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ABSTRACT

The CAF1 protein is a component of the CCR4–NOT
deadenylase complex. While yeast CAF1 displays
deadenylase activity, this activity is not required
for its deadenylation function in vivo, and CCR4 is
the primary deadenylase in the complex. In order
to identify CAF1-specific functional regions
required for deadenylation in vivo, we targeted
for mutagenesis six regions of CAF1 that are
specifically conserved among CAF1 orthologs.
Defects in residues 213–215, found to be a site
required for binding CCR4, reduced the rate
of deadenylation to a lesser extent and resulted in
in vivo phenotypes that were less severe than did
defects in other regions of CAF1 that displayed
greater contact to CCR4. These results imply that
CAF1, while affecting deadenylation through its
contact to CCR4, has functions in deadenylation
separate from its contact to CCR4. Synthetic
lethalities of caf1D, but not that of ccr4D, with
defects in DHH1 or PAB1, both of which are involved
in translation, further supports a role of CAF1
separate from that of CCR4. Importantly, other
mutations in PAB1 that reduced translation,
while not affecting deadenylation by themselves
or when combined with ccr4D, severely blocked
deadenylation when coupled with a caf1
deletion. These results indicate that both CAF1
and factors involved in translation are required for
deadenylation.

INTRODUCTION

In eukaryotes, the major pathway of mRNA degradation
is initiated by poly(A) tail shortening (deadenylation)
followed by removal of the 50 cap structure (decapping)
and 50–30 exonucleolytic cleavage of the mRNA body by

the XRN1 exonuclease (1–3). Deadenylation, as com-
pared to decapping and 50–30 nuclease digestion, has
been shown to be most important in the control of
mRNA degradation rates (4). The CCR4-NOT
complex in responsible for the majority of the poly(A)
shortening process in yeast (5–7), and its 1.0 MDa
core complex is comprised of 10 components:
CCR4, CAF1 (also known as POP2), five NOT proteins
(NOT1–NOT5), CAF40, CAF130 and BTT1 (8–11).
Of these proteins, CCR4 and CAF1 appear to be the
most important players in the mRNA deadenylation
process (5,6).

The CCR4 protein as a member of ExoIII family of
nucleases/phosphatases (12,13) is the catalytic subunit
responsible for degradation of the mRNA poly(A) tail,
and point mutations in the predicted active site of CCR4
cause deadenylation defects like that of a ccr4 deletion
(5,7). Similarly, a ccr4mutant in Drosophila also displayed
an in vivo deadenylation defect, as did reduction in CAF1
levels (14).

The role of the CAF1 protein, however, is less clear. Its
principal role has been considered to be that of linking
CCR4 to the remainder of the CCR4-NOT complex
(8,9,15,16). Deletion of the CAF1 gene showed a dramatic
deadenylation defect in vivo, albeit to a lesser extent than
that of ccr4D (6), and this has been interpreted to mean
that CCR4 must be part of the CCR4-NOT complex
to function well in vivo. Although CAF1 is classified
as a member of the DEDDh family of nucleases (17,18)
and the polypeptide isolated from Escherichia coli
can function as a 30–50 exonuclease with some preference
for poly(A) sequences (19,20), inactivation of predicted
key catalytic active sites of CAF1 did not affect
in vivo deadenylation function (16). Moreover, over-
expression of CCR4 could partially complement the
deadenylation defect of a caf1 deletion, but over-
expression of CAF1 did not rescue phenotypes associated
with that of a ccr4 deletion (6,7). These results indicate
that the deadenylase activity of CAF1 is not required
for its in vivo deadenylation function. Moreover, CAF1
has been shown recently to interact with PUF5 and to be
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required for PUF5-induced deadenylation of mRNA
(21), supporting other roles of CAF1 in mRNA
deadenylation.

Since the predicted catalytic sites of CAF1 are
not critical to its in vivo function, understanding
the functional roles of CAF1 on mRNA turnover will
require the identification of other important regions of
the CAF1 protein. To identify in the CAF1 protein
functional regions, which are critical for mRNA degrada-
tion, we conducted a deletion analysis of yeast CAF1
by targeting regions absolutely conserved among CAF1
orthologs. This mutation analysis identified four
functional regions of CAF1, including those required
for binding CCR4 and for deadenylation. Domains
of CAF1 that are important to deadenylation in vivo
included but are not limited to those that are required
for CCR4 binding. Relatedly, defects in CAF1, but
not that in CCR4, were lethal with defects in DHH1
(33) and PAB1, factors involved in translation, and
over-expression of translation-associated proteins
could suppress caf1D pab1 lethality. Moreover, we
showed that a PAB1 translation defect severely reduced
deadenylation when coupled with a caf1 deletion.
CAF1, in addition to binding CCR4, may act on
the deadenylation process in conjunction with factors
affecting translation.

MATERIALS AND METHODS

Yeast strains and growth conditions

The background yeast strains used in this study are listed
in Table 1. Yeast strains were grown in YEP medium
(2% yeast extract, 1% Bacto peptone) or minimal medium
supplemented with nutrients required for auxotrophic
deficiencies and with 4% glucose or 2% galactose/2%
raffinose unless otherwise indicated. YD plates consisted
of YEP medium supplemented with 2% glucose and 2%
agar and caffeine plates are YD plates with 5, 8 or 15mM
caffeine as indicated.

Library screening for high-copy suppressors and analysis
of synthetic lethalities

Strain ASY319-c1-lN/YC360/YC506 was transformed
with a YEp13 (2 m LEU2) high-copy yeast genomic library
and plated on minimal medium lacking leucine and
tryptophan. Here, �15 000 Leuþ transformants were
plated onto plates containing 5-fluoroorotic acid (FOA).
The plasmids from yeast capable of growth on FOA plates
were rescued, transformed into E. coli, rescued and
retransformed into the original strain to confirm the
high-copy suppression. Yeast genomic sequences within
the plasmids were identified by DNA sequence analysis.
In cases where more than two yeast genes were located on
the plasmid insert, such as for DHH1 and CAF1, the
MPT1 and MPT0 plasmids carrying only DHH1 and
CAF1, respectively, were used to confirm that these genes
were responsible for the suppression of the lethality (29).
caf1D lethality with PAB1-DRRM2 or with PAB1-
DRRM1 was determined by transforming strain AS319-
c1-lN/YC360 with YC504, YC505 and YC506, respec-
tively. Following selection of these YC504/YC505/YC506
transformants, their ability to survive in the presence of
the caf1D allele was determined by the transformants’
abilities to lose the YC360 (URA3) plasmid and grow on
FOA-containing plates. Testing for the lethality of
deletions in other genes and PAB1-DRRM2 was done by
a similar methodology.

Site-directed deletion mutagenesis

The MPT0 plasmid harboring the yeast CAF1 open
reading frame was used as the template for the polymerase
chain reaction (PCR). All PCR reactions were performed
with Vent polymerase (New England Biolabs). In order to
generate 173DVW175, 213FRS215, 255WQF257,
303SGL305, 329LMN331 and 340DFE342 deletions, we
designed the following six pairs of oligonucleotide
primers: caf1-1-f (50-TATCTTTTCGTTCGCAAGTCC
AACCTTTACAGTGAATTC-30) and caf1-1-r (50-
GTAAAGGTTGGACTTGCGAACGAAAAGATAATT
TGGGG-30), caf1-2-f (50-AGGCCGATCGGCA
CTAAGGTCGATTACCACTATCAGACA-30) and

Table 1. List of yeast strains

Strain Genotype

EGY188 MATa ura3 his3 trp1 LexA–LEU2
EGY188-c1 Isogenic to EGY188 except caf1 :: URA3
EGY188-c1-1 Isogenic to EGY188 except caf1 :: ura3
EGY188-1a-1-c1 Isogenic to EGY188 except ccr4 :: ura3 caf1 :: LEU2
EGY191 MAT� ura3 his3 trp1 LexA–LEU2
EGY191-c1 Isogenic to EGY191 except caf1 :: URA3
KY803-c1 MATa leu2-PET56 trp1-D1 ura3-52 gal2 gcn4-D1 caf1 :: LEU2
AS319/YC504 MAT� ura3 leu2 his3 trp1 pab1 :: HIS3 [PAB1-TRP1]
AS319-1a-uN/YC504 Isogenic to AS319 except ccr4 :: ura3 :: NEO
AS319-c1-lN/YC504 Isogenic to AS319 except caf1 :: leu2 :: NEO
AS319-cl-lN/YC505/YC360 Isogenic to AS319-cl-lN except [PAB1-�RRM1-TRP1] [PAB1-URA3]
AS319-cl-lN/YC506/YC360 Isogenic to AS319-cl-lN except [PAB1-�RRM2-TRP1] [PAB1-URA3]
AS319-d1-uL/YC504 Isogenic to AS319 except dhh1 :: ura3 :: LEU2
1743-2/YC504 MAT� ura3 leu2 his3 trp1 pab1 :: HIS3 [PAB1-TRP1] prt1-63
1881/YC504 Isogenic to AS319 except cdc33-1
A1385-uT-c1/TB3 MATa ura3 leu2 his3 trp1 dhh1 :: ura3 :: TRP1 caf1 :: LEU2 [GAL1-CAF1-URA3]
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caf1-2-r (50-GTGGTAATCGACCTTAGTGCCGATCG
GCCTAGCCAAAGT-30), caf1-3-f (50-AACGGTCC
CTCAACGAATTTTGAATTTGACCCAAAGAAG-30)
and caf1-3-r (50-GTCAAATTCAAAATTCGTTGAGGG
ACCGTTGTCAGGCTT-30), caf1-4-f (50-CAGCTTCT
AATGGACATGATGGATGATTCTGTTACTTGG-30)
and caf1-4-r (50-AGAATCATCCATCATGTCCATTAG
AAGCTGCGAAAATTC-30), caf1-5-f (50-TTCCTGAT
CAACATTGACTCCATGCCCAACAACAAGGAG-30)
and caf1-5-r (50-GTTGGGCATGGAGTCAATGTT
GATCAGGAAACCTAGATC-30), and caf1-6-f (50-
CCCAACAACAAGGAGTGGTGGGTCCATCAATA
CATGCCC-30) and caf1-6-r (50-TTGATGGAC
CCACCACTCCTTGTTGTTGGGCATGGAGTC-30).
These primers were used for the first PCR reaction in
combination with primers containing BamHI and HindIII
restriction sites Caf1-Bm-f (50-AAAGGATCCATGC
AATCTATGAATGTACAA) and caf1/2291-Hind (50-
TACATATAAAGCTTAAATGATCATTGGTCCC-30).
The first PCR products were used for amplifying final
full-length CAF1 mutant alleles using Caf1-Bm-f and
caf1/2291-Hind primers. The final PCR products were
purified, digested with BamHI and HindIII, and inserted
into BamHI- and HindIII-digested pET-23a(þ) to
generate plasmids pTB8a (CAF1), pTB8-1 (caf1-1),
pTB8-2 (caf1-2), pTB8-3 (caf1-3), pTB8-4 (caf1-4),
pTB8-5 (caf1-5) and pTB8-6 (caf1-6), respectively. All
the sequences of the mutagenized CAF1 alleles were
verified by sequencing. For further analysis, CAF1 open
reading frames were subcloned into pLexA202-2 (22),
pJG4-5 (22) and pJCN112 (7) to make N-terminal LexA,
HA and N-terminal Flag with C-terminal 6His epitope
tagged CAF1 proteins, respectively. pLexA202-2 fusions
were constructed to allow constitutive high expression
of CAF1 from an ADH1 promoter, and the other two
fusions were to allow galactose-inducible expression
of CAF1 from a GAL1 promoter. LexA-CAF1 fusions
were also used in certain cases because they were carried
on a HIS3-containing plasmid that allowed it to be
co-transformed with URA3-based plasmids, such as those
carrying Flag-CAF1, Flag-CCR4 and Flag-PAB1.

Flag pull-down analysis

The yeast cultures containing Flag-CAF1 fusions were
grown to late log phase in 50ml selective medium
supplemented with 4% glucose, shifted to 100ml of the
same medium with 2% galactose/raffinose and grown for
16 h. The cells were washed and lysed by the glass bead
method in extraction buffer (50mM Tris–Cl [pH7.9],
150mM NaCl, 0.1mMMgCl2, 0.1% NP40, 20% glycerol)
plus a protease inhibitor cocktail. After clarification of the
crude cell lysates by centrifugation at 15 000� g at 48C for
15min twice, the supernatants were incubated with 400 ml
of anti-Flag M2 affinity agarose (Sigma) at 48C
overnight. The bound resins were washed with 10ml
wash buffer (extraction buffer with 5% glycerol)
three times, transferred to microfuge tubes and washed
with 1ml wash buffer five times. The resultant precipitates
were run subsequently on an 8% SDS-polyacrylamide gel,
electro-transferred to polyvinylidene fluoride (PVDF)

membrane (ImmobilonTM-P, Millipore) and analyzed by
western blot using SuperSignal� West Pico Luminol/
Enhancer Solution (Pierce).

Protein extraction, in vitro deadenylation assays and in vivo
translation assays

Flag-CCR4 protein purification was performed as
described above for purification of Flag-CAF1 with
some modifications (23). The strain EGY188-c1-1a-1
harboring single copy of CCR4 (pYC343) and the
LexA-CAF1 fusion variants were grown in 1 l of selective
medium with 4% glucose to mid-log phase (OD600 of 0.7).
Following lysis and incubation of supernatants with the
anti-Flag M2 antibody-agarose (Sigma), the Flag agarose
beads were washed with 10ml of washing buffer three
times, and the Flag fusion proteins were eluted twice with
extraction buffer containing 200 mg/ml Flag peptide
(Sigma). In vitro deadenylation assays were conducted as
described (16,23). The rates of in vivo protein synthesis
were determined by quantitating the amount of [35S]-
methionine incorporation into protein as described (24).

RNA preparation and analyses

RNA samples were prepared using the hot acidic phenol
method described in Ref. (25). Briefly, yeast cells were
resuspended in TES (10mM Tris–Cl [pH 7.5], 10mM
EDTA, 0.5% SDS) and the acidic phenol and incubated at
658C for 45min with frequent vortexing. Following
centrifugation, the supernatants were re-extracted with
acidic phenol and chloroform. RNA present in the
supernatants was precipitated with 95% ethanol and
dissolved in water containing DEPC.

To perform the transcriptional pulse-chase experiments,
strain EGY188-cl carrying the individual LexA-caf1
variants was grown in 5ml of synthetic medium
supplemented with 2% raffinose, transferred and regrown
in 100ml fresh medium until mid-log phase (OD600 of 0.7).
Cells were then harvested, washed once with fresh medium
and transferred to 15ml of fresh medium containing 2%
raffinose and grown for 15min. GAL1 transcription
was activated by adding galactose at a 2% final
concentration for 15min and shut-off by adding glucose
to a concentration of 4%. Since yeast cells harboring the
LexA–caf1-2 protein resulted in poor GAL1 transcription,
the GAL1 promoter was activated for 30min prior to
transcription shut-off.

The deadenylation rates and end points for GAL1
mRNA were determined following RNase H treatment of
purified RNAs as described previously (26). Here, �4 mg
of an oligonucleotide probe (50-GCCATTTGGGCCC
CCTGG-3) complementary to a segment 133 bp upstream
of the GAL1 translational stop codon was hybridized with
12 mg of total RNA prior to RNase H digestion. The
resultant GAL1 30 polyadenylated species were separated
on a denaturing polyacrylamide gel (6%/7.5M urea)
and detected by northern analysis using a probe
complementary to the 30 end of the GAL1 mRNA
(50-GCCCAATGCTGGTTTAGAGACGATGATAGCA
TTTTCTAGCTCAGCATCAGTGATCTTAGGG-3).
The rate of deadenylation was determined for the shortest
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poly(A) tail as previously described (6,16). Calculating the
rate of deadenylation using the average length of poly(A)
gave similar results.

For steady-state MFA2pG mRNA analyses, strains
were grown to exponential phase (OD600 of 0.4) in
selective medium supplemented with 2% raffinose. Cells
were then transferred to fresh medium for an hour, and
the GAL1 promoter was induced for 3 h following the
addition of galactose.

RESULTS

Mutagenesis of CAF1 in the regions that are highly conserved
among CAF1 orthologs

In order to identify CAF1-specific functional regions, we
targeted for mutagenesis the regions of CAF1 that are
common only to CAF1 orthologs and are not present in
any other DEDDh nuclease family members (17,18). Six
regions were identified as absolutely conserved among
CAF1 orthologs (Figure 1B). Three amino acid deletions
were made in each case to remove the region of homology,
resulting in caf1 alleles 1 through 6. After these deletions
were constructed and their phenotypes obtained, the
X-ray crystallographic analysis of the C-terminal RNase
D domain of CAF1 protein was published (19). The
relative locations of each of the constructed caf1 alleles are
shown in Figure 1A: caf1-1 (173DVW175) and caf1-3
(255WQF257) alleles are positioned in b-sheets b1 and b4
that hydrogen bond to each other, caf1-2 (213FRS215) is
located between b2 and a3 in a crystallographically
undefined loop region, and caf1-4 (303SGL305), caf1-5
(329LMN331) and caf1-6 (340DFE342), are located in

a turn at the end of a6, just at the beginning of a turn after
a7, and on a8, respectively.
Each of the caf1 mutant alleles was subsequently cloned

into three types of plasmid vectors, pLexA(202), pJG4-5
(HA-tagged) and pJCN112 (Flag-tagged), for further
analysis (see Materials and Methods section). Each of
the mutant proteins, regardless of the epitope attached to
CAF1, was expressed to comparable levels as that found
for the wild-type CAF1 protein, indicating that these small
deletions did not affect the protein expression or stability
of CAF1 (Figures 2A,B and 4A).

Phenotypic analysis of caf1 alleles

One of the most prominent phenotypes of a strain
carrying a caf1 deletion is its caffeine sensitivity, although
other phenotypes such as temperature sensitivity and slow
growth have been observed (15,28,29). To examine the
phenotypes of CAF1 mutant alleles, we tested the growth
phenotypes of the caf1 alleles by using the KY803-c1
(caf1D) strain carrying a plasmid expressing an N-terminal
Flag fusion with each of the mutant CAF1 proteins
(Figure 3; summarized in Table 2). Of the six CAF1
mutants, caf1-1, caf1-3 and caf1-6 alleles resulted in
an inability to grow on YD plates containing 5mM
caffeine. Interestingly, strains carrying the caf1-1 and
caf1-3 alleles were observed to grow slower on rich
medium lacking caffeine than a strain carrying the caf1
null allele (data not shown). The caf1-2 and caf1-5 alleles
caused weak sensitivity to caffeine, and for the caf1-4
allele, we did not observe any difference in growth
on caffeine plates as compared to the wild-type strain.
The same results were obtained with LexA-CAF1 fusions
(data not shown).

caf1-2 caf1-1

caf1-3caf1-4

caf1-5

caf1-6

N C

173DVW175
caf1-1

213FRS215
caf1-2

255WQF257
caf1-3

303SGL305
caf1-4

329LMN331
caf1-5

340DFE342
caf1-6

1 443

A

B

Figure 1. Mutagenesis of CAF1. (A) Location of CAF1 mutations are illustrated on the 3D structure of the nuclease domain of the CAF1 protein
(19). (B) The six absolutely conserved regions targeted for mutagenesis are composed of three amino acids each as indicated above the schematic
representation of CAF1 and are located in regions separate from the putative four key catalytic amino acids conserved among DEDDh ribonucleases
(black arrows). The names of the mutant alleles are also shown beneath the deleted amino acids.
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In terms of temperature-sensitive growth, strains
carrying the wild-type and caf1-5 alleles were able
to grow at 398C (Figure 3; Table 2), whereas those
containing the caf1-1 and -3 alleles failed to grow at 398C.
The strain with caf1-4 grew weakly at 398C, and strains
carrying caf1-2 and -6 grew very weakly. In order to verify
that the deletion of three consecutive amino acid residues

did not dramatically affect the structure of the protein
and result in the caffeine- and temperature-sensitive
phenotypes that were observed, we constructed two
additional caf1 alleles in which three alanine residues
were substituted for the three residues deleted in caf1-2
and caf1-3. These two alleles were chosen in that results
shown below indicated that the caf1-1 and caf1-6 alleles
appeared phenotypically similar to caf1-3, and caf1-2 was
unique for being most defective in CCR4 binding. Strains
carrying caf1-10 (213AAA215) and caf1-11 (255AAA257)
displayed the exact same phenotypes as did strains
with their respective deletion alleles, caf1-2 and caf1-3
(Table 2). For the remainder of our analysis the original

Figure 2. Western blot analysis of CAF1 mutant proteins. (A) The
HA-CAF1 proteins were expressed in the EGY191-c1 strain, protein
extracts were made and the CAF1 proteins were detected by western
analysis. The apparent increased abundance of caf1-2 protein in the gel
that is presented is artifactual and no significant differences in the
abundance of these proteins were observed in numerous other
experiments. Vector control refers to pJG4-5 without the CAF1
protein. Equivalent amounts of protein were loaded in each lane as
determined by Bradford assay, and western analysis using CAF40
(lower panel), CCR4 and NOT3 antibodies confirmed equivalent levels
of CAF40, CCR4 and NOT3 proteins in each of the lanes. (B) The
LexA-CAF1 proteins were expressed in EGY188-c1 and the CAF1
proteins were detected by western analysis using LexA antibody. The
cause for the multiple bands present for CAF1 is not known, but they
are not related to the phosphorylation of CAF1 that has previously
been observed (27). The control band refers to a non-specific protein
that interacts with the LexA antibody and indicates that nearly
equivalent amounts of protein were loaded into each lane.

YD 30°C YD 39°CYD caffeine
CAF 1
caf1-1
caf1-2
caf1-3
caf1-4
caf1-5
caf1-6
caf1

Figure 3. Growth of strains carrying caf1 alleles. Yeast strains
(KY803-c1 with Flag-CAF1 variants as indicated or with pJCN112,
no Flag-CAF1, caf1) were grown on YD plates at 308C, on YD plates
with 5mM caffeine, or on YD plates at 398C. In each panel, moving
from left to right 10-fold less cells were plated in each column. Initial
concentrations of cells were �1� 107 cells/ml for the left row and 4 ml
of sample was placed in each spot.
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Figure 4. caf1-2 is deficient in contacting CCR4 in vivo. (A) N-terminal
FLAG tagged CAF1 alleles were transformed into the caf1 deletion
strain, KY803-c1. Crude extracts (5mg) were immunoprecipitated with
anti-FLAG M2 antibody and proteins were visualized by western blot
analysis with antibodies directed against CCR4, NOT1 and CAF1 as
indicated. (B) Plasmids expressing LexA-CAF1 were transformed into
strain EGY188-1a-1-c1 containing Flag-CCR4 expressed from its own
promoter on a centromere-containing plasmid. Flag-CCR4 was purified
as described for Flag-CAF1, and LexA antibody was used to identify
CAF1 as indicated.

Table 2. Growth phenotypes of yeast cells carrying caf1 mutant alleles

CAF1 allele 5mM caffeine 398C

Wild-type þ þ

caf1-1 � �

caf1-2 w w/�
caf1-3 � �

caf1-4 þ w
caf1-5 w/� þ

caf1-6 � w/�
caf1� � w/�
caf1-10 w w/�
caf1-11 � �

KY803-c1 strains carrying FLAG-CAF1 proteins or pJCN112
vector alone (caf1�) were tested. Growth was detected on YEP
plates containing 2% glucose (YD) and supplemented with 5mM
caffeine. Temperature sensitive growth was monitored on YD plates at
398C. þ, good growth; w, weak growth; �, no growth
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deletion mutations were used. It should also be noted that
these CAF1 deletion derivatives, as has been previously
observed for caf1 deletions (8–10), did not affect the
relative protein amounts and, therefore, expression in the
cell of other CCR4-NOT components, such as CCR4,
NOT1, NOT3 or CAF40 (data not shown).

The caf1-2 protein is defective in binding with CCR4

The relative locations of the proteins in the CCR4-NOT
core complex have been determined (9–11) in which the
CAF1 protein is critical for linking CCR4 to NOT1 and
the remainder of the CCR4-NOT complex. We, therefore,
assessed the ability of each of the CAF1 mutant proteins
to bind CCR4 and NOT1, using Flag-tagged CAF1
protein variants expressed in a caf1 deletion background.
Flag-CAF1 was used for this analysis as the Flag
immunoprecipitations resulted in substantially cleaner
backgrounds than immunoprecipitations with either
HA- or LexA-CAF1 variants. After Flag immunoprecipi-
tations were conducted, as shown in Figure 4A, we found
that the caf1-4 protein was able to bind CCR4 as well as
wild-type CAF1. The caf1-2 protein, in contrast, was
totally defective in binding to CCR4 (Figure 4A). The
slight band observed in the caf1-2 lane with CCR4
antibody does not migrate where CCR4 is located and is
a result of a non-specific protein interaction. The caf1-1,
-3, -5 and -6 proteins also displayed reduced binding
to CCR4, but they still displayed significantly more
association with CCR4 than did caf1-2. While all of the
mutant proteins were still capable of binding NOT1, they
did display reduced binding to NOT1 as compared to
wild-type CAF1.

In order to verify these results, we also conducted the
immunoprecipitation in the reverse direction for several of
the key CAF1 variants. Using a Flag-tagged CCR4
and LexA-fused versions of the CAF1 variants, we
isolated Flag-CCR4 and determined the abundance of
LexA-CAF1 that was co-immunoprecipitated. As shown
in Figure 4B, LexA-caf1-2 was most severely deficient in
binding CCR4. In contrast, LexA-caf1-1 and LexA-caf1-6
proteins bound significantly better to CCR4 than did
LexA-caf1-2. However, as demonstrated in Figure 4A,
both the LexA-caf1-1 and LexA-caf1-6 proteins were still
defective in binding CCR4 as compared to wild-type
CAF1 (Figure 4B).

These above results suggest several conclusions. First,
the immunoprecipitation data indicate that the differences
in the growth and caffeine phenotypes described above
do not result solely from differences in CAF1 binding
NOT1 or CCR4. The severe phenotypes displayed with
the caf1-1, -3 and -6 alleles were not due solely to loss of
CCR4 binding, as each of these corresponding proteins
could bind CCR4 as well as caf1-5, whose allele did not
display as severe growth defects. The caf1-2 protein was
most defective for binding CCR4, and yet the strain
carrying caf1-2 grew better than did those carrying caf1-1,
-3 or -6, indicating that loss of CCR4 binding alone was
not the cause for the caf1 deletion phenotypes. Therefore,
while CAF1 binding to CCR4 contributes to part of the
defects observed with caf1D, as exemplified by caf1-2,

other CAF1 interactions must also be important to
its function. Third, the ratio of NOT1-CCR4 in the
caf1-1, -3, -5 and -6 immunoprecipitations was similar to
that found in the wild-type strain, arguing that some of the
CCR4-NOT complex was intact in the cell. The expression
and abundance of the individual CCR4-NOT proteins in
the cell were not affected by the caf1 variants as
determined by western analysis (data not shown),
suggesting that the each of the caf1 variants except
for caf1-4 was causing some destabilization of the
CCR4-NOT complex. Yet, as the strain carrying caf1-5
was similar to wild type in terms of its growth at high
temperature, the reduced abundance of the CCR4-NOT
complex per se is not the sole cause for all of the severe
growth defects observed with caf1-1, -3 and -6. These
observations also suggest that the severe growth defects of
caf1-1, -3 and -6 relative to that of caf1-2 and caf1-5 are
not specifically due to the caf1-1, -3 and -6 proteins being
completely misfolded and hence comparable to the caf1D
allele, as some of these caf1-1, -3 and -6 proteins are still
capable of binding CCR4 and NOT1.
We also assayed the purified CCR4-NOT complex

from each of the mutated strains for in vitro CCR4
deadenylation activity (23). CAF1 is not required for
CCR4 in vitro deadenylation function (7,30), and, as
expected, the six caf1 alleles did not significantly alter
CCR4-NOT in vitro deadenylation activity following
purification of Flag-CCR4 (Supplementary Figure 1).
We were not able to assay, however, for CAF1
deadenylase activity in vitro since we have not been able
to demonstrate enzyme activity for yeast CAF1 (6,16).

Identification of separable functional regions required for
mRNA deadenylation

In order to determine if the caf1 mutant alleles affected
mRNA deadenylation in vivo, transcriptional pulse-chase
experiments were performed on the GAL1 mRNA. In this
experiment, transcription of GAL1 mRNA was induced
by adding galactose and then repressed by adding glucose
to the growing culture. Following a 15min induction,
GAL1 mRNA synthesis was shut-off at time zero and
aliquots were prepared for northern analysis at each time
point. As shown in Figure 5A, GAL1 mRNA was
shortened with a 30 oligonucleotide probe and RNase H
prior to separation on a denaturing polyacrylamide gel
for size resolution of the poly(A) tail. Due to two
polyadenylation sites in the GAL1 gene, GAL1 mRNAs
consists of two forms: GAL1-L and GAL1-S in which the
long GAL1-L has an additional 110 nt in its 30-UTR
segment as compared to GAL1-S (Figure 5A) (31,32).
However, as GAL1-S mRNA is less abundant and
therefore more difficult to detect and quantitate than
that of GAL1-L mRNA, we present only the data for
GAL1-L. Also, for this experiment LexA fusions to the
CAF1 variants were used to transform a caf1 deletion
yeast strain so that CAF1 would be constitutively
expressed from its ADH1 promoter.
The deadenylation rate analysis of GAL1-L mRNA

identified several functional regions in CAF1 that are
important for normal deadenylation in vivo. Of the six
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caf1 alleles, caf1-1, caf1-3 and caf1-6 alleles displayed
severe deadenylation rate defects similar to that
displayed with a caf1 null allele. For the wild-type
strain (Figure 5B), GAL1-L poly(A) tails were shortened
to 8–12 nt within 9min. In contrast, in the caf1-1, -3 and -6
allele background, GAL1-L was only deadenylated
to �30–35 A’s within the first 9min (Figure 5B).
Similar defects in GAL1-S mRNA deadenylation were
also observed for caf1-1, -3 and -6 as compared to wild
type (data not shown). The average rate of deadenylation
for GAL1-L in wild type was 4.9 A’s/min in which the rate
of deadenylation was based on the lower end of
the poly(A) distribution (26) (Table 3). In the caf1-1, -3
and -6 mutated strains, the range of the deadenylation
rates for GAL1-L mRNAs were from 2.0 to 2.9 nt/min
(Table 3). For caf1-2 and caf1-5, in contrast,
the deadenylation rates for GAL1-L were in the 3.4–4.4
A’s/min range, indicating that they were defective
in deadenylation but not to the extent observed for the
caf1-1, -3 and -6 alleles (Table 3; Figure 5B). caf1-4
displayed a faster deadenylation rate than wild type. In
addition, it should be observed that the caf1-1, -3 and -6
proteins failed to allow complete deadenylation to 8–10
A’s even at the 40-min time point. caf1-2 allowed
deadenylation to proceed much further to nearly wild-type
lengths, whereas caf1-5 displayed a more severe dead-
enylation endpoint defect with GAL1-L. Given that
the phenotypic analysis of caf1-2 and caf1-5 showed
that their temperature and caffeine sensitivities were
halfway between wild type and that of the caf1 deletion,
these in vivo deadenylation data agree well with their
in vivo phenotypes.

To more precisely analyze deadenylation endpoints, the
steady-state RNA levels of MFA2pG were studied (6).
In this case, the pG mRNA fragments that results from
deadenylation, decapping and 50 nuclease digestion of
MFA2pG allows a better estimate of the deadenylation
endpoint than does pulse-chase analysis. Previously, a caf1
deletion has been shown to result in median endpoints
of �16–20 A’s as compared to 8–12 A’s for wild-type
CAF1 (6). We found that caf1-1, -3 and -6 alleles resulted
in a longer poly(A) tail length for the pG fragment that
results after deadenylation, decapping and 50–30 nuclease
action on MFA2pG than for wild-type CAF1: 24–29 A’s
for the longest A lengths as compared to 11 A’s for wild-
type (Figure 6, lanes 2, 4, 7 compared to lane 1;
summarized in Table 3). In the caf1-2 and caf1-5 alleles,
the deadenylation endpoints of the pG fragment were not
significantly affected as compared to wild-type (Figure 6,
lanes 3, 6; Table 3). It should also be noted that the rate
of MFA2pG deadenylation appeared slower in the caf1-1,
-3 and -6 backgrounds as compared to caf1-2, -5, and
CAF1. In the top part of Figure 6, it can be observed
that full-length MFA2pG mRNA poly(A) tails are on
average significantly longer for caf1-1, -3, and -6 than
that of caf1-2, -5 and CAF1, indicative of slowed
deadenylation. Moreover, the ratio of full-length
MFA2pG RNA to that of the pG fragment was
significantly greater for caf1-1, -3 and -6 as compared
to caf1-2, -5, and CAF1, indicating that the rate of
decapping and degradation of the MFA2pG mRNA was
being slowed, most likely due to a slowed rate of
deadenylation (6). These overall results indicate that the
severe growth phenotypes of caf1-1, -3 and -6 probably
result from the inability of the CCR4-NOT complex to
properly deadenylate in vivo and that CAF1 must also

Table 3. Deadenylation rates of GAL1 and endpoints of MFA2pG

mRNA

CAF1
allele

Deadenylation
rate
(A’s/min� SEM)

Deadenylation endpoint range
[oligo(A) shortest to
longest� SEM for longest lengths]

GAL1-L MFA2pG

Wild type 4.9� 0.5 0–11� 1.9
caf1-1 2.0� 0.2 5.3–29� 3.4
caf1-2 3.4� 0.7 1.9–15� 2.1
caf1-3 2.1� 0.5 5.2–29� 3.4
caf1-4 6.1� 1.6 0–11� 2.1
caf1-5 4.4� 0.6 0–12� 4.3
caf1-6 2.9� 0.7 2.2–24� 2.0
caf1� 2.4� 0.5 3.5–26� 2.7

caf1 deletion strains (EGY188-c1) harboring LexA versions of wild-
type, caf1 mutants and vector (LexA202-2) were used for transcrip-
tional pulse chase analysis. Rates of deadenylation were measured by
the change in the length of the shortest poly(A) tail as a function of
time following transcriptional shut-off (Figure 4B). Similar results were
obtained using the mean poly(A) tail length. EGY188-c1-1 strains
harboring LexA-caf1 variants and pRP485 (GAL1-MFA2pG) were used
for analyzing steady-state MFA2pG mRNA. The range in oligo(A)
lengths for the pG fragments from northern analysis was taken from
deadenylation endpoint measurements. Deadenylation rate values
represent the average of three separate experiments and the standard
error of the mean (SEM), and the deadenylation endpoints are the
average of two separate experiments and the SEM for the longest
length poly(A) segments.
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Figure 6. caf1-1, -3 and -6 alleles are defective in the deadenylation
endpoint of the MFA2pG mRNA. Northern analysis of steady-state
MFA2pG mRNA was conducted in a caf1D background (EGY188-
c1-1) in which LexA-CAF1 fusion proteins were expressed as indicated.
dT refers to removal of oligo(A) by incubation with oligo(dT) followed
by RNase H digestion. The approximate lengths of the poly(A) tail and
migration positions of the MFA2pG and pG fragments are indicated to
the left and right, respectively. LexA refers to the LexA vector alone
expressed in strain EY188-c1-1.
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interfere with the deadenylation process separately from
its contacts to CCR4 and NOT1.

Analysis of the role of CAF1 in deadenylation separate
from contacting CCR4

The above results support the model that CAF1 has an
effect on the mRNA degradation process in addition
to that derived from its contact to CCR4. In this regard,
the caf1 deletion has previously been shown to be lethal
with a deletion in the decapping/translational regulator
DHH1 whereas the ccr4 deletion is not lethal with that
of dhh1D (33). In order to determine which CAF1 allele
can confer lethality with dhh1D, we constructed a strain
carrying both a dhh1D and a caf1D that was covered by
a plasmid expressing a GAL1-CAF1 gene. This strain
was unable to grow on glucose growth conditions when
GAL1-CAF1 expression was shut-off (Supplementary
Figure 2). Following transformation of LexA-CAF1
plasmids encoding each of the above mutagenized CAF1
alleles, the caf1-1, -3 and -6 alleles did not allow growth on
glucose growth conditions whereas caf1-2 and -5 alleles
allowed growth on glucose (Supplementary Figure 2).
These data suggest that caf1-1, -3 and -6 alleles are also
defective in a non-deadenylation function.
caf1D dhh1D lethality could result from their combined

effects on deadenylation that is separate from CCR4
effects on deadenylation. However, this model is unlikely
in that lethality does not occur under circumstances when
deadenylation in the cell is completely blocked (6). An
alternative model would be that as DHH1 is known to be
involved in both decapping (34) and translation (35),
CAF1 could be involved separately from CCR4 in either
or both of these functions leading to a caf1D dhh1D
lethality. This model would further suggest that
CAF1 effects on deadenylation that are separate from
binding CCR4 would result from its involvement in this
other function. That is, CAF1 interaction with the
decapping/translation processes may affect deadenylation.
However, CAF1 is not probably involved in decapping
separately from CCR4. Studies that measured the relative
decapping rate using the MFA2pG RNA have suggested
that the slowed deadenylation observed with a caf1
deletion does not result in a more severe decapping
defect than does ccr4D (5,6; data not shown).
In an analysis of the genetic interactions of

poly(A)-binding protein (PAB1) with CCR4 and CAF1,
we observed that deleting the RRM2 or RRM1 domain of
PAB1 was lethal with a caf1 deletion but not with ccr4D.
The RRM2 domain of PAB1 is important both for
contacting the poly(A) tail and the translation initiation
factor eIF4G, and both RRM1 and RRM2 are required
for poly(A) stimulated in vitro translation (36–38). This
observation suggests that CAF1 has functions separate
from CCR4 that involve some role of PAB1.
We subsequently analyzed whether deletion of other
components of the CCR4-NOT complex or those of the
PAN2/3 deadenylase were lethal with these PAB1
variants. We found that the not4D, not5D and caf40D, as
well as pan2D and pan3D, were not lethal with these PAB1
mutants (data not shown), implying that it was a specific

property of CAF1 that resulted in the lethality. This
observed caf1D pab1-DRRM2 lethality suggests that
CAF1 may functionally interact with factors affecting
translation, which in turn may affect deadenylation.
The RRM1 and RRM2 deletions of PAB1 also reduced
the in vivo rate of protein synthesis by 28 and 15%,
respectively, whereas deletion of RRM3, RRM4 or of the
C-terminal region of PAB1 had56% effects on the rate of
protein translation (data not shown). Deletions of RRM3,
RRM4 or the C-terminus of PAB1 were correspondingly
not lethal with caf1D (data not shown). We also found
that the caf1-1, -3 and -6 alleles but not those of caf1-2 or
caf1-5 were lethal with PAB1-�RRM2 (data not shown).
These genetic interactions support the possibility that
CAF1 is functionally involved with factors that affect the
translation process.

To clarify the genetic interaction between caf1D
and PAB1-�RRM2, we conducted a genetic screen to
identify genes whose over-expression could rescue this
synthetic lethality. A high-copy YEp13-LEU2 yeast
genomic library was transformed into a strain carrying
the caf1D PAB1-�RRM2 allele and the YC360 plasmid
[PAB1-URA3]. Eleven plasmids that suppressed the caf1D
PAB1-�RRM2 lethality were identified, as evidenced by
their ability to support loss of the YC360 plasmid
following growth on 50-FOA plates. Five of these plasmids
contained CAF1 and one plasmid carried PAB1. All of
these plasmids suppressed the lethality strongly (Figure 7).
Of the remaining five plasmids, two displayed moderate
suppression, and of these one was found to carry the
DHH1 gene and the other the STM1 gene. The remaining
three weakly suppressing plasmids will be reported on
separately.

Because previous analysis has identified several
multi-copy suppressors of a caf1 deletion, including that
of DHH1, CCR4, PKC1, STM1 and PUF5 (29), we tested
whether over-expression of each of these different genes in
a strain carrying caf1D PAB1-�RRM2 and PAB1-URA3
could suppress the caf1D PAB1-�RRM2 lethality
and allow loss of PAB1-URA3 and subsequent growth
on 50-FOA media. As shown in Figure 7A, we failed
to observe any high-copy suppression of caf1D
PAB1-�RRM2 by CCR4, PKC1 or PUF5. Since
over-expression of CCR4 can complement caf1D dead-
enylation defects (6), this last result confirms that caf1D
pab1-�RRM2 lethality is not due solely to a dead-
enylation defect. Moreover, it indicates that the ability
of over-expressed DHH1 and STM1 to complement the
caf1D PAB1-DRRM2 lethality does not result from simply
the ability to complement caf1D defects. These findings
provide additional genetic evidence supporting the func-
tional participation of CAF1 in a process that is separate
from the role involving CCR4.

One additional model to explain the role of DHH1 in
suppressing the caf1D PAB1-�RRM2 lethality would be
that over-expression of DHH1 could compensate for the
deadenylation defect caused by caf1D. In analyzing the
steady-state MFA2pG levels, over-expression of DHH1,
however, had no effect on the deadenylation defects
observed with the caf1-1, -6 and caf1D alleles (data not
shown). In each of these strains, the MFA2pG mRNA did
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not deadenylate completely and had longer poly(A) tail
lengths than the wild-type regardless of whether DHH1
was over-expressed or not. We additionally tested whether
DHH1 association with the CAF1 variants was altered,
as it has been shown that NOT1 and CAF1 can
associate with DHH1 (33,34). DHH1 interaction
with the CCR4-NOT complex for each of the CAF1
variants, however, was unaffected (Supplementary
Figure 3), in agreement with previous data that showed
that a caf1 deletion had little effect on DHH1 association
with NOT1 (33).

As DHH1 is involved in translation processes (34,35)
and STM1 can interact with the ribosome and eIF4E and
is important for protein synthesis (39–43), we determined
whether over-expression of CAF1 or CCR4 could in turn
complement a defect in translation factor eIF4E (cdc33-1
allele). As shown in Figure 7B, over-expression of CAF1
but not that of CCR4 could complement the caffeine
sensitivity displayed in a strain carrying the cdc33-1
allele. As cdc33-1 is specifically defective in binding
the 50 mRNA cap (44), these results provide further
support for a functional interaction of CAF1 with
translational factors distinct from the role of CCR4 in
deadenylation. However, as over-expression of CAF1 was
found neither to rescue the cdc33-1 defect in in vivo protein
translation nor did it affect in vivo protein translation in a
wild-type background (data not shown), over-expression
of CAF1 does not probably restore eIF4E function
completely.

Because of the genetic interaction between CAF1 and
that of cdc33-1, we also assessed whether a caf1D could
affect translation directly. Two aspects were analyzed.
First, we conducted polysome profiles of mRNA isolated
from wild-type and caf1D strains. No differences between
the polysome profiles were observed (data not shown).
Second, we assayed if a caf1D affected the rate of in vivo
protein translation by quantitating the rate of incorpora-
tion of [35S]-methionine into newly synthesized protein.
A caf1D was found to reduce the rate of in vivo translation
to 35% of wild type. In contrast, a ccr4D reduced in vivo
translation only to 55% of wild type. SEMs for these
series of experiments were55% of the values. Similarly, in
a cdc33-1 background, a caf1D deletion reduced the rate of
in vivo protein synthesis from 35% (cdc33-1) to that of
13% (cdc33-1 caf1D); the rate of protein synthesis was
reduced to 24% by combining cdc33-1 with ccr4D. These
results indicate that a caf1D was displaying an additional
effect on protein translation than observed through its
possible effects on CCR4.
If CAF1 were to functionally interact with PAB1 and/or

the translation process, it might be expected that defects in
PAB1 could, in turn, when combined with caf1D,
specifically reduce deadenylation. We subsequently
analyzed whether other less severe defects in the RRM2
domain of PAB1 in conjunction with a caf1 deletion
affected the deadenylation process. Two PAB1 variants
are known to affect different PAB1 translational functions
(38). PAB1-184 and PAB1-134 carry three amino
acids substitutions each: PAB1-184 affects eIF4G binding
in vitro and PAB1-134 has an undefined in vitro translation
defect involving 50-cap-dependent translation (38).
We first analyzed the effect of these variants on
the steady-state distribution of poly(A) tail lengths for
GAL1-L mRNA in conjunction with a caf1 deletion.
caf1D PAB1-134 resulted in significantly longer
steady-state GAL1-L poly(A) tail lengths as compared to
caf1D alone, indicative of a slowed deadenylation
rate (Figure 8A, right panel; data not shown), whereas
PAB1-184 had no effect on poly(A) tail lengths in
conjunction with caf1D. This result suggests that both
CAF1 and the PAB1-134 mutated residues are required
for complete deadenylation. In contrast, PAB1-134 in
combination with ccr4D did not affect the steady-state
distribution of GAL1-L poly(A) tail length as compared
to ccr4D alone (Figure 8A; middle panel) nor did it affect
the GAL1-L poly(A) tail lengths with wild-type PAB1
(Figure 8A, left panel). These latter results demonstrate
that PAB1-134 is not affecting PAN2/3 deadenylase
activity, which is the only deadenylase activity present in
a strain lacking CCR4 (6).
Analysis of the actual deadenylation rate for GAL1-L

showed that a caf1D PAB1-134 background caused a
severe slowing of the rate of deadenylation (0.7 A’s/min
compared to 4.0 A’s/min for wild-type PAB1 and 2.2 A’s/
min for caf1D) (Figure 8B). This slowing of the rate of
deadenylation by caf1D PAB1-134 was as severe as that
observed in a ccr4 deletion (Figure 8C; 1.1 A’s/min). These
observations suggest that defects in translation caused
by PAB1-134 can cause corresponding defects in dead-
enylation and that proper translation in conjunction with
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Figure 7. High-copy suppressors of caf1D PAB1-DRRM2 lethality. (A)
Over-expression of DHH1 and STM1 suppress the synthetic lethality of
the caf1D PAB1-DRRM2 double mutant. Strain ASY319-c1-lN/YC360
(PAB1-URA3)/YC506 (PAB1-DRRM2-TRP1) was transformed with
YEp13 plasmids carrying MPT0 (CAF1), MPT1 (DHH1), MPT2
(CCR4), MPT3 (PKC1), MPT4 (STM1), MPT5 (PUF5) (29) and
PAB1, respectively. Transformants were selected on minimal medium
lacking leucine and tryptophan and replica plated to medium contain-
ing FOA to lose the YC360 plasmid. For the DHH1 and MPT4
complementation of caf1D PAB1-DRRM2 lethality, the papillation of
colonies that is observed are not revertants as they represent cells that
begin growth at the same time that cells begin to grow in the control
PAB1 or CAF1 situations. Similar papillations are typically observed
for growth on 50-FOA plates during the selection for loss of YC360
plasmids in many other experiments. (B) Over-expression of CAF1 can
suppress the caffeine sensitivity associated with the cdc33-1 allele. Strain
1881/YC360 was transformed with MPT0, MPT2 or YEp13. The YD
plates contained 8mM caffeine.
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CAF1 is required for complete deadenylation by CCR4
(see Discussion). Because the PAB1-134 protein had only
been assessed for effects on in vitro translation (38), it
remains possible that PAB1-134 does not affect in vivo
translation. We consequently determined if PAB1-134 was
defective for in vivo translation by quantitating the rate of
incorporation of [35S]-methionine into newly synthesized
protein. PAB1-134 did not affect the rate of in vivo
translation as compared to PAB1 wild type (data not
shown). However, when we combined PAB1-134 with a
defect in eIF3 (prt1-63 allele) that has previously been
shown to reduce the rate of in vivo translation (24), we
found that PAB1-134 prt1-63 reduced the rate of in vivo
translation significantly compared to prt1-63 alone:
prt1-63 PAB1-134 (31� 5.0%), prt1-63 (45� 3.0%), and
wild type (100%). In contrast, PAB1-184 did not affect
in vivo translation alone or in conjunction with prt1-63
(48� 7.5%). These results indicate that the PAB1-134
protein does display defects for in vivo translation.

DISCUSSION

It has been shown that the CAF1C-terminal domain
purified from E. coli exhibits an exonuclease activity with
a poly(A) preference (19,23). Our previous mutation
studies of CAF1 established, however, that its RNase
function is not required for the in vivo deadenylation
process (16). This discrepancy prompted us to identify
the functional domains that are critical for CAF1 to
perform its role in mRNA turnover. By targeting only
those sequences absolutely conserved amongst all CAF1
orthologs but not present in other members of the
DEDDh family of nucleases, we sought to identify
CAF1-specific functions. This methodology led us
to define several separable functional regions in the
CAF1 protein.

Immunoprecipitation analyses with CAF1 mutants used
in this study showed that three amino acids (213FRS215)
deleted in caf1-2 are most required for the CAF1
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interaction with CCR4. As mammalian CAF1 can also
bind yeast CCR4, it would be expected that the CAF1
residues involved in this contact have been retained
evolutionarily. Residues 213–215 are found in a loop
region whose structure was not fixed enough to be
determined in the X-ray analysis of CAF1 (Figure 1A)
(19). Other residues of CAF1 might also be involved in
contacting CCR4 as the caf1-1, -3, -5 and -6 proteins also
displayed weakened binding to CCR4. The caf1-2 protein
displayed a weak caffeine-sensitive phenotype and inter-
mediate effects on deadenylation in vivo as compared to a
caf1 deletion or to mutations in other regions of the CAF1
protein that were capable of binding CCR4 to a much
greater extent. It appears, therefore, that CAF1 binding to
CCR4 is not the only function of CAF1 for deadenylation.
This conclusion extends the results from our previous
analysis wherein mutations in CCR4 that significantly
reduced, albeit did not eliminate, CCR4 binding to CAF1
appeared phenotypically wild type (30).

In contrast to caf1-2, the most important regions
for CAF1 function in vivo were identified by the caf1-1,
-3 and -6 alleles. These three caf1 mutant alleles
displayed severe defects in poly(A) shortening like
that of a caf1 deletion and were as caffeine sensitive as
the caf1 deletion. Three observations suggest that caf1-1
and caf1-3 alleles are equivalent physically and function-
ally. First, the X-ray crystal structure showed that caf1-1
and caf1-3 alleles are located in the same region where two
parallel b strands (b1 and b4) are aligned side by side
(Figure 1A) (19). The exact locations of caf1-1 and caf1-3
in these b strands indicate that each triplet of residues do
not actually H-bond with each other, but lie contiguous
along the b sheet structure (19). Each defect would be
expected to partially disrupt this region of the b sheet
structure. Second, yeast cells carrying either of the two
alleles grew more slowly than did a caf1 deletion. Third,
both alleles showed similar GAL1 deadenylation rates
and defects in MFA2pG endpoints. These observations
indicate that the caf1-1 and caf1-3 alleles define a novel
functional region of yeast CAF1 required for its cellular
activity. The caf1-6 allele, deleting residues 340DFE342,
defines a third functional region of CAF1. Phenotypes
associated with caf1-6 are nearly identical to those
observed for caf1-1 and -3, although the location of the
caf1-6 mutation is on the opposite site of the CAF1
protein as that of caf1-1 and -3. It is unlikely, however,
that the putative contacts made by the caf1-6 region (a8)
are to the same factors as presumed to contact the b1 and
b4 sheets. At least, both regions and their putative
contacts are central to CAF1 in vivo function.

In regards to the location of the six mutations in the
structure of CAF1, the following observations can be
made. First, none of the mutations are either in the
presumed catalytic area (a4 and a5 and the loop between
the b2 and b3 strands) or in the negatively charged cavity
of CAF1 that coincides with the active site found in the
structurally and evolutionarily related e subunit of DNA
polymerase III (polIII) or DNA polymerase I (polI) (19).
Second, the b1 strand of CAF1 (the site of the caf1-1
alteration) is not found in polIII, although it is present
in polI. The sequence features of b4 that were mutated in

caf1-3 are alternating non-polar/polar/non-polar residues,
a pattern retained by both polIII and polI, albeit with
distinctly different residues for the polar residues and
different sizes for the non-polar amino acids. Third, the
whole protein region corresponding to a8, the turn region
after a7, and the loop between b2 and a3, the sites of the
caf1-6, -5 and -2 mutations, respectively, is not present in
either polIII or polI. These three sites are all close to one
another and are located on the exterior of the protein. The
evolutionary conservation of this region across the CAF1
protein family argues for unique contacts made by it,
including but not limited to binding CCR4.
In that we also observed that none of our CAF1 alleles

severely affected in vitro CCR4 deadenylation activity
regardless of whether the alleles blocked CCR4 binding to
CAF1 (caf1-2) or not, we conclude that CAF1 does not
directly regulate CCR4 activity in vitro. This is in
agreement with our previous observations (7,30). Also,
as mentioned above each of the CAF1 alleles interacted
equivalently well with NOT1, further suggesting that the
identified roles for CAF1 in vivo are not solely defined
through this interaction either. Yet, because binding to
NOT1 was reduced by each of the defective CAF1
proteins, it remains possible that disruptions in the
CAF1-NOT1 interaction are responsible for at least part
of the reductions in deadenylation that were observed.
Moreover, in that DHH1 is known to contact the CCR4-
NOT complex through the N-terminal part of NOT1 (33),
the genetic interactions observed between DHH1 and
CAF1 could be mediated in part by NOT1.
Because the caf1-1, -3 and -6 alleles resulted in more

significant defects in deadenylation than did the caf1-2
allele, CAF1 appears to function to control the dead-
enylation process through non-CCR4 contacts in addition
to its contact to CCR4. As mentioned above, disrupting
the NOT1 contact does not seem to be solely responsible
for this phenotype and we showed that all of the CAF1
variants interacted equivalently with DHH1. The genetic
analyses demonstrating caf1D but not ccr4D lethality with
the decapping/translation regulator dhh1D and with
PAB1-DRRM2/DRRM1 is consistent with CAF1 exerting
effects separate from CCR4. However, neither of these
lethalities is probably due solely to deadenylation defects
that are more severe than those observed in a ccr4D
background in that the total lack of deadenylation in yeast
is not lethal (6; data not shown). As it has been observed
that a caf1 deletion does not result in more severe
decapping defects than does ccr4D (5,6; data not shown),
it is also unlikely that CAF1 is exerting these other effects
through decapping (6). Rather, it appears that CAF1 in
conjunction with DHH1 and with PAB1 is required for
some other essential process.
In terms of the role of CAF1 in deadenylation, CAF1

appears to play at least two roles. First, through
its contact to CCR4 it aids CCR4 association to
the CCR4-NOT complex that is important for CCR4
deadenylation. Second, it may affect some aspect of
translation that in turn interferes with deadenylation
and/or act on deadenylation in conjunction with factors
such as PAB1 and DHH1 that play roles in translation.
Several observations support this inference. Deleting those
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domains of PAB1 that are known to affect in vivo and
in vitro translation were lethal with deleting CAF1. In
addition to the observed lethalities described above, we
found that over-expression of translational regulator
DHH1 and ribosome-associated protein STM1 can
specifically suppress the caf1D PAB1-DRRM2 lethality.
Other suppressors of caf1D not as directly involved
in translation, such as CCR4, PKC1 and PUF5, did
not display this phenotype. We also showed that
over-expression of CAF1 but not that of CCR4 could
suppress phenotypes associated with a defect in transla-
tion factor eIF4E. In addition, a caf1D slowed in vivo
protein synthesis, although how it does this is not clear.
Taken together, these data point to a role for CAF1 in
functionally interacting with translationally important
proteins.
A possible role for translation or factors involved in

translation in being required for deadenylation was
supported by the observation that the PAB1-134 variant
slowed the rate of deadenylation when combined with a
caf1 deletion. PAB1-134 did not affect deadenylation by
itself and had no effect on deadenylaton when combined
with a ccr4 deletion. The PAB1-134 protein is known to be
defective for in vitro translation (38), and we showed that
it reduced in vivo translation when combined with defects
in translation initiation factors. Previous studies have
indicated that defects in translation initiation factors
accelerated the CCR4 deadenylation process (24). In these
cases, interference with translation initiation would
appear to predispose the mRNP for deadenylation
and should not necessarily inhibit it. In contrast, the
PAB1-134 caf1D effect on deadenylation implies that both
PAB1 and CAF1 are required for deadenylation.
As PAB1 has been suggested to both inhibit and be
required for deadenylation (5,45,46), additional studies
are necessary to clarify how other factors of the mRNP,
such as PAB1, actually affect CCR4 deadenylation. Their
analysis may shed light on the means by which CAF1
affects the mRNA degradation process.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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