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Abstract

In this article, we described a new database framework to perform integrative “gene-set, net-

work, and pathway analysis” (GNPA). In this framework, we integrated heterogeneous data on

pathways, annotated list, and gene-sets (PAGs) into a PAG electronic repository (PAGER). PAGs

in the PAGER database are organized into P-type, A-type and G-type PAGs with a three-letter-

code standard naming convention. The PAGER database currently compiles 44 313 genes from

5 species including human, 38 663 PAGs, 324 830 gene–gene relationships and two types of

3 174 323 PAG–PAG regulatory relationships—co-membership based and regulatory relation-

ship based. To help users assess each PAG’s biological relevance, we developed a cohesion

measure called Cohesion Coefficient (CoCo), which is capable of disambiguating between bio-

logically significant PAGs and random PAGs with an area-under-curve performance of

0.98. PAGER database was set up to help users to search and retrieve PAGs from its online web

interface. PAGER enable advanced users to build PAG–PAG regulatory networks that provide

complementary biological insights not found in gene set analysis or individual gene network

analysis. We provide a case study using cancer functional genomics data sets to demonstrate

how integrative GNPA help improve network biology data coverage and therefore biological in-

terpretability. The PAGER database can be accessible openly at http://discovery.informatics.

iupui.edu/PAGER/.

Contact: jakechen@iupui.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

To characterize complex patterns of genetic variations or RNA/

protein expressions in surging Omics data sets, bioinformatics

researchers have developed new data analysis approaches—gene-set

analysis (Dinu et al., 2009; Nam and Kim, 2008) and network/

pathway analysis (Wu et al., 2012). When compared with individual

gene-based analysis approaches, “gene-set, network, and pathway

analysis” (GNPA) have the potential advantage of increasing results

reproducibility, model robustness, and data interpretability, while

reducing biases in noisy Omics experimental data (Khatri et al.,

2012). GNPA is essentially an integrative analysis strategy that takes

advantage of a priori data structures acquired from many sources in:

e.g. gene ontology (GO) (Kim et al., 2007), pathways (Luo et al.,

2009), gene/protein mutation or expression signatures (Chuang

et al., 2007; Zhang and Chen, 2013), chemical perturbations (Oprea

et al., 2007), metabolomics signatures (Xia and Wishart, 2010),

curated literature (Araki et al., 2012), computational predictions

(Nam, 2010) or public databases for gene-sets, molecular signatures

and pathway/network modules (Huang et al., 2012). Depending on

the pathway details, these analyses can take as minimal information

as possible, e.g. using gene list alone as in Gene-set Analysis (Dinu

et al., 2009), incorporating gene-set databases with expression rank

information as in Gene Set Enrichment Analysis (Subramania et al.,

2005), or take as much pathway/network interaction detail as pos-

sible, e.g. using pathway reaction/regulation details as in EnrichNet

(Glaab et al., 2012). For biomedical researchers, GNPA can
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significantly enhance their ability to annotate genes from Omics

results (Ganter and Giroux, 2008), interpret heterogeneous genetic

study results (Hale et al., 2012), identify disease subtypes and pro-

gression (Hung, 2013; Zhang and Chen, 2013), select or prioritize

drug targets (Sivachenko and Yuryev, 2007) and understand

biological mechanisms (Chen et al., 2006; Murohashi et al., 2010).

Heterogeneous bioinformatics tools have been developed to

perform different aspects of GNPA Huang da et al., 2009).

Computationally, GNPA can be categorized into over-

representation analysis such as DAVID (Dennis et al., 2003), gene-

set scoring and ranking such as GSEA (Subramania et al., 2005),

multivariate machine learning Wu et al., 2010) and network topo-

logical analysis Martini et al., 2013). Common databases for GNPA

include: manually curated functional or phenotypic databases such

as Online Mendelian Inheritance in Man (OMIM) (Baxevanis,

2012), GAD (Becker et al., 2004)] and GO (Ashburner et al., 2000);

curated signaling and regulatory pathway databases such as

Reactome (Croft et al., 2011) and pathway interaction database

(PID) (Schaefer et al., 2009); comprehensive curated gene signature

database such as GeneSigDB (Culhane et al., 2012) and mSigDB

(Liberzon et al., 2011); or comprehensive integrated knowledge

repositories such as human pathway database (HPD) (Chowbina

et al., 2009) and PAGED (Huang et al., 2012). Recently, multi-scale

GNPA analysis tools such as Bioinformatics Enrichment Tools

(Huang da, et al., 2009), MetaNet (Parikh et al., 2012) and

EnrichNet (Glaab et al., 2012) have also been developed to explore

network topological structures between pathways and gene-sets

using a variety of computational strategies. However, even the most

popular tools such as DAVID and GSEA lack major functionality or

comprehensive data content found in other tools, forcing users to try

out several tools and combining findings manually.

In this work, we address the major challenge of constructing a

comprehensive database infrastructure in performing integrative

GNPA. The theoretical space of gene-sets for a given species with

N genes can be extremely large, i.e. 2N gene-sets. Based on our prac-

tical experience in building comprehensive pathway and gene-set

databases (Chowbina et al., 2009; Huang et al., 2012), different

data sources collected for integrated GNPA are often partially over-

lapping yet complementary to one another. For example,

GeneSigDB and mSigDB, two popular databases for Gene Set

Analysis, have virtually no overlapping gene-sets, in which an over-

lap is defined as two gene-sets sharing >80% genes. KEGG (Ogata,

et al., 1999) is the earliest effort in curating heterogeneous pathway

data sources; however, its coverage in gene-set is missing. GO is

widely used for gene set analysis; however, tools performing

GO-based gene set analysis do not usually perform pathway/net-

work analysis. HPD (Chowbina et al., 2009), PAGED (Huang et al.,

2012) and GeneSetDB (Araki et al., 2012) are among the first at-

tempts to integrate annotated gene lists from heterogeneous sources

into a unified database. Although these databases provide signifi-

cantly higher coverage of gene-sets and other annotated gene list,

these databases lack pathway/network interaction or regulatory re-

lationships details. In addition, increased gene-set coverage gives rise

to gene-set data quality concerns that must be addressed. There is no

report on how a new gene-set submitted from community users, e.g.

from WikiPathways (Pico et al., 2008), should be evaluated for its

quality before a database of gene-set should adopt it for data ana-

lysis. Moreover, there is a rising need to perform integrative network

analysis both within gene-sets and between gene-sets; therefore,

understanding how gene-sets relate to one another to build gene-set

to gene-set relationships has become critical for ongoing integrative

GNPA tools.

Our work has made the following contributions for future

GNPA. First, we defined a new concept—PAG, which stands for

Pathways (P-type), Annotated lists (A-type) and Gene-sets (G-type),

to integrate heterogeneous gene-sets, networks, and pathways into a

new comprehensive database called PAG Electronic Repository

(PAGER). Each P-type PAG refers to a connected set of molecules

(genes/proteins/metabolites), among which some detail of curated

mechanism of actions, e.g. protein interactions, reactions, or gene

regulations, are available (Biological Pathway, http://www.genome.

gov/27530687). Each A-type PAG refers to a curated list of genes/

proteins identified from a specific biological context, e.g. a shared

GO category or a shared protein family. Each G-type PAG refers to

a list of genes/proteins derived from any given high throughput

Omics experiment, e.g. functional genomics, under a shared biolo-

gical condition. PAGER collects and organizes 38 663 PAGs—the

largest collection known to date—using a three-letter-code PAG clas-

sification system. Second, we developed a statistical measure called

Cohesion Coefficient (CoCo) to help assess PAG data quality—the

degree of biological relevance beyond random chance found among

genes curated in each PAG. We demonstrated that the CoCo score

can effectively separate biologically curated PAGs in PAGER from

randomly generated PAGs with an sensitivity¼0.75 and specifi-

city¼0.94, covering >94% of all PAGs compiled into the PAGER

database, Third, we computed a novel type of relationship among

PAGs called regulatory PAG–PAG relationships (r-type) in addition

to computing the co-membership based PAG–PAG relationships

described in earlier work (Chowbina et al., 2009). These r-type

PAG–PAG relationships (n¼65 872 for human) significantly com-

plement the single gene regulatory relationships that are known

prior to this work (n¼22 127 for human). The PAGER database is

accessible at http://discovery.informatics.iupui.edu/PAGER/ and the

database content for PAGs may be downloaded for separate GNPA

tools such as GSEA.

2 Methods

2.1 Source data collection and preprocessing of PAGs
In the PAGER database, we compiled PAGs from the following

data sources (for download date and description details, refer to

Supplementary Data S1): WikiPathway (Pico et al., 2008), from

which we collected 202 public validated pathways; Reactome

(Croft et al., 2011), from which we collected 651 peer-reviewed

pathways via the HPD (Chowbina et al., 2009); BioCarta

(Nishimura, 2001), from which we collected 253 pathways via the

HPD; KEGG (Ogata et al., 1999), from which we collected 200

pathways via the HPD; PID (Schaefer et al., 2009), from which we

collected 132 NCI-Nature curated pathways via the HPD; Protein

Lounge (http://www.proteinlounge.com/Pathway), from which we

collected 393 pathways; OMIM (Baxevanis, 2012), from which we

collected 4409 manually-curated gene lists associating with pheno-

type terms; SPIKE (Elkon et al., 2008), from which we collected 28

signaling pathways from the Genetic Association Database; GAD

(Becker et al., 2004), from which we collected 1679 unique pheno-

type/disease-related protein records; PharmGKB (Thorn et al.,

2010), from which we collected 102 chemical-associated pathways;

MSigDB (Liberzon et al., 2011), from which we collected 10 295

gene sets; GeneSigDB (Culhane et al., 2012), from which we col-

lected 3515 gene signatures; NHGRI GWAS Catalog (Welter et al.,

2014), from which we collected 1754 curated publications of

11 912 SNPs; and NGS Catalog (Xia et al., 2012), from which we

collected 69 annotated gene list curated from next generation

sequencing data analysis literature. During the data integration
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process, gene/protein identified obtained from different sources

were all mapped to NCBI official gene symbols (Brown et al.,

2015).

In the PAGER database, we also constructed a special type of

PAGs, ‘singleton PAGs’ (sPAG), to refer to PAGs consisting of only

one gene. sPAGs are essential for constructing PAG–PAG relation-

ships (to be described later). The final PAGER database consists of

19 772 sPAGs, which represent all sPAGs from the underlying sour-

ces and an additional 15 161 human genes from the reviewed subset

of the UniProt Knowledgebase (UniProt, 2013). In the PAGER web

database, we mask out these sPAGs by default to avoid causing con-

fusions to users who are primarily interested in performing analysis

with regular PAGs (n¼18 607, among which 16 125 are for

human).

A total of 324 830 gene–gene relationship data are also imported

into the PAGER database from various data sources. In total,

205 185 molecular association data are derived from the STRING

version 9.1 (Szklarczyk et al., 2011) database after removing those

with confidence score of 800 or less. A total of 93 713 human pro-

tein–protein interaction (PPI) data are derived from the HAPPI data-

base (quality�3-star ratings) (Chen et al., 2009). A total of 25 932

gene regulation data are derived from the TRANSFAC (Wingender

et al., 1996) (with quality defined as having five-binding sites or

more), TRED (Jiang et al., 2007) and SPIKE (Elkon et al., 2008)

databases. The PPI data are used to build PAG biological relevance

measures. The gene regulation data are used to construct regulatory

PAG–PAG relationships later.

We follow the PAG ID standard naming convention as shown in

Figure 1. Every PAG begins with a three-letter-code followed by six

digits. The first letter position is used to signify the PAG data type

category. The second letter position is used to signify the PAG deriv-

ation category. The third letter position is used to signify PAG rela-

tionship details. The human-readable naming convention may make

it easy for end users to understand how the PAGs are constructed.

2.2 Defining CoCo measures to evaluate the biological

relevance of each PAG
To evaluate the biological relevance of PAGs, we developed three

PAG cohesion measures, i.e. Cohesion by Interaction enrichment

(CoI), Cohesion by Triangle enrichment (CoT) and CoCo.

Conventional tests such as chi-square, hypergeometric test or

Fisher’s exact test have all been used to assess gene-set enrichment

results. However, none of these statistical tests may generate true

statistical P-values in practice (Huang da et al., 2009). Therefore,

for simplicity of calculation, we calculate all three cohesion meas-

ures based on signed probability mass function of hypergeometric

distribution. Mathematical notations are defined as the following:

P is the set of genes in the reference PPI database; i and j are PAG

indexes; Ii or Ij is the set of PPIs in PAGi and PAGj, respectively; IP
is the set of all PPIs in the referenced database; Ti or Tj is the set of

PPI triangles in PAGi and PAGj, respectively given IP; TP is the set

of all PPI triangles in P. For an overview of how each cohesion

measure is calculated, refer to the illustrated example shown in

Figure 2.

2.2.1 CoI definition

We developed CoI to measure the statistical significance of observ-

ing a given number of PPIs among all genes within a PAG. We define

CoI from a hypergeometric probability mass function as:

CoI ið Þ ¼ sign
k

n
� K

N

� �� �
� �log

K

k

� �
N �K

n� k

� �

N

n

� �
0
BB@

1
CCA

2
664

3
775

in which N ¼ ðjPj � ðjPj � 1ÞÞ=2 is the number of theoretical PPIs

in P, K¼ jIPj is the number of actual PPIs in the referenced

Fig. 1. PAG ID standard naming convention and three types of PAGs

Fig. 2. Example of calculation of each Cohesion measure
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database, n ¼ ðjPAG ij � ðjPAG ij � 1ÞÞ=2 is the theoretical num-

ber of PPIs inside PAG i, and k¼ jIij is the number of actual PPIs

inside PAG i. The sign function compares the expected PPI count

ratio K/N and PAG i’s PPI count ratio k/n. It returns 1 for over-

representation if the PPI count ratio inside PAG i is more than the

expected ratio and returns �1 for under-representation if the

interaction ratio inside PAG i is less than the expected ratio. For

PAGs containing no PPIs, we will not calculate a CoI. A high posi-

tive CoI score implies that genes inside the PAG are strongly linked

while a high negative CoI score implies that genes inside the PAG

are impossibly linked. Randomly generated PAGs should have a

mean CoI close to 0.

2.2.2 CoT definition

We developed CoT to measure the statistical significance of observ-

ing a given number of triangles (PPIs forming a connected loop with

three exact nodes/edges) among all genes within a PAG. Similar to

CoI, CoT is also calculated using the same hypergeometric distribu-

tion probability mass function (hence we will not repeat here)

but with different parameters for counting PPI triangles instead:

N ¼ ðjPj � ðjPj � 1Þ � ðjPj � 2ÞÞ=6 is the number of theoretical

triangles in P, K¼ jTPj is the number of actual triangles in the refer-

enced database, n ¼ ðjPAG ij � ðjPAG ij � 1Þ � ðjPAG ij � 2ÞÞ=6 is

the theoretical number of triangles inside PAG_i, and k¼ jTij is the

number of actual triangles inside PAG_i. When compared with CoI,

it has similar characteristics for highly positive CoT or highly nega-

tive CoT cases. For PAGs containing no PPIs, we will not calculate a

CoT. A high positive CoT score implies that genes inside the PAG are

strongly linked while a high negative CoT score implies that genes

inside the PAG are impossibly linked. Randomly generated PAGs

should have a mean CoT close to 0.

2.2.3 CoCo definition

We define CoCo¼CoIþCoT for PAGs that contain at least one PPI

triangle, and CoCo¼CoI for PAGs that contain no PPI triangle but

at least one PPI. When compared with CoI and CoT, the combined

CoCo score has similar characteristics for highly positive CoCo or

highly negative CoCo cases. For PAGs without valid calculated CoI,

there will not be a CoCo score. In practice, since we used a high-

coverage PPI database (the HAPPI database), the portion of PAGs

without any PPIs within is relatively low.

2.2.4 Performance evaluations

To compare and evaluate the performance of three cohesion meas-

ures, we plot Receiver Operator Characteristic (ROC) curves for

each of the measures, CoI, CoT, and CoCo. To create the positive

set, we use true PAGs (size>1 for CoI and size>2 for CoT or CoCo)

from the PAGER database. To create the negative set, we substitute

all genes in each PAGi with genes randomly picked from the

PAGER database. After all the cohesion measures are calculated, we

calculate true positive rate (true positives over all positives cases)

and true negative rate (true negatives over all negatives cases) for

each possible cohesion measure threshold that exists in the data be-

fore plotting them on the ROC curve.

2.3 Inferring PAG–PAG relationships
We computationally derive two types of PAG–PAG relationships:

co-membership based PAG–PAG relationships (m-type) and regu-

latory PAG–PAG relationships (r-type). These two types of PAG–

PAG relationships may be calculated by Fisher’s exact test (Al-

Shahrour et al., 2004; Li et al., 2008; Parikh et al., 2012) using a

2�2 contingency table. In this study, however, we used

hypergeometric distribution probability mass function

pmf kjN; n;Kð Þ ¼

�
K
k

��
N � K
n� k

�
�

N
n

� instead to score each PAG–PAG relation-

ship. Mathematical notations are defined as the following: X is the

number of genes covered in PAGER, R_ini is the set of gene regula-

tions coming into genes in PAGi, R_outi is the set of gene regula-

tions coming out from genes in PAGi, Ri->j is the set of gene

regulations from genes in PAGi to genes in PAGj, Ri<->j is the set

of gene regulations from genes in PAGi to genes in PAGj if and

only if the genes belong to PAGi \ PAGj.

2.3.1 Inferring m-type PAG–PAG relationships

We define the m-type relationship as the significance of observing

the number of shared genes among PAGi and PAGj given the gene

regulation data related to the two PAGs, or membership strength

score in short. The hypergeometric distribution parameters for m-

type relationships are defined as: N¼X, K¼ jPAGij, n¼ jPAGjj and

k¼ jPAGi \ PAGjj.

2.3.2 Inferring r-type PAG–PAG relationships

We define the r-type relationship from PAGi to PAGj as the

significance of observing the number of gene regulations from genes

in PAGi to genes in PAGj, excluding the genes in PAGi \ PAGj, or

regulatory strength score in short. The hypergeometric distribu-

tion parameters for m-type relationships are defined as:

N¼ jR_inij þ jR_outij þ jR_injj þ jR_outjj � jRi->jj is the total num-

ber of gene regulations in PAGi and PAGj, K¼ jR_outij, n¼ jR_injj
and k¼ jRi->jj � jRi<->jj is the number of gene regulation from genes

in PAGi to genes in PAGj, excluding the genes in PAGi \ PAGj.

2.4 Developing the web application and user interface
We developed a web interface for the PAGER database, which is

located at http://discovery.informatics.iupui.edu/PAGER/, for

users to retrieve PAGs and PAG–PAG relationships with gene or

keyword based queries. We used PHP5 and Codeigniter version

2.1.3 (EllisLab, 2014) as the web presentation framework and

Oracle 11g as the database backend. Real-time calculation of

hypergeometric probability mass function was implemented with

PDL (Meagher et al., 2013), a PHP library for statistics.

Cytoscape.js (http://js.cytoscape.org), an open-source graph li-

brary, and jQuery were used to visualize gene and PAG networks.

D3.js (http://d3js.org/) was used to perform matrix visualizations.

We also implemented advanced features such as batch gene search,

matrix or network visualization, gene or PAG transaction manage-

ment to hold temporary user-selected contents, and data bulk

download.

2.5 Case study: application of PAGER in myeloid-derived

suppressor cells expression data analysis
Myeloid-derived suppressor cell (MDSC) microarray data analysis

between tumor and normal control conditions were performed at

Purdue University Center for Cancer Research. The study aims to es-

tablish a hypothesis on what factors were essential in promoting

MDSC during cancer progression to transition from tumor-suppres-

sor cells to tumor-helper cells. We collected tumor MDSC at the

peritoneal cavity (T0) and compared control MDSC at the spleen

(N0) of inflamed mice. Using the pulsed electroacoustic method, we

extracted two cell sub-populations: CD11bþ Gr-1low (PC Glow)

and CD11bþ Gr-1low (Sp Glow). Standard differential expression
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analysis of individual genes were performed using SAM (Tusher

et al., 2001). After the data analysis using pmf<0.05 as the filter,

we set the minimum log fold-change of 2.5 to select 1105 differen-

tially expressed genes (N0), which includes 576 over-expressed

genes (Nþ) and 529 under-expressed genes (N�).

To generate an MDSC tumor versus control (T0 versus N0)

gene regulatory network, we queried the N0 gene-set against the

available gene regulation data in the PAGER database to obtain

the seeded gene regulatory network. In addition, we queried Nþ
and N� gene-sets against the PAGER database to obtain Nþ asso-

ciated PAGs and N� associated PAGs. Using the r-type PAG–PAG

regulatory relationships in PAGER, we also acquired the MDSC-

specific network.

3 Results

3.1 An overview of summary statistics of the new

PAGER database
From Table 1, we can obtain several data characteristics for the new

PAGER database. First, there are 38 379 unique PAGs, which con-

sists of 19 772 sPAGs and 18 607 mPAGs (regular PAGs) with a

size variation ranging between 1 and 4939 (refer to Supplementary

Fig. S1 for additional details of PAG size distribution categorized

into different data sources). When compared with MSigDB—the

largest gene-set database prior to this publication, PAGER repre-

sents a 181% increase of gene-set data coverage. In addition, we

noticed an unusual spike in the size distribution for data derived

only from MSigDB (with PAG sizes in the 200–212 range,

Supplementary Fig. S1). This suggests potential PAG data curation

size bias, i.e. taking only the top 200 genes from an expression sig-

nature, in the popular MSigDB. Second, there is a high percentage

of PAGs determined to be biologically relevant as determined from

the cohesion measure, CoCo score. In total, 14 701 (79%) of the

18 607 mPAGs are computed with a valid CoCo score and 13 856

(94%) of these mPAGs also have a CoCo score>1. This finding

suggests fairly high biological relevance in the majority of PAGs that

we integrated into the PAGER database. Third, we also noticed that

PAGs are more likely to overlap with each other than to regulate on

one another. In the data statistics table, there 3 101 499 m-type

PAG–PAG relationships—a number significantly higher than that of

the total 72 824 r-type PAG–PAG relationships identified.

3.2 Cohesion scores to classify PAGs based on

biological relevance
We evaluated PAG classification performance (biological relevant

YES/NO classes) using three different PAG cohesion measures, i.e.

CoI, CoT and CoCo. First, using the ROC curve (Fig. 3), we

observed that all these measures can classify true PAGs from ran-

domly generated PAGs effectively. The area-under-curves (AUCs) of

classification performance for balanced positive class (integrated

PAGs from the PAGER database) and negative class (randomly

generated PAGs) are 0.96, 0.95 and 0.98 respectively for each of the

cohesion measures CoI, CoT and CoCo. Second, we compared the

positive class with the negative class using these cohesion measures’

score distributions. Measurement score distributions between

samples from the two classes are statistically significant at P-values

of 8.5e-138 (for CoI), 3.0e-10 (for CoT) and 2.4e-62 (for CoCo),

respectively, when two-sample t-test analysis is used. Third, we

observed variable effects between PAG size and cohesion measure-

ments’ classification performance. For example, the AUC perform-

ance using CoT is slightly better than that for CoI among small

Table 1. Basic statistics of the PAGER database

In PAGER DB In PAGER (Human)

Genes in PAGs 44 313 40 476

Gene–gene relationships 324 830 306 066

Molecular association 205 185 190 226

PPI 93 713 93 713

Gene regulation 25 932 25 932

PAGs 38 379 35 897

Singleton (n¼ 1) 19 772 19 772

Regular (n> 1) 18 607 16 125

with CoCo scores (n> 1) 14 701 12 496

with CoCo score �1 13 856 11 784

PAG–PAG pairs

m-type (P-value< 1e-5) 3 101 499 2 230 614

r-type (pmf< 0.05) 72 824 65 983

sPAG to mPAG 7250 7022

mPAG to mPAG 39 253 32 966

sPAG to sPAG 23 842 23 842

mPAG to sPAG 2479 2153

Fig. 3. Cohesions (CoI, CoT and CoCo) performance: (a) ROC curves, (b) com-

parison boxplot. CoIþ, CoI in the true PAGs; CoI�, CoI in the random PAGs;

CoTþ, CoT in the true PAGs; CoT�, CoT in the random PAGs
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PAGs (n<100), based on Table 2. These observation justifies the

use of the combined score CoCo whenever CoT may be calculated

(size>2 and minimal PPI triangle¼1).

To decide the threshold of high informative PAG, we choose the

CoCo score as threshold to minimize the sum of false positive and

false negative. We observe the threshold of 1 has the minimum sum

of false positive and false negative counts equal to 2490

(Supplementary Table S2) with the false negative rate equal to 0.057

and the false positive rate equal to 0.252. We also show the PAG

coverage decreases when the threshold increases, which means we

need to balance the precision and PAGs recall (Supplementary Fig

S2 and Supplementary Table S3).

3.3 PAG-PAG regulatory relationship network

characterization
The PAG regulatory network in PAGER has the following charac-

teristics. First, the network only connects a small portion of all

PAGs. The network only covers 3304 regular PAGs, or 20.49% of

the human regular PAGs, and contains 6783 directed PAG–PAG

regulation; therefore, on average each PAG has the regulatory de-

gree of 2.05. Second, the regulatory network is well-connected. This

network has 39 connected components; however, the largest con-

nected component covers 3236 PAGs, or 97.94% of the network

size. Third, the PAG regulatory network node degree strictly follows

the power law, achieves R2¼0.884 for in-degree analysis, and

R2¼0.855 for out-degree analysis. Due to the sparsity of high-

quality PAG-PAG regulatory relationships identified in PAGER, we

therefore suggest using both gene regulatory relationship data from

conventional methods and new PAG-PAG regulatory relationship

data from PAGER for GNPA.

3.4 Web interface to access PAGER data
The PAGER web interface provides four basic features: basic search,

advanced search, matrix and network view, and data download.

The basic search allows the users to enter terms, such as a disease

name or a gene symbol. The advanced search allows the users to

enter a list of gene symbols. The users can decide specific options to

filter out poor quality PAGs. When the users enter a list of terms,

PAGER returns genes and PAGs associating with this list. When the

users search a list of genes, PAGER returns the related PAGs, show-

ing PAGs’ gene membership, cohesions, p-value and FDR. The users

can construct, expand both m-PAG and r-PAG networks and com-

pare PAGs using a similarity matrix view. The users can sort the ma-

trix view by name, frequency. The site also allows a user to

download the data used to construct the networks and images of the

matrix. Details on what features the web application provides and

how to use them are provided in Supplementary File S1.

3.5 PAGER analysis of MDSC gene expression data
MDSCs have been identified in most cancer patients and tumor mice

models based on their ability to suppress T-cell activation (Ostrand-

Rosenberg and Sinha, 2009). MDSC are induced by tumor-secreted

factors, many of which are known pro-inflammation markers. In

this study, we performed a functional genomics study using micro-

arrays, by comparing MDSC at tumor site versus at control spleens,

to identify detailed molecular mechanisms that trigger the MDSC’s

immunity inhibition functions. To compare the effectiveness of per-

forming integrative GNPA with the new PAGER database, we set

up a control experiment to examine the gene regulatory network

that can be constructed following microarray data analysis. Among

the 1105 differentially expressed genes, there are only 256 genes

(23% coverage) with direct gene regulation relationships between

them in the MDSC gene regulatory network (Table 3 and

Supplementary Fig S3). On the other hand, there are 972 genes

(88% coverage) enriched in 91 connected mPAGs through newly

defined r-type PAG–PAG relationship in the MDSC PAG regulatory

network. Although one can try to characterize the MDSC-derived

tumor versus control (TvN) individual gene biomarkers from the

gene regulatory network formed within the 256 differentially ex-

pressed genes, the poor network data coverage due to limited avail-

ability of gene regulation data can lead to significant bias in the

knowledge discovery process (refer to Table 1 for summary statis-

tics). From the new PAGER database, we are able to identify 91 en-

riched mPAGs (13 up-regulated PAGs and 78 PAGs, all of which

have CoCo score>1), the majority of which come from diverse data

sources. Although conventional GNPA relies on gene-set enrichment

analysis, we demonstrate how to perform multi-scale integrative

GNPA, using regulatory PAG–PAG network analysis (Fig. 4). In the

figure, we show each PAG as a node of different sizes and shapes,

with size proportional to the CoCo score (in log scales) for each

PAG. The MDSC inflammatory regulatory PAG network shows a

significantly suppressed PAG—FEX001153 (size n¼4568)—which

includes many genes responsible for immunity functions. Upstream

of the immunity-suppressed process are many activated cell growth

and differentiation signal molecules, such as BCL2L1, a potent in-

hibitor of cell death; FGFR1, Tyrosine-protein kinase that acts as

cell-surface receptor that can regulate embryonic development, cell

proliferation, differentiation and migration; ID1, which regulates a

variety of cellular processes, including cellular growth, senescence,

differentiation, apoptosis, angiogenesis and neoplastic transform-

ation; and AHR that are involved in cell-cycle regulation.

Downstream of the immunity-suppressed process are many proc-

esses responsible for cell differentiation (e.g. FEX00813) and cancer

progression (e.g. FEX002152 and EPHA2), and chemokine signal-

ing (e.g. CCR5). GEX001173, the closest downstream PAG of

FEX001153, is a nephrolithiasis-related gene set acquired from

Table 2. AUC performance comparison between CoI and CoT for

small and large PAGs

AUC (size <100) AUC (size >300)

CoI 0.953 0.987

CoT 0.962 0.979

Table 3. The statistic for gene regulatory network and PAG regula-

tory network for MDSCs gene expression data

Gene regulatory

network

PAG regulatory

network

Gene (n 5 1105) 256 972

Up-regulated (n¼ 576) 110 489

Down-regulated (n¼ 529) 146 483

PAGs (n 5 1196) 0 133

m-type 0 91

Up-regulated 0 13

Down-regulated 0 78

Regulations 501 136

Gene regulations (gene-gene) 501 0

PAG regulations (mPAG-mPAG) 0 94

PAG regulations (sPAG-mPAG) 0 42
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GAD, and is associated with the seeded overexpressed sub gene list.

This anti-immunity and pro-cell proliferation signaling can be

clearly explored in the PAG/gene multi-scale regulatory network

consisting of both genes and PAGs implicated in the MDSC func-

tional genomics data in tumor.

4 Conclusion

In this work, we presented a new conceptual framework that unifies

pathways, annotated gene lists, and gene-sets into a standardized

representation called PAGs. We constructed a comprehensive data

repository called PAGER for PAG data from heterogeneous sources

including ontology, pathway, omics, and public databases. The new

PAGER database collects 80% more PAG data than that of the

popular MSigDB database. We showed that a significant benefit for

using PAGER data is the benchmarking of each PAG with cohesion

measures—scores that can help evaluate the biological relevance of

all genes/proteins in a given PAG in high confidence. To address the

practical challenges of performing GNPA, we define new PAG–PAG

relationships as m-type for those with shared members between

PAGs and t-type for those with strong supporting gene regulatory

relationships pointing from one PAG to the next. We demonstrated

through an integrative cancer genomics study how integrative multi-

scale GNPA could help gain significant biological insights of the

Omics data.

We expect future researchers in the field to focus on addressing

several key questions related to PAG data management and integra-

tive GNPA. First, there should be sufficient focus on curating PAGs

with rich meta-data, e.g. information on individual genetic

background, life-style, and electronic medical records. Second, there

should be comprehensive linking of genomics and functional

genomics data from public databases into PAG data structure.

Therefore, researchers may further investigate the biological rele-

vance of enriched PAGs and regulatory PAG relationships derived

from GNPA. Last, we expect to develop novel literature mining and

crowd sourcing within the biomedical research community to con-

tinue rapid extension of data for the PAGER database.
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