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Abstract
Purpose: Selecting patients who will benefit from proton therapy is laborious and subjective. We demonstrate a novel automated
solution for creating high-quality knowledge-based plans (KBPs) using proton and photon beams to identify patients for proton
treatment based on their normal tissue complication probabilities (NTCP).
Methods and Materials: Two previously validated RapidPlan PT models for locally advanced head and neck cancer were used in
combination with scripting to automatically create proton and photon KBPs for 72 patients with recent oropharynx cancer. NTCPs were
calculated for each patient based on the KBPs, and patient selection was simulated according to the current Dutch national protocol.
Results: The photon/proton KBP exhibited good correlation between predicted and achieved organ-at-risk mean doses, with a ≤5 Gy
difference in 208/196 out of 215 structures relevant for the head and neck cancer NTCP model. The proton KBPs yielded on average
7.1/6.1/7.6 Gy lower dose to salivary/swallowing structures/oral cavity than the photon KBPs. This reduced average grade 2/3
dysphagia and xerostomia by 7.1/3.3 and 5.5/2.0 percentage points, resulting in 16 of 72 patients (22%) being indicated for proton
treatment. The entire automated process took <30 minutes per patient.
Conclusions: Automated support for decision making using KBP is feasible and fast. The planning solution has potential to speed up
the planning and patient-selection process significantly without major compromises to the plan quality.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Introduction
Recent increases in proton treatment capacity and
advancement in radiation therapy treatment modalities
have made it possible to treat more patients with proton
therapy.1 However, some patients may not receive addi-
tional or sufficient benefit from proton over conventional
treatment regarding probability of tumor control or risk
r
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of toxicity. This, together with the higher cost of treat-
ment and limited capacity of the proton centers, necessi-
tates patient selection.2-4

One objective way to select the patients who can bene-
fit most from proton therapy is by using a model-based
indication methodology. The methodology could be based
on the estimated reduction in normal-tissue complication
probability (NTCP).2-6 This selection process necessitates
creation of high-quality photon and proton treatment
plans for individual patients, which can be laborious, time
consuming, and prone to bias. Because the plan quality
may vary among planners, institutions, and experience
per modality, comparison of proton and photon modali-
ties can become unreliable.7-9

One solution to reduce the plan quality variations is to
automate or semiautomate the planning process, for example
by using a knowledge-based planning solution. Previous
studies have shown such solutions to significantly speed up
the planning process and to yield high-quality photon and
proton treatment plans, provided that the library of plans
they’re based on is of sufficiently high quality.10-15

In this proof-of-principle study, we investigated if
combining a commercially available knowledge-based
planning solution with task automation tools allows crea-
tion of very efficient semi- or fully automated workflows
for locally advanced head and neck cancer (HNC). This
can aid and drastically speed up the decision-making pro-
cess between photons and protons, and base it on quanti-
tative data. We have further investigated which
proportion of patients with HNC is eligible for proton
therapy according to the current Dutch guidelines5 based
on a large, representative group of patients.
Methods and Materials
We designed a modular automated knowledge-based
treatment planning solution (Fig 1) to support the patient
selection between protons and photons. The system was
implemented using Eclipse Scripting Application Pro-
gramming Interface (Varian Medical Systems, Palo Alto,
CA),16,17 and it is designed to use a fully delineated
patient computed tomography scan and externally
defined plan templates describing the desired treatment
plans as a starting point. The knowledge-based planning
parts of the system are RapidPlan (Varian Medical
Fig. 1 Visualization of the decision support system pipeline. A
ity.
Systems) and RapidPlan for protons (RapidPlan PT).
Both RapidPlan systems use libraries of previously created
treatment plans to construct predictive models for each
organ at risk (OAR) based on the dosimetry and geometry
of the plans, taking into account the physical properties of
the radiation. These models are then used to predict a
range of possible achievable dose-volume histograms
(DVHs) for the OARs for a specific patient, based on their
geometry. The optimization objectives are subsequently
based on the lower DVH prediction range.10,14

The pipeline consists of 4 interlinked modules. Module
1 imports the patient computed tomography and delinea-
tions from a database, reads the plan templates, and uses
these to generate the beam setup for photon and proton
treatment plans. Modules 2 and 3 together apply Rapid-
Plan and RapidPlan PT for OAR DVH prediction, set the
optimization objectives, optimize the plan, and perform
the final dose calculation to generate knowledge-based
plans (KBPs). The final module reads the proton and pho-
ton KBP doses, computes the NTCP values, and indicates
the patient for the preferred treatment modality according
to the Dutch standard. The modular design also allows for
the RapidPlan-generated DVH estimates to be used for
computing the NTCP estimates.
Treatment plans

The plan templates were configured to generate treat-
ment plans in line with the clinical practice at the VU
Medical Center for patients with locally advanced HNC; a
3-field intensity modulated proton therapy (IMPT) plan
with beams at §45° and 180° and a volumetric modulated
arc therapy (VMAT) plan using 2 full arcs and 6 MV pho-
tons. The IMPT plans were created using pencil beam
spot scanning from the ProBeam proton system (Varian
Medical Systems). Each IMPT field included a proximal/
distal/lateral target margin of 2/3/5 mm. The plans used
simultaneous integrated boost technique, delivering 70/
54.25Gy to the boost/elective planning target volumes
(PTVB/PTVE) in 35 fractions. PTVB consisted of the gross
tumor volume, expanded with a 5-mm margin to clinical
target volume (CTV) (edited for anatomic boundaries)
and a 4- to 5-mm PTV margin. PTVE consisted of the
gross tumor volume expanded with a 5- to 10-mm margin
to CTV plus elective nodal CTV, both plus a 4- to 5-mm
PTV margin, minus PTVB. An additional 5-mm wide
bbreviation: NTCP = normal tissue complication probabil-



Fig. 2 Decision process for selecting patients for photon/proton treatment and the number of patients indicated at each
decision node.5 Delta indicates the difference between the NTCPs of the 2 plans (proton plan NTCP minus photon plan
NTCP). Abbreviation: NTCP = normal tissue complication probability.
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ring (PTVO) around PTVB was subtracted from PTVE to
allow for a steep dose fall-off in the planning process.
Finally, the PTVs were cropped to 5 mm within the body
surface, and their union (PTVCOMP) was used as the field
target for all fields. Planning aim was to cover ≥98% of
boost and elective volumes with ≥95% of the dose (V95%
≥ 98%). Dose objectives for OAR were maximum dose of
50 Gy to spinal cord expanded with a 3-mm margin and
54 Gy to brain stem expanded with a 3-mm margin but
preferably lower; and as low as possible mean dose to
both parotid glands, both submandibular glands, oral cav-
ity (OC), and individually contoured swallowing
muscles.18

RapidPlan models were trained on 112 clinical HNC 2-
arc RapidArc photon and 50 manually planned 3-field
IMPT proton plans, respectively. Both models are based on
libraries of larynx, pharynx, hypopharynx, and oropharynx
cancer plans, and were previously proven to be of high
quality.14,15 The models aimed to spare the mean dose to all
OARs without specific aim to reduce the NTCP, and they
focused on sparing the salivary glands, while the swallowing
structures had slightly lower priority.19 The photon library
plans were made using an in-house developed automated
interactive optimization20 and the resulting plan quality of
the model (with more or fewer library plans) was validated
earlier.21,22 The photon model was based on plans made
only briefly after introduction of OC sparing, when the OC
had a lower priority than the salivary glands. The contempo-
rary clinical photon treatment plans aim to spare OC more
aggressively than what was done with the plans in the pho-
ton model library. We therefore reduced the predicted OC
mean dose by 5 Gy and used a 20% higher priority than in
the earlier models. As a comparison, plans were also made
using the original photon model.

The proton KBP optimization was performed using the
Varian Eclipse nonlinear universal proton optimizer
16.0.2 with nonrobust multifield optimization, followed
by dose calculation using proton convolution superposi-
tion algorithm 16.0.2. Possible range uncertainties were
not taken into account and plans were optimized by
defining dose aims for the same PTV structures as used
for the photon plans. The photon KBPs were optimized
using photon optimizer 16.0.2, and the dose was calcu-
lated with Acuros XB 16.0.2. Furthermore, a subsequent
“continue optimization” with increased photon PTV
objective priorities was performed to improve the PTV
dose homogeneity and coverage. The plans were normal-
ized to PTVB V95% = 98%. Examples of the proton beam
arrangement and dose distributions for both proton and
photon KBPs are provided in Supplementary Material A,
Figures A1−A3.
NTCP models and treatment modality
indication

For the auto-generated KBPs, NTCP for grade 2 and 3
xerostomia and swallowing dysfunction at 6 months after
the treatment were calculated using the models adopted
by the Dutch radiation oncology society.5 The results
were compared against the treatment modality selection
flowchart (Fig 2).

NTCP values for each endpoint were evaluated for
each patient as NTCP ¼ 1

1 þ e�S with linear predictor (S)
defined as S ¼ b0 þ Siðbi ¢ xiÞ; where b0 is a model con-
stant, bi are variable-wise coefficients, and xi are the vari-
ables that may be continuous (dose metrics) or
categorical (patient demographic data).5 The OAR dose
metrics involved in the different NTCPs are the mean
doses to both parotid glands, submandibular glands, OC,
and pharyngeal constrictor muscles. Details of the model
parameters and coefficient values are presented in Supple-
mentary Material B, Table B1. According to the Dutch
model, proton treatment is indicated if there is at least
10%/5% lower NTCP for grade 2/3 complications in the
proton plans, or if the sum of both grade 2/3 NTCPs is
15%/7.5% lower for proton plans.

We investigated which fraction of patients would be eligible
for proton therapy using the original RapidPlan models and
the model with the adapted OC objectives. In addition, we also
studied whether only the RapidPlan-generated DVH estimates
can be used for evaluating the NTCP values by comparing the
calculated KBP results to ones acquired by using the OAR
mean doses predicted by RapidPlan. The middle of the DVH-
prediction range was used to represent the predicted mean
dose. Although on average the achievedmean doses were simi-
lar to the predicted ones, their difference could be dose depen-
dent. For that reason, a dose-dependent correction factor was
calculated from the difference between predicted and achieved
OAR mean doses, and it was applied to both photon and



Fig. 3 Achieved versus predicted organ-at-risk mean doses for all patients. Identity line shown (black line) along with lin-
ear fit (green line). Abbreviation: KBP = knowledge-based plan.
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proton DVH predictions. The treatment modality selection
was simulated using the predictions for both plans and with
predictions for protons andKBP for photons.
Evaluation

A group of 72 subsequent patients with locally advanced
oropharynx cancer, not included in either of the RapidPlan
models, was chosen arbitrarily for the evaluation. All patients
signed an informed consent before starting therapy that their
data could be used within the department’s research program.
Themedical ethics committee of AmsterdamUniversityMedi-
cal Centers exempted this work from requiring their official
approval. The patients had been treated with 2-arc VMAT
between 2016 and 2019 using the same fractionation scheme as
for themodel patients.

Photon and proton KBPs and an NTCP comparison
were created for each patient of the evaluation group, and
none of the KBPs were adjusted manually. For the NTCP
computations, all patients were assumed to be free of any
pre-existing conditions affecting the model baseline values.

A small number of patient OAR delineations did not
include all structures required for the calculation of
NTCP values, often when the respective OAR was
completely within the PTV. The contributions of those
structures to the respective NTCP values were omitted
from the comparisons, although we later verified if the
photon-proton selection would change if we assumed
they had received the average PTV dose.
Results
The time to automatically create both plans and per-
form the selection was <30 minutes per patient.
Model-based DVH estimates for both proton and pho-
ton KBPs showed good correlation (R2 of 0.98 and 0.97,
respectively) between the predicted and achieved OAR
mean doses (Fig 3), with protons predicting slightly
higher and photons slightly lower mean doses than what
was eventually achieved. Altogether, the differences in
proton/photon predicted and achieved OAR mean doses
were ≤5 Gy for 72/67 out of 72 combined salivary struc-
tures, 65/62 out of 71 combined swallowing structures,
and 71/67 out of 72 OC structures. The proton KBPs
showed overall lower achieved OAR mean doses (Fig 4),
with an average of 7.1/6.1/7.6 Gy reduction in salivary/
swallowing structures/OC. The salivary/swallowing struc-
tures/OC had substantial (≥5 Gy) mean dose differences
in favor of protons in 64/42/56 out of 72/71/72 cases.

The proton/photon NTCP values (Fig 5) mirrored the
OAR mean dose differences, with the average grade 2 dys-
phagia and xerostomia being 15.9/23.0 and 35.6/41.5 per-
centage points, respectively. The average grade 3
dysphagia and xerostomia were 4.7/8.0 and 9.5/11.5 per-
centage points, respectively.

The NTCP values indicated 16 out of the 72 patients
for proton therapy (Fig 2), following the Dutch guidelines.
Our pipeline deviates from the suggested process by first
creating both plans and then using the photon NTCPs to
see whether the comparison is warranted. For this cohort,
all but 1 patient were indicated for the NTCP comparison
part of the decision-making workflow. The patients were
finally indicated for proton therapy owing to reduced
probability of both grade 2 and 3 dysphagia (4 and 3
patients, respectively) and owing to the reduced combined
probability of grade 2 dysphagia and xerostomia (9
patients). The selection results did not change depending
on how the missing OARs were handled.

If patient selection was based on the original Rapid-
Plan PT model, without stronger OC sparing, 40 out of 72



Fig. 4 Box-whisker plots for all 72 patients indicating the achieved proton and photon plan organ-at-risk mean doses
(top) and their differences (bottom, proton plan dose minus photon plan dose). Dark line in the middle of the box indi-
cates the median, the top/bottom of the box indicates 75th/25th percentile, and the whiskers indicate the range of the
data. Abbreviation: PCM =Pharyngeal Constrictor Muscle.
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patients would have qualified for proton therapy. The
extra OC objective reduced the OC mean dose by 5.0 Gy,
while the dose to parotid glands increased by 0.8 Gy on
average.

The proton/photon prediction ranges for the grade 2
and 3 endpoints have variances of 1.5/2.2 and 0.85/0.59
percentage points, respectively (Fig 6). For DNTCP, the
variances accumulate, yielding 2.9/2.1 percentage points
for grade 2/3 dysphagia and xerostomia and 5.1/4.2 per-
centage points for the sum of the 2. Based on the NTCP
predictions, 13/9 and 47/3 patients were indicated cor-
rectly/incorrectly to proton and photon treatment,
Fig. 5 Achieved proton and photon plan NTCP values
(top) and their difference (proton plan NTCP minus pho-
ton plan NTCP) (bottom). Abbreviation: NTCP = normal
tissue complication probability.
respectively. If the DVH estimates were used only for the
proton plan while the actual DVHs from KBPs were used
for the photon plan, the number of patients indicated
erroneously for proton therapy dropped to 6.
Discussion
In this proof-of-principle study, we demonstrated that
commercially available scripting and knowledge-based
planning tools can be used to create a fast, fully automated
decision support pipeline for the selection between pho-
ton and proton treatments for HNC. Whereas conven-
tional treatment modality comparisons require
burdensome creation of patient-specific plans, the sug-
gested pipeline can produce them autonomously, which
has potential to drastically improve the planning effi-
ciency and reduce variations. As the quality of the pro-
duced treatment plans depends heavily on the quality of
the model library plans and the beam arrangement, man-
ual review and occasional adjustments of the KBPs
remains necessary.

We have demonstrated the feasibility of RapidPlan for
decision making between protons and photons, but at
that time we only had access to a photon RapidPlan algo-
rithm.23 Now, the photon and proton plans have been
made using their proper RapidPlan algorithms, and for a
large, representable group of patients. The OAR mean-
dose predictions showed a good degree of correlation
with the achieved KBP dose distributions for both photon
and proton plans. The dose prediction-based patient
selection managed to indicate 13 out of the 16 KBP-indi-
cated patients (81%) for proton therapy. The accuracy of



Fig. 6 Achieved versus predicted NTCP values for all patients (top) and achieved versus predicted absolute differences in
the patient-wise NTCP values (proton plan minus photon plan) (bottom). The decision threshold levels of ΔNTCP are
marked in green for xerostomia and dysphagia. The triangles and dashed horizontal/vertical lines in the lower images indi-
cate the sum of the 2 endpoints and the respective decision thresholds. Abbreviations: KBP = knowledge-based plan;
NTCP = normal tissue complication probability.
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the predictions was, however, insufficient to be solely used
for the patient selection process, as even after applying the
correction factor, 9 and 3 patients were falsely indicated to
proton and photon treatment, respectively. A better result
was achieved if the RapidPlan-estimates were used only
for the proton plan, leading to 6 patients being falsely
indicated to protons, as using estimates only for 1 of the 2
plans drastically reduces the accumulation of errors in the
DNTCP. The error accumulation is a major hindrance in
using the RapidPlan predictions for the patient selection,
but we found minor benefit in using RapidPlan prediction
range instead of the predicted mean dose (Supplementary
Material C).

To place this research in context, the first experience
with model-based selection of patients with HNC for
proton therapy in the Netherlands was recently
reported,6 concluding the model-based selection to be
clinically feasible, albeit resource intensive. They found a
larger portion of patients (35% as opposed to our 22%) to
qualify for protons, and both studies found dysphagia-
related toxicities to be the more common reason for
patients being indicated for protons. The results from
their study are, however, not directly comparable with
ours due to numerous differences in methodology,
including them using the Dutch NTCP model from year
2017, proton plans with 6 or more beams, and the actual
baseline conditions of the patients, while we used the
2019 version of the NTCP model, 3-field proton plans,
and assumed all patients to be free of baseline conditions.
Furthermore, our research illustrates that when the OC
was spared less intensively, the number of patients
selected for protons increased to 56%, demonstrating the
necessity to aim for optimal OAR sparing in the photon
plans.
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Kouwenberg et al24 have recently demonstrated how
their in-house automatic multicriterial optimizer together
with Bayes classification on preselecting patients for plan
comparison reduced the number of unnecessary manually
planned IMPTs. Although our auto-generated KBPs are
intended to offer the user clinically relevant treatment
plans with both modalities to aid the planner in about 30
minutes, it would be of interest to see how the auto-gener-
ated IMPTs perform in a similar preselection study, as the
entire IMPT-portion of the pipeline takes about 10
minutes. Also, others have suggested different approaches
for planning automation and decision support,25-27 but to
our knowledge we are the first to combine plan creation,
knowledge-based planning, and decision support in a sin-
gle pipeline.

The mean NTCP values achieved with the OC-sparing
photon plans in this study were 1% to 10% lower than
their reported prevalence.5 The lower prevalence of xero-
stomia is partially explained by the reduced dose to OC,
but the majority of differences are most probably due to
the favorable baseline assumptions, as attributing the
cohort with baseline dysphagia or xerostomia can
increase the respective NTCP by at least 1% to 10%,
depending on what portion of the patients the conditions
are assigned to. We have contoured the OC not according
to Brouwer et al,18 which should be used in the NTCP,
but slightly larger, including the buccal mucosa and part
of the lips. The OC dose according to Brouwer would
therefore be a bit higher for both the proton and photon
plans, and could lead to more patients being indicated
for protons.

The major limitations of this study were the lack of
robust optimization, lack of externally validated Rapid-
Plan models, a proton model that is based on 3 fixed
beam directions, and the models not being optimized for
the lowest NTCP. Furthermore, the proton beam angles
were not adapted in case of dental amalgam presence.
The robustness of the model for gantry angle changes
>30° has not yet been evaluated. On the other hand,
robust optimization of photon plans and planning with
more than 2 arcs may also allow for lower OAR doses in
the VMAT plans. The combinations make it hard to pre-
dict what could happen to the NTCP comparison. The
plans created as a part of this study were not robustly
optimized, but preliminary tests have shown that Rapid-
Plan PT models based on nonrobustly optimized plans
can be used for robust optimization,15 and robust optimi-
zation and assessment of robustness criteria would be
valuable additions to the automated pipeline.28 The Rap-
idPlan PT model has been compared in 3 renowned pro-
ton centers,15 but it has not been compared with proton
plans from centers in the Netherlands, nor has the photon
RapidPlan model been externally validated. In addition,
instead of being optimized for the lowest NTCP, both
models are based on mean dose reduction of a large quan-
tity of individual OARs; using NTCP-based optimization
could change the priorities between certain OARs and
lead to reduced NTCP.

Regarding the clinical applicability of the approach, the
automated planning process, as well as the created photon
and proton KBPs, were representative of the current clini-
cal approach for HNC planning, and in practice we have
found the need for manual adapting of the KBPs rare.
While the 3-field proton KBPs used here may be subopti-
mal, as discussed previously, previous studies have found
minor to no benefit in OAR sparing by using 5 or 9 fields
instead of 3.29,30 Additionally, in a previous study, the
KBPs were found to compare equally or outperform man-
ual plans, although for a few patients the manual plans
outperformed the KBP slightly.15

The applicability of the NTCP comparison is limited in
cases where not all OARs required for the calculation of
NTCP values are delineated, which may be the case, for
example, when the OAR is within PTV. In the 72-patient
cohort used in this study, ipsilateral/both submandibular
gland contours were missing for 6/5 patients and pharyn-
geal constrictor muscle contours for 1 patient. For this
cohort, we found there to be no difference in photon-pro-
ton selection results depending on whether the missing
OARs were ignored or assigned average PTV dose.

The presented pipeline is versatile and can be adapted
to other treatment sites. Each module can also be run
individually, allowing for manual review and adjustments,
if needed. The level of automation could be further
increased, for example, by adding a deep-learning seg-
mentation solution to it.31 Additionally, the pipeline could
greatly benefit from beam angle optimization, field-spe-
cific targets, and geometric outlier detection. Although
different approaches for beam angle optimization have
been suggested,32,33 the applicability of KBP in cases
where beam angles differ from the ones used in the model
library is not yet well understood and would be of interest
for future research. Depending on the shape and location
of the PTV, certain cases would benefit from using field-
specific targets instead of composite-PTV. Likewise, auto-
matically detecting and removing the geometric outliers
could increase the DVH estimate and optimization objec-
tive quality.

Although we used analytical algorithms for optimiza-
tion and dose calculation in this study, the pipeline is
algorithm agnostic, and, for example, the used dose calcu-
lation algorithm could be replaced by a Monte Carlo
(MC). MC dose calculations, however, do not typically
change the shape of the dose distribution, but the DVH
can be slightly different from a DVH based on another
algorithm.34 Therefore, the most optimal would be to
have a plan library for which the dose calculation was
done using MC, and an MC dose calculation in the opti-
mizer. In case MC was used only for the final dose calcu-
lation but not in the optimizer, there would most likely be
a discrepancy between the optimizer dose at end optimi-
zation and final dose calculation.
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Conclusion
The degree of automation provided by scripting and
knowledge-based planning presents a grand opportunity
to automate significant portions of the treatment planning
process. This can aid the work of more established radia-
tion therapy institutions, as well as bring in-house deci-
sion support within the grasp of less experienced facilities.
The knowledge-based predictions could be selectively
used to study the need for creating comparative proton
plans and the robustness of the prediction-based modality
selections, and they can help to better select the patients
who would benefit from proton therapy.
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