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Abstract

We evaluated the performance of GBLUP including dominance genetic effect (GBLUP-D) by estimating variances and
predicting genetic merits in a computer simulation and 2 actual traits (T4 and T5) in pigs. In simulation data, GBLUP-D
explained more than 50% of dominance genetic variance. Moreover, GBLUP-D yielded estimated total genetic effects over
1.2% more accurate than those yielded by GBLUP. In particular, when the dominance genetic variance was large, the
accuracy could be substantially improved by increasing the number of markers. The dominance genetic variances in T4 and
T5 accounted for 9.6% and 6.3% of the phenotypic variances, respectively. Estimates of such small dominance genetic
variances contributed little to the improvement of the accuracies of estimated total genetic effects. In both simulation and
pig data, there were nearly no differences in the estimates of additive genetic effects or their variance between GBLUP-D
and GBLUP. Therefore, we conclude GBLUP-D is a feasible approach to improve genetic performance in crossbred
populations with large dominance genetic variation and identify mating systems with good combining ability.
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Introduction

Genomic selection refers to the use of genome-wide dense single

nucleotide polymorphism (SNP) markers to predict breeding

values and subsequently select individuals [1]. Several approaches

of genomic prediction have been presented. One of them is the

genomic best linear unbiased prediction (GBLUP), which uses

genomic information in the form of a genomic relationship matrix

that defines the additive genetic covariance between individuals

[2,3]. The genomic relationship coefficients are estimated with

higher accuracy than when using pedigree information because

genomic information can capture of Mendelian sampling across

the genome. GBLUP has become popular approach in genomic

selection of dairy cattle [4,5] because it is simple and has low

computational requirements [6,7].

Most published models only include additive genetic effects [8],

and little research has been performed to expand these models to

predict genetic merits to account for dominance genetic effects. It

can be argued that such expansion is difficult because calculation

becomes complicated and de-regressed estimated breeding values

are used as phenotypes in most applications of genomic selection

[9]. However, dominance genetic effect is of theoretical and

practical important because it is heavily used in crosses of animal

breeds. In fact, assortative mating and mate allocation boost the

field performances of livestock [10]. Genomic selection has,

therefore, renewed the interest in the prediction of dominance

genetic effects. For example, the dominance genetic variance

accounted for 5.6% of the phenotypic variance by GBLUP

including dominance genetic effect [11]. More recently, GBLUP

method including dominance genetic effect was suggested and the

software (GVCBLUP) are already available online (http://

animalgene.umn.edu/) [12–14].

The present study aimed to evaluate the performance of

GBLUP including dominance genetic effect by estimating variance

components and predicting genetic effects for both simulation and

actual pig data.

Materials and Methods

Stochastic Simulation
A historical population was simulated to establish mutation drift

equilibrium. The simulated genome comprised one chromosome 1

Morgan long that contained 6,000 SNP markers and 300

randomly spaced biallelic quantitative trait loci (QTL). In the

first generation of the historical population, the initial allele

frequencies of all markers and QTL were assumed to be 0.5. The

recurrent mutation process was applied, and the mutation rate of

markers and QTL was 5.061024 per locus per generation.

Recombinations were sampled from a Poisson distribution with a

mean of 1 per Morgan and were then randomly placed along the

chromosome. The historical population evolved over 2,000

generations of random mating and random selection with a

population size of 100 (50 males and 50 females) to reach

mutation–drift balance.

After 2,000 historical generations, a base population (G0) and

the subsequent 6 generations (G1 to G6) were generated as a

recent population. The population size of G0 increased to 300

(150 males and 150 females). In G1 to G6, 30 sires were randomly

selected and mated to 150 dams in each generation. Each dam

had 1 son and 1 daughter; thus, each sire had 5 sons and 5

daughters.
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In G0, 1,000 markers and 50 QTL were randomly selected

among the segregating markers and QTL with minor allele

frequencies .0.05. Let Q1j and Q2j be 2 alleles at the jth QTL.

The genetic values are then given by aj , dj , and {aj for genotypes

Q1jQ1j , Q1jQ2j , and Q2jQ2j , respectively. The value of aj was

drawn from a gamma distribution with a shape parameter of 0.42;

its sign was drawn at random with equal chance. According to the

previous simulation study including dominance genetic effects

[15], the value of dj was determined as the product of the absolute

of aj and the degree of dominance, which was drawn from a

normal distribution N(0,t2). The total genetic effect (gi) of the jth

animal was calculated by summing all QTL genotypic values, and

its variance (s2
g) was calculated as the sum of additive and

dominance genetic variances (s2
a and s2

d ) [16], which were

calculated as follows:

s2
a~

XNq

j~1

2qj(1{qj)fajz(1{2qj)djg2
,

s2
d~

XNq

j~1

f2qj(1{qj)djg2
,

where qj is the frequency of Q1j . The broad-sense heritability (h2)

of the trait was 0.3. To obtain phenotypic values, an environ-

mental effect was added to the total genetic effect, which was

sampled from a normal distribution N(0,(1{h2)s2
g=h2).

The phenotypes and genotypes of SNP markers were available

for 1,500 and 1,800 individuals from G1 to G5 and G1 to G6,

respectively. Thus, the reference population with both phenotypes

and genotypes comprised 1,500 individuals from G1 to G5, and

the test population with only genotypes comprised 300 individuals

in G6.

In a standard simulation scenario, t and the number of markers

in G0 (Nm) were set to 0.5 and 1,000, respectively. To investigate

the effects of t and Nm on the performance of the present method,

2 alternative scenarios were simulated in addition to the standard

scenario. Three different values of t (0.25, 0.5, and 1.0) and Nm

(200, 1,000, and 5,000) were simulated in the first and seconds

groups, respectively. For all of these alternatives, only the intended

parameter differed from the standard scenario. Twenty replicates

were simulated for each scenario.

PIC Pig Data
Publicly available data including pedigree, genotypic, and

phenotypic information on a single Pig Improvement Company

(PIC) nucleus pig line were used (http://www.g3journal.org/

content/2/4/429/Suppl/DC1). The total number of individuals

was 3,512, and all have phenotypes for 2 traits (T4 and T5) and

genotypes available from the PorcineSNP60 chip (N = 64,233).

These phenotypes were already adjusted for environmental fixed

effects such as sex, farm, and year of birth [17]. Then, 1,800

individuals were randomly selected from all individuals whose

accuracies from the full PIC dataset exceeded 0.8. From these

1,800 individuals, 1,500 were selected from old generations and

defined as the reference population while the other 300 individuals

were defined as the test population. Genotypes were filtered for

minor allele frequencies less than 0.05. The pig data are

summarized in Table 1.

Genomic BLUP Model
The GBLUP including additive and dominance genetic effects

termed GBLUP-D. The statistical model of GBLUP-D can be

expressed as:

y~XbzZazZdze,

where y is the vector of phenotypes; b is the vector of fixed effects;

a and d are the vector of additive and dominance genetic effects of

animals; X and Z are incident matrices for the fixed effects,

additive, and dominance genetic effect, respectively; and e is the

vector of residuals. Additive and dominance genetic effects were

assumed to follow normal distributions: a*N(0,Gs2
a) and

d*N(0,Ds2
d ), where G and D are additive and dominance

genomic relationship matrices, respectively. These matrices

describe the relationships between genotyped individuals and

can be constructed from the information on genome-wide SNP

markers. Let A1j and A2j be 2 alleles at the jth marker locus and pj

be the frequency of A2j . The G matrix is created as follows [3]:

G~
MaMa

0

PNm

j~1

2pj(1{pj)

,

where Ma is the n|Nm matrix (n is a number of individuals) and

the element of Ma for the ith individual at the jth marker is

calculated as follows:

Mai, j~

{2pj(A1A1)

1{2pj(A1A2)

2{2pj(A2A2)

8><
>:

:

Similarly, Md is assumed to be the n|Nm matrix and the

element of Md for the ith individual at the jth marker can be

calculated as:

Table 1. Summary of PIC pig dataset.

Number of animals Phenotype
Accuracy of estimated breeding value
from all PIC datasets

Trait No. SNPs Reference Test Mean SD Mean SD

T4 27,391 1,500 300 21.125 2.417 0.875 0.048

T5 27,287 1,500 300 44.107 60.315 0.880 0.048

doi:10.1371/journal.pone.0085792.t001
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Mdi, j~

{2p2
j (A1A1)

2pj(1{pj)(A1A2)

{2(1{pj)
2(A2A2)

8><
>:

:

This element describes the coefficients of dj in dominance

deviations. Therefore, d and its variance can be derived as

follows:

d~Mdd,

where d is the Nm dimensional vector of the jth element, which is

dj . This dominance formula was also used in GVCBLUP [14].

Assuming the dominance genetic effects at different marker loci

are identically and independently distributed normal variables, the

variance of the genome-wide dominance effect is calculated as

follows:

V(d)~MdMd
0
s2

d~Ds2
d ,

s2
d~

XNm

j~1

f2pj(1{pj)g2s2
d:

Consequently, D can be calculated using Md:

D~
MdMd

0

PNm

j~1

f2pj(1{pj)g2

:

Variance components were estimated with average information

restricted maximum likelihood (REML) [18]. The dataset of

reference population were used to predict genetic effects of the

Table 2. Variance component estimates (6standard errors) and heritabilities for simulation data with 3 dominance degrees (0.25,
0.5, and 1.0).

Genetic variance components

Condition Method Additive Dominance
Residual
variance

Narrow-sense
heritability

Broad-sense
heritability

t = 0.25 True value 0.259 0.032 0.736 0.267 0.299

Nm = 1,000 GBLUP 0.27760.036 – 0.79360.022 0.256 –

GBLUP-D 0.27760.036 0.02960.012 0.76460.024 0.259 0.286

t = 0.5 True value 0.191 0.108 0.736 0.185 0.289

Nm = 1,000 GBLUP 0.20560.029 – 0.86560.024 0.192 –

GBLUP-D 0.20860.030 0.06660.016 0.79760.026 0.194 0.256

t = 1.0 True value 0.138 0.147 0.706 0.139 0.290

Nm = 1,000 GBLUP 0.15260.024 – 0.85760.024 0.151 –

GBLUP-D 0.15260.024 0.08060.016 0.77360.025 0.151 0.231

doi:10.1371/journal.pone.0085792.t002

Table 3. Variance component estimates (6standard errors) and heritabilities for simulation data with 200, 1,000, and 5,000
markers.

Genetic variance components

Condition Method Additive Dominance
Residual
variance

Narrow-sense
heritability

Broad-sense
heritability

t = 0.5 True value 0.195 0.103 0.739 0.188 0.287

Nm = 200 GBLUP 0.15860.026 – 0.87860.024 0.153 –

GBLUP-D 0.15860.026 0.04860.012 0.83160.024 0.152 0.199

t = 0.5 True value 0.191 0.108 0.736 0.185 0.289

Nm = 1,000 GBLUP 0.20560.029 – 0.86560.024 0.192 –

GBLUP-D 0.20860.030 0.06660.016 0.79760.026 0.194 0.256

t = 0.5 True value 0.211 0.075 0.685 0.217 0.295

Nm = 5,000 GBLUP 0.20660.027 – 0.76160.021 0.213 –

GBLUP-D 0.20760.028 0.06360.016 0.69860.024 0.214 0.279

doi:10.1371/journal.pone.0085792.t003
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genotyped individuals in test population. The GBLUP-D model

solutions yielded the estimates of additive (âa) and dominance

genetic effects (d̂d). The estimates of the total genetic effect (ĝg) were

calculated by the sum of âa and d̂d. In GBLUP, ĝg equals âa, because

the dominance genetic effect is not considered. The predictive

ability of the model was evaluated from accuracy and unbiased-

ness of estimates in the test population. The accuracies of

estimated additive, dominance, and total genetic effects (râa,a,

rd̂d,d , and rĝg,g, respectively) were measured as the correlations

between the estimates and true values. Unbiasedness (bâa,a, bd̂d,d ,

and bĝg,g ) was measured using the regressions of estimates on true

values. A regression coefficient of one denotes unbiasedness. Since

the true values are unknown in pig data, estimated breeding values

from the full PIC dataset (a�) and phenotypes (y) were used instead

of true additive and total genetic effects, respectively. In real data,

the predictive ability of dominance genetic effect cannot be

calculated and was inferred from that of total genetic effect.

Results

Stochastic Simulation
Tables 2 and 3 show the estimates of variance components and

heritability in simulation data with various values of t and Nm. For

all values of t and Nm, there were nearly no differences in

estimates of additive genetic variance and narrow-sense heritability

between GBLUP and GBLUP-D. The ratios of dominant genetic

variance estimated by GBLUP-D were 90.6%, 61.1%, and 54.4%

with a t of 0.25, 0.5, and 1.0 and 46.6%, 61.1%, and 84.0% with

an Nm of 200, 1,000, and 5,000, respectively.

Tables 4 and 5 show the accuracies and unbiasedness of

estimated genetic values calculated by GBLUP and GBLUP-D in

simulation data. For all values of t and Nm, râa,a and bâa,a were

almost equal between GBLUP-D and GBLUP. In GBLUP-D, rd̂d,d

and bd̂d,d increased with increasing t and Nm. Meanwhile, rĝg,g

values in GBLUP-D exceeded those in GBLUP by 1.2%, 7.8%,

and 24.7% with a t of 0.25, 0.5, and 1.0 and by 1.9%, 7.8%, and

4.2% with an Nm of 200, 1,000, and 5,000, respectively. In

GBLUP-D, larger values of t resulted in bĝg,g being closer to 1.

PIC Pig Data
In T4 and T5 from the pig data, dominance genetic variance

accounted for 9.6% and 6.3% of the phenotypic variance,

respectively (Table 6). The estimated additive genetic variances

and residual variances calculated by GBLUP-D were smaller than

those calculated by GBLUP. Thus, GBLUP-D consequently

yielded lower narrow-sense heritability and higher broad-sense

heritability than GBLUP.

In T4 and T5 from the pig data, there were nearly no

differences between GBLUP and GBLUP-D with respect to

râa,a� (Table 7). In T5, rĝg,y and bĝg,y were slightly higher in GBLUP-

D than GBLUP, whereas rĝg,y and bĝg,y were not higher in GBLUP-

D in T4.

Discussion

Stochastic Simulation
The GBLUP-D method captured the substantial ratios of the

dominance genetic variances and estimated the individual

dominance genetic effects although there were nearly no

differences in estimates of additive genetic variance and narrow-

sense heritability between GBLUP and GBLUP-D. Our result

indicates that GBLUP-D is expected to improve performance of

the crossbreds, in particular when degree of dominance is large.

In the present study, the simulated genome comprised one

chromosome 1 Morgan long. However, the whole genome sizes of

livestock are larger. Here, another simulation data were

constructed to evaluate the effect of the genome size on predictive

ability. This simulation data comprised five chromosomes of 1

Morgan. The numbers of markers and QTL set to be 5,000 and

250 to obtain the same distances between markers and QTL as the

initial simulation. Table 8 shows the accuracies and unbiasedness

of estimated genetic values in this simulation data. The dominance

genetic effects could be captured in this data, but the accuracies of

additive, dominance and total genetic effects decreased in

comparison with the genome of 1 chromosome. Hence, large size

of reference population would be required when genome size is

large.

PIC Pig Data
The degrees of estimated dominance genetic variance in T4 and

T5 were nearly equal to those in simulation data with a t of 0.25.

When t was 0.25, rĝg,g and bĝg,g were 1.2% and 0.3% higher in

GBLUP-D than GBLUP. These results indicate the predictive

ability of GBLUP-D in T4 and T5 only improved slightly because

the degrees of dominance genetic variance were too small. In fact,

rĝg,y and bĝg,y in GBLUP-D were little improved in comparison with

GBLUP. In general, the degree of dominance genetic variance is

expected to be much larger in crossbred populations than

purebred ones. Since the present study was based on data from

purebred PIC pig data, the degrees of dominance genetic variance

in T4 and T5 might have been small.

Table 4. Accuracies of estimates (râa,a, r
d̂d,d

, and rĝg,g) and
regression coefficients of estimates on their true values (bâa,a,
bd̂d,d , and bĝg,g) in the test population for simulation data with 3

dominance degrees (0.25, 0.5, and 1.0).

Condition Method râa,a r
d̂d,d rĝg,g bâa,a b

d̂d,d bĝg,g

t = 0.25 GBLUP 0.803 – 0.760 0.898 – 0.939

Nm = 1,000 GBLUP-D 0.804 0.212 0.769 0.902 0.609 0.942

t = 0.5 GBLUP 0.743 – 0.616 0.891 – 0.976

Nm = 1,000 GBLUP-D 0.745 0.339 0.664 0.900 0.893 0.994

t = 1.0 GBLUP 0.711 – 0.466 1.001 – 0.937

Nm = 1,000 GBLUP-D 0.712 0.478 0.581 1.006 1.189 1.035

doi:10.1371/journal.pone.0085792.t004

Table 5. Accuracies of estimates (râa,a, r
d̂d,d

, and rĝg,g) and
regression coefficients of estimates on their true values (bâa,a,
bd̂d,d , and bĝg,g) in the test population for simulation data with

200, 1,000, and 5,000 markers.

Condition Method râa,a r
d̂d,d rĝg,g bâa,a b

d̂d,d bĝg,g

t = 0.5 GBLUP 0.689 – 0.552 1.049 – 1.027

Nm = 200 GBLUP-D 0.696 0.246 0.563 1.062 0.547 0.938

t = 0.5 GBLUP 0.743 – 0.616 0.891 – 0.976

Nm = 1,000 GBLUP-D 0.745 0.339 0.664 0.900 0.893 0.994

t = 0.5 GBLUP 0.799 – 0.694 1.004 – 1.035

Nm = 5,000 GBLUP-D 0.801 0.374 0.723 1.010 0.961 1.032

doi:10.1371/journal.pone.0085792.t005
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Practical Use of GBLUP-D
GBLUP-D has two practical uses. First, selection on the basis of

GBLUP-D in crossbreds is useful for commercial production. In

swine and poultry, crossbreds are the end product. The marker

information from a purebred and its crossbred relatives enables the

selection of candidate purebreds for the performance of their

crossbred offspring [11]. Second, GBLUP-D could allow mating

allocation to exploit dominance. An extra response will be

obtained when an appropriate design of future matings using

mating allocation techniques is implemented [10,19].

Additive and Dominance Relationship Matrix
In the presence of dominance genetic effects, the breeding

values of A1jA1j , A1jA2j , and A2jA2j at the jth locus are

{2pjfajz(1{2pj)djg, (1{2pj)fajz(1{2pj)djg,and(2{2pj)

fajz(1{2pj)djg, respectively. The additive genomic relationship

matrix in GBLUP-D should be constructed considering dj . If all

QTL are of complete dominance, then dj is 1. However, in

practice, the value of dj cannot be determined because the degree

of dominance is unknown. Therefore, in the present study, the

additive genomic relationship matrix was the same in GBLUP-D

and GBLUP. Although there are nearly no differences in the

estimates of additive genetic effects or their variance between

GBLUP and GBLUP-D, the additive genomic relationship matrix

including d may yield good estimates of them.

A GBLUP method including dominance genetic effects was also

proposed in a previous study [11]. In that model, the additive

genomic relationship matrix is same as that in traditional GBLUP.

However, the dominance genomic relationship matrix (D�) in the

previous study differs from that in the present study and is defined

as follows:

D�~
HH

0

PNm

j~1

2pj(1{pj)f1{2pj(1{pj)g
,

where the element of H for the ith individual at the jth marker is

calculated as

Gi, j~

{2pj(1{pj)(A1A1)

1{2pj(1{pj)(A1A2)

{2pj(1{pj)(A2A2)

8><
>:

:

This element corresponds to the heterozygosity coefficient but

not the dominance genetic effect. To compare the performance of

GBLUP-D in the present study and the model in the previous

study [11], predictive ability was calculated in the standard

simulation scenario (Table 9). GBLUP-D yielded higher accura-

cies of additive, dominance, and total genetic effects than the

previous model [11]. This might be because the heterozygosity

coefficient includes part of the additive genetic effect. In fact, the

previous study [12] reported that dominance genetic variance

calculated from the previous model [11] was larger than that from

GBLUP-D.

Assuming linkage equilibrium and uncorrelated marker effects,

the dominance genetic variances in the present study (s2
d ) and the

previous study [11] (s2
d�) are calculated as follows:

Table 6. Variance components estimates (6standard errors) and heritabilities for PIC pig data.

Genetic variance components

Trait Method Additive Dominance Residual variance
Narrow-sense
heritability

Broad-sense
heritability

T4 GBLUP 1.90960.189 – 3.67860.138 0.342 –

GBLUP-D 1.73560.201 0.53760.219 3.33160.185 0.310 0.405

T5 GBLUP 1298.16123.2 – 2198.2684.3 0.371 –

GBLUP-D 1239.06129.3 220.86125.9 2049.36113.1 0.353 0.416

doi:10.1371/journal.pone.0085792.t006

Table 7. Aces of estimates (râa,a�and rĝg,y) and regression
coefficients (bâa,a� and bĝg,y) of âa on full PIC dataset (a�) and ĝg

on phenotypic value (y) in the test population for the PIC pig
dataset.

Trait Method

râa,a� rĝg,y bâa,a� bĝg,y

T4 GBLUP 0.455 0.286 0.637 0.726

GBLUP-D 0.456 0.286 0.710 0.724

T5 GBLUP 0.379 0.288 0.631 0.786

GBLUP-D 0.376 0.299 0.654 0.805

doi:10.1371/journal.pone.0085792.t007

Table 8. Accuracies of estimates (râa,a, rd̂d,d , and rĝg,g) and
regression coefficients of estimates on their true values (bâa,a,
bd̂d,d , and bĝg,g) in the test population for simulation data with 3

dominance degrees (0.25, 0.5, and 1.0) when genome
comprises of 5 chromosomes with 1 Morgan each.

Condition Method râa,a rd̂d,d rĝg,g bâa,a bd̂d,d bĝg,g

t = 0.25 GBLUP 0.672 – 0.636 1.012 – 1.017

Nm = 1,000 GBLUP-D 0.673 0.148 0.641 1.013 0.810 1.018

t = 0.5 GBLUP 0.646 – 0.502 1.015 – 1.018

Nm = 1,000 GBLUP-D 0.647 0.244 0.528 1.016 1.011 1.015

t = 1.0 GBLUP 0.612 – 0.490 1.112 – 1.124

Nm = 1,000 GBLUP-D 0.612 0.348 0.525 1.122 1.030 1.120

doi:10.1371/journal.pone.0085792.t008
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s2
d~

XNm

j~1

f2pj(1{pj)g2s2
d,

s2
d�~

XNm

j~1

2pj(1{pj)f1{2pj(1{pj)gs2
d:

In addition, the estimated dominance genetic effects in the

present study (d̂d) and the previous study [11] (d̂d�) are calculated as

follows:

d̂d~s2
dDZ0V{1(y{Xb),

d̂d�~s2
d�D

�Z0V{1(y{Xb),

where V is the variance of y. If the distribution of the allelic

frequencies is available, d̂d� can be transformed to d̂d.

Epistasis
Increasing knowledge about biological pathways and gene

networks highlights the importance of gene–gene interactions, i.e.,

epistasis; some authors argue that much of the genetic variance in

a population is due to such interactions [20–22]. When

considering second-order epistasis in GBLUP, the epistatic

genomic relationship matrix can be approximately calculated

from the Hadamard product of the genomic relationship matrix.

For example, additive by additive and additive by dominance

interactions are represented as G#G and G#D, respectively. The

present study tried to use linear mixed models including G#G and

G#D for T4 and T5 in pig data. However, the variance

components of these epistasis could not be estimated because they

were outside parameter space (data not shown). The previous

study [11] also included epistatic genomic relationship matrices in

GBLUP. In that model, the estimated epistatic variances were

almost 0 for daily gain in Danish Duroc pigs. The estimated

epistatic variances in the Bayesian model for the percentage of

CD8+ cells in publicly available mouse data were almost 0 [23].

Although these studies could not detect epistastic effect, in recent,

the marker-generated kinship matrices were suggested in a new

mixed model method [24] and nonparametric approaches and

machine-learning techniques were recommended to model more

complex gene interaction patterns [25–27].
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