleted plants.

Studies have also reported the influence of magnesium (Mg2+) on plant metabolic
processes and reactions, including chlorophyll formation, photo-assimilate distribution,
phloem-loading, photosynthetic carbon fixation, and partitioning [171]. Deficiency in
magnesium increases the concentrations of sugars in leaves and reduces sucrose export to
the root [172,173]. This reduced sucrose transport could either be due to impaired phloem-
loading caused by reduced Mg-ATP availability [174] or by reduced metabolic activities
of sink organs [175]. Hence, a high shoot-to-root biomass ratio is plausible. Although
the allocation of carbon to the youngest leaves appears to be more dominant than to the
root [176,177] yet, higher root-over-shoot growth is observed in certain species subjected
to low Mg condition [177]. As such, Mg starvation reduces the growth of younger leaves
compared with that of the roots. The early accumulation of sugars in Mg-deficient leaves
results in the downregulation of genes encoding the chlorophyll a/b binding protein, Cab2,
which is actively involved in photosynthesis [177]. Another gene encoding companion cell
sucrose/H+ symporter, BvSUT1, expressed at the topmost part of the Mg-deficient beet
leaves, had no effect on phloem-loading [177]. N- and P-starved plants have exhibited
increased carbohydrate transport, but K and Mg deficiency is still exempted [163]. More
studies should be conducted on the underlying mechanisms involved, as this is poorly
understood. These findings depict the influence of mineral nutrient deficiency or supply
on the assimilate distribution within the plant organs.

8. Functional Roles of Sugar Transporters in Mitigating Environmental Stress

Sugar transport plays a pivotal role in the regulation of plant growth and plant
response to environmental stress [64]. Efficient transport of sucrose through the apoplas-
tic pathway in the phloem depends on the involvement of plant sucrose transporters
(SUTs) [74,178]. As discussed earlier, a considerable number of soluble sugars and sucrose-
specific transporters have been identified, including the recently identified family of Sugars
Will Eventually be Exported Transporters (SWEETs). SWEETs are integral membrane pro-
teins characterized by seven α-helical transmembrane (TM) domains and two MtN3/saliva
motifs [179]. The MtN3/Saliva motif is conserved in various organisms, with the proteins
harboring this motif functioning as the sugar transporters [74,180].

SWEETs regulate the redistribution of sucrose to the sink under adverse environ-
mental cues, such as drought [181], cold-temperature stress, and elevated CO2 (Figure 4).
Arabidopsis thaliana subjected to drought stress exhibited increased sucrose transport to the
root when sucrose transporter genes, including AtSWEET11, AtSWEET12, and AtSUC2,
are upregulated (Figure 4) [136,181] to rescue the sucrose lost to the apoplast. Similar
findings revealed that the sucrose transporter gene OsSUT2 was upregulated in the leaves
of rice subjected to drought treatments [182], as enhancing sucrose transport from source
leaves to the sink cells necessitates the cellular energy demands of the plant. More recently,
the sucrose transporter genes GmSUC2, GmSWEET6, and GmSWEET15 were upregulated
in the leaves and roots of soybean seedlings subjected to drought stress, albeit all these
upregulations plummeted under prolonged drought. This is an indication of increased
capacity of sucrose unloading into seeds and activation of sucrose metabolism during the
early seed developmental stage under a drought-stress condition [138]. However, during
late seed-filling stages, basipetal sucrose flow from source leaves to seed decreased, leading
to an impaired supply of seed (sink) metabolic need, and thus reduced seed weight or
yield [142]. Since these transporters trigger sucrose export from source leaves to the root
(sink), especially during the early plant-developmental stage, enhancing sucrose transport
to the root is promising to optimize root development under drought stress [138]. Rooting
depth is an essential trait for determining drought resistance in plants [183,184]. To this
end, identifying sugar-transporter genes that enhance root-tip elongation can also play
an important role in crop-yield improvement. Voothuluru et al. [185] conducted a pro-
teomic analysis on maize root tips subjected to water deficit. The crew [185] indicated a
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strong interaction between ZmSUT2 (localized in the tonoplast) and root elongation, albeit
the functional role of this ZmSUT2 transporter in mitigating drought is still unknown.
Understanding its functional role will provide an insight into its contribution toward
vacuolar-reserve remobilization, since the storage of sugars in the vacuole is imperative for
osmotic adjustment under stressed conditions [186,187].
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SWEETs also enhance cold tolerance in the tea plant. Wang et al. [188] demonstrated
that the increased tolerance of the tea plant (Camellia sinensis) to cold in CsSWEET16-
overexpressing (OE) lines were due to the combination of different levels of modified
sugars. They affirmed that overexpressing CsSWEET16 in atsweet16-1 rescued the high
fructose content in the mutant. Similar findings obtained from AtSWEET16 explained
the function of CsSWEET16 in altering plant fructose content with an extended effect
on glucose and other soluble sugar contents to improve plant tolerance to cold [189].
Under extremes of low temperature (cold), CsSWEET16 OE lines exhibit reduced fructose
accumulation in tea leaves, an indication that CsSWEET16 participates in fructose export
out of the vacuole. The reduced fructose content under such conditions could have been
due to feedback regulation of sugar metabolism, which might affect glucose and other
carbohydrates associated with cold tolerance. This finding suggests the contribution of
CsSWEET16 to sugar compartmentation across the vacuole and its function in inducing
cold tolerance in tea plants [188]. Thus, manipulating these sugar-transporter genes could
regulate sugar levels and ultimately stimulate stress tolerance in transgenic plants.

The potential roles of sucrose-transporter genes OsSUT1 and OsSUT2 in photosyn-
thesis and crop-yield improvement was investigated in rice cultivar subjected to elevated
CO2 concentration [190]. Rice cultivars that respond poorly to high CO2 exhibits reduced
photosynthetic capacity under elevated CO2. The decline in photosynthetic capacity could
be strongly associated with the accumulation of soluble sugars. For these cultivars (with
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poor response to additional CO2), increased sink relative to the source strength did not
affect photosynthesis. No observed change was detected even with the expression of
OsSUT1 or OsSUT2. Contrary to this (poor response cultivars), no such increase in soluble
sugars or decline in photosynthesis was observed with “strong” cultivars; instead, elevated
CO2 increased the expression of the sucrose transporters (OsSUT1 and OsSUT2). It can be
inferred from the study that OsSUT1 and OsSUT2 expression may be strongly associated
with the improvement of photosynthetic capacity in leaf during the grain-filling stage and
ultimately increase the yield of rice subjected to high atmospheric CO2 [190]. Although
researchers have focused more on the influence of environmental cues on the source–sink
balance, information on how these stressors affect the activities of sugar transporters and
their regulation in mitigating environmental stress is still vague.

9. Integrated Approaches to Crop-Yield Improvement

Significant crop-yield-improvement potential has contributed immensely to a rising
food demand over the past few decades, consistently keeping pace with rising global
demand. The history of crop improvements has been a progressive one, from first- to
fourth-generation breeding [191–195]. In the 21st century, the world operates in the fourth
generation of breeding. It involves both genome editing and precision breeding, which re-
quires a genetic-engineering technique or gene function to determine crop yields. However,
a deep understanding of how this generation of breeding is integrated into the source–sink
balance within the plant is yet to be clarified.

Photosynthesis has been relied upon for yield improvement in recent years. Linking
specific photosynthetic steps to crop yields seems quite tricky at the source level [192,196].
As such, Wu et al. [197] launched a cross-scale modeling capacity that linked leaf photosyn-
thesis to crop yield in a manner that addresses the conflicting factor in wheat and sorghum
raised in water-limiting and water-sufficient conditions. The model was validated using
canopy responses and data on crop biomass and yield for wheat and sorghum from various
experimental fields. The three major targets included in the model projected for improving
crop yields in C3 (wheat), and C4 (sorghum) photosynthesis include: (i) mesophyll conduc-
tance for CO2, (ii) electron-transport capacity, and (iii) the maximum carboxylation rate of
RuBisCO. This model revealed that a boost in each of these components by approximately
20% would individually result in little to no improvement in crop yields. However, a
synergetic increase in all three components together boosts the yield of sorghum and wheat
to 9.2% and 12.2% under a water-sufficient condition, and with more modest improvement
when water is deficient. In recent studies, overexpressing RuBisCO in maize increases the
rate of maximal CO2 assimilation by 15%, increasing fresh weight. The authors indicated
that while no growth disruption was observed under optimal conditions, the overex-
pressing RuBisCO transgenes could adversely affect yield due to the increased metabolic
load [198]. Regulation of stomatal function at the source level has also pointed out some
exciting potentials for crop-yield improvement, particularly as stomata offer a promising
improvement through water-use efficiency, which is critical to crop-yield improvement.
Several other factors improve photosynthetic carbon acquisition and yield at the source
level [199,200]. However, whether carbon utilization or limitation in source and sink organs
are responsible for crop yields has been a confounding issue over several decades.

Studies have been conducted on the activity of sucrose transport in regulating the
source–sink relationship, yet trivial progress has been made in relating this to crop-yield
improvements [201]. One of the holistic approaches to improve the yield of crops that
use apoplastic phloem-loading would be to uncouple phloem-loading from the sucrose-
sensing system, thereby regulating the partitioning of assimilates. There are two rationales
behind this approach. The first is the maintenance of constant rates of sucrose removal
from the mesophyll by the expression of the sucrose symporter when there is a decline
in phloem-loading, and sink demand becomes low. However, the photosynthetic rate
still remains high, even on sucrose removal from the mesophyll cells. Secondly, sugar
accumulation can trigger leaf senescence [202]. If sugar accumulation induces senescence,
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the activity of constitutive phloem-loading would reduce the sugar level and subsequently
delay senescence. When a reduction in sink demand suppresses photosynthetic rates, and
the delay in leaf senescence contributes to a net increase in carboxylation, then maintaining
leaf photosynthetic activity depends on the constitutive expression of the symporter. Hence,
a net yield increase is realized when this is adopted over a growing season.

Another good approach to yield improvement is overexpressing sucrose transporters
in sink cells, which increases the photosynthetic rate and enhances assimilate transport and
sink demand. Potato sucrose symporter StSUT1, over-expressed in the storage parenchyma
cells of developing pea seeds under the control of a vicilin promoter, resulted in enhanced
sucrose influx into cotyledons, as well as increased growth rates of the cotyledon [203].
This result demonstrates that engineering a specific promoter for enhanced sucrose trans-
port is quite feasible and can influence the cotyledon growth rate. A related experiment
was conducted by Weichert et al. [204], using a Horedin endosperm-specific promoter to
overexpress a barley symporter (Hordeum vulgare) in grain. Increased grain-protein content
and decreased overall yield were observed, although not to a statistically significant level,
probably because the experiment was not conducted under a controlled condition. It is
worth noting that these authors reported notable changes in gene-expression patterns
related to carbon metabolism and amino acid biosynthesis, indicating the abundance of
carbon and nitrogen depletion. To this end, it can be inferred that the influence of transgenic
manipulation of sucrose transport on multiple metabolic pathways could be a significant
means of improving yield.

Further studies have described three major C and N metabolic enzymes, which include
aspartate aminotransferase (GmAspAT), phosphoenolpyruvate carboxylase (ZmPepcase), and glu-
tamine synthetase (NtGS), as the best-practice route that alters source–sink interactions [205]
when heterologously coexpressed. These aforementioned practice routes improve C and N
metabolism, shoot biomass, and seed yield. Even so, the best yield-improvement strategies
reported so far have not met the projected need to feed our ever-growing populace by
2050. A significant yield-improvement strategy would be through a series of changes
rendered through multigene transformation [206]. An example is a transgenic approach
used in alleviating vitamin deficiency affecting up to half of the population in developing
countries [206]. Several ongoing projects are currently running this multigene stacking
system (employing the Golden Gate toolbox) [18,206].

Two recently developed approaches seem promising regarding our current under-
standing about the relationship between photosynthesis, plant development, C and N
transport, and metabolism. The first is the characterization of transcriptional and metabolic
changes to enhance our understanding of the mechanism underlying disrupted source–sink
relationships in mutants. This would be a prerequisite to allowing rational engineering
of crop yields. The second approach is the modeling strategies and their potential im-
pact on the whole-plant scale, which represents an important testing ground for combined
metabolic interventions [8]. In the future, the widespread use of this model seems pragmatic
because an overview of the whole-plant physiology will be provided. Other approaches
are the adoption of new tools based on hybrid diploid breeding [207,208], speed-breeding
techniques [209], and the promising potentials offered by CRISPR [210].

10. Conclusions

Plant growth and development are greatly enhanced when the sucrose in the source
organ balances with the metabolic needs of the heterotrophic sink. Thus, the strategies
involved in improving photosynthetic carbon assimilation for sucrose synthesis and su-
crose transport to and its utilization at the sink level become imperative. However, even
when these processes involved in sucrose utilization for improved seed (sink) yield are
in place, disruptions resulting from environmental cues might emerge. Several questions
have arisen as to how photosynthetic activity in both C3 and C4 crops could be further
improved or maximized. Such rising issues include: (i) whether evolution has taken over
the photosynthetic role in every ecological niche, (ii) whether plants can maximize these
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ever-increasing CO2 concentrations, and (iii) whether breeding programs have influenced
the variation between crops for agro-ecosystems and their wild progenitors. All of these
questions regarding the potential to fully optimize photosynthesis most likely are still
unanswered. In a world of increasing atmospheric carbon-dioxide that is accompanied by
environmental deterioration, enhancing sucrose distribution and utilization at the sink is a
crucial step in optimizing photosynthesis and maximizing crop yields.

Dynamic regulatory processes mediate the complex interaction of source and sink
activity between different organs in the vascular system of the plant. Phloem transport
of sugar is closely regulated and highly sensitive to fluctuations in plant environmental
cues, resulting in appreciable alterations in the quota of carbon allocated to the sinks.
However, there is sparse information on the impact of environmental stress on the phloem
transport of photo-assimilates from source to sink organs. Despite the significant roles of
sugar transporter in the translocation of sugar within the plants, little is known about how
sugar transporter operates under stressed conditions at the molecular level. This is mainly
because most studies are mostly tailored toward the physiological responses, rather than
the molecular responses, of sugar transporters to these stress factors. Thus, the mechanisms
and signals involved in the regulation of source-to-sink activity and their response to the
environment should be explored. Knowledge of these will better facilitate further research
on the improvement of crop yields, with special focus on sucrose synthesis, transport, and
utilization at the sink and underlying environmental cues affecting these processes.
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