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Abstract: Many previous studies on the mechanical properties of Parasagittal Bridging Veins (PSBVs)
found that strain rate had a significant effect on some mechanical properties, but did not extensively
study the viscoelastic effects, which are difficult to detect with uniaxial simple tensile tests. In this
study, relaxation tests and tests under cyclic loading were performed, and it was found that PSBVs
do indeed exhibit clear viscoelastic effects. In addition, a complete viscoelastic model for the PSBVs is
proposed and data from relaxation, cyclic load and load-unload tests for triangular loads are used to
find reference values that characterize the viscoelastic behavior of the PSBVs. Although such models
have been proposed for other types of blood vessels, this is the first study that clearly demonstrates
the existence of viscoelastic effects from an experimental point of view and also proposes a specific
model to explain the data obtained. Finally, this study provides reference values for the usual
viscoelastic properties, which would allow more accurate numerical simulation of PSBVs by means
of computational models.

Keywords: bridging veins; TBI; tissue characterization; biomechanics; strain rate dependent materi-
als; viscoelasticity

1. Introduction

The importance of the TBI at the global level cannot be overlooked. Every year, about
70 million people worldwide are afflicted with some form of TBI, with the global incidence
reaching about 940 cases per 100,000 people [1]. Among the factors leading to different
types of TBI, a particularly pressing one is SDH produced by the rupture of some types of
PSBVs [2,3]. In particular, the superior sagittal sinus-bridging veins, which link the central
sagittal sinus to the upper part of the brain mass, have been identified as a highly critical
region prone to producing SDHs of some severity [4–7].

For this reason, detailed and accurate studies of the mechanical properties of the
collagenous tissue constituting the PSBVs are important, and should be updated using
better and more accurate measurement techniques. For example, one influential paper
detected a negative correlation of ultimate stress and strain rate [4]; however, a later paper
showed a positive correlation [7], although neither author found the correlation to be
statistically significant. The issue was recently closed when the use of more accurate
digital measurement systems found a positive and significant correlation [3]. Although
strain-rate dependent behavior for some mechanical properties have been studied by
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several authors [4,6–8], there are still few studies in the literature properly investigating
the viscoelastic behavior of PSBVs, including the measurement of relaxation times or
preconditioning under cyclic loading [3,9]. An important advance is found in [10] which
examines preconditioning by cyclic loading and fatigue. However, although some work has
been done for other types of blood vessels [11], no specific and complete viscoelastic model
has yet been proposed for the PSBVs. The aim of this study is to contribute to filling the gap
in viscoelastic characterization, using a more complex series of tests including load-unload
cycles, stress relaxation cycles and fast repeated loading cycles, following the line of other
works on the characterization of viscoelastic behavior of biological tissues [12–14].

This work shows that, the viscoelastic behavior of the PSBVs is clearly observable,
measurable and quantifiable when observing the rehology of the tissue in a series of more
complex tests, such as cyclic-load and relaxation tests, instead of conventional simple
uniaxial tests, where the contribution of the viscoelastic effect to the mechanical behavior
is difficult to quantify [3]. Such viscoelastic behavior can be used to improve both the
understanding of injury mechanisms [15,16], and the computational models used to assess
the probability of severe injuries.

2. Data and Methods
2.1. Material and Specimen Preparation

For this study, different sections of the meningeal-cortex space were obtained from
four autopsies of post-mortem human subjects (PMHS) conducted at the Forensic Pathology
Service of the Legal Medicine and Forensic Science Institute of Catalonia (FPS/IMLCFC).
The study was approved by the Research Committee of the IMLCFC. None of the subjects
had been previously diagnosed with any blood vessel pathology.

Once received, the meningeal sections were kept refrigerated for, at most, 96 h in
airtight containers that maintained the natural degree of hydration. The sections of the
meningeal-cortex space included the meninges, the subarachnoid space, and the upper
part of the cerebral cortex. From those four sections, six PSBVs were carefully dissected
(more than one PSBV was dissected from two sections). After dissection, the PSBVs were
kept in contact with towel tissue soaked in phosphate-buffered saline solution. Twelve
to twenty-four hours before testing, the PSBVs were placed in a refrigerator at 2 ◦C and
before testing they were allowed to come to room temperature for one hour.

2.2. Cyclic and Relaxation Tests

The tests were performed with an Allround-Table-Top Universal Test Machine (UTM)
Zwick-Roell® and load was measured with a 20N load cell HBM®. Special fixtures were
used for the PSBVs tests and the displacement was carefully measured with a digital control
unit attached to the UTM (due to the small dimensions of the cross-section of the PSBVs,
no significant local effects appear in the displacement measures). The specimens were kept
in physiological saline solution at 5 ◦C to minimize tissue degradation during the testing.

During the tests, a digitally displacement-controlled maximum strain εmax was applied
and the force experienced by each PSBV specimen was measured very accurately. In order
not to cause permanent damage to the specimens, εmax was selected as 20% of the average
ultimate strain, determined in previous tensile studies of PSBVs [3]. The sequence of stages
of the loading process was similar to that used in other soft tissue studies such as [12].
The different stages are as follows: (1) load-hold at εmax, (2) rapid load-unload cycles at
εmax, (3) three stages of load-hold at εmax, 2/3·εmax and 1/3·εmax, (4) three load-unload
stages at εmax at stretch rates of 0.01, 0.1 and 1 s−1 and (5) load to failure. Figure 1b shows
a schematic of the above stages. The tests were performed at a speed of 50 mm/s (except
for stage 4) and the holding time and the time between load stages were 50 s, allowing the
specimen to recover completely.



Bioengineering 2021, 8, 145 3 of 15

(a) (b)

Figure 1. (a) Experimental setting measurements: the coordinate system is centered on the static fixture with the x axis parallel to the load
direction, and a position change from the initial X to the deformed xt configuration is represented. (b) Cyclic and relaxation test stages
scheme: (1) load-holding to maximum strain (εmax), (2) fast load/unload cycle stage to maximum strain, (3) load-holding to εmax, 2/3·εmax

and 1/3·εmax, (4) load and unload to εmax at 0.01, 0.1, 1 s−1 and (5) load to fracture.

In this study, each PSBV is modeled as a homogeneous, transversely isotropic, hollow
cylinder with constant cross-section [3–5,7]. The coordinate axes have their origin upon
the static bottom fixture; the X axis is aligned with the (longitudinal) force, while the
Y and Z axes are contained in the PSBV cross-section. Thus, the stretch for each time
instant is easily determined as λt = `t/`0 = 1 + δt/`0 where `0 is the initial length, `t the
instantaneous length and the displacement δt = `t − `0 has been digitally measured. Let
X t = (Xt, Yt, Zt) be the coordinates in the initial configuration and xt = (xt, yt, zt) in the
deformed configuration, the deformation of the cylinder is expressed as

xt = Xλt, yt = Y
[
1− ν̄(λ2

t − 1)
]1/2

, zt = Z
[
1− ν̄(λ2

t − 1)
]1/2

(1)

where ν̄(λt) represents the Poisson effect. Thus, being Ft = ∂xt/∂X the deformation
gradient tensor, the (Green-Lagrangian) strain tensor ε = (FT

t Ft − 1)/2 is obtained as

ε(t) =
1
2

λ2
t − 1 0 0

0 −ν̄(λt)(λ2
t − 1) 0

0 0 −ν̄(λt)(λ2
t − 1)

 (2)

On the other hand, the force Ft has been measured for each time instant during the
whole test. From the force, the (second Piola-Kirchhoff) stress tensor σ is obtained:

σ(t) =


Ft

λt A0
0 0

0 0 0
0 0 0

 (3)

being A0 the initial (undeformed) cross-section of the PSBV.

2.3. Quasi-Linear Viscoelastic Model

Many previous studies had used uniaxial tensile tests on PSBVs, showing that an
elastic model reasonably explains the results obtained in this type of test. For this reason,
the collagenous tissue of PSBVs has been treated simply as an elastic material. However,



Bioengineering 2021, 8, 145 4 of 15

the cycle tests and the relaxation tests performed show that there is a clear viscoelastic
effect on the mechanical behavior of PSBVs and that, therefore, viscoelastic models would
work better for more general situations than simple traction.

In this study, a viscoelastic model of type QLVE [13,17] will be used to model the
data. In the QLVE model, the mechanical response is divided into a strain-rate dependent
part and a strain-rate independent part: σx = σ

(e)
x + σ

(v)
x , using a separable relaxation

function R(εx, t) = G(t) · ∂σ
(e)
x /∂εx [13,18], where G(t) is the relaxation function, given by

the well-known Prony series [19–22]:

G(t) = 1 +
N

∑
k=1

gke−t/τk (4)

with gk being the “weights” of each k-term and τk being the relaxation times, both to be
obtained from experimental trials. The value of N depends on the needs of the setting,
in Section 3.1 it is shown that N = 3 is sufficient to represent the data in this study.
With these assumptions, the axial strain (using the second Piola-Kirchhoff stress tensor) is
expressed as

σx(t) =
∂Ψ
∂εx

=
∫ t

0
G(t− τ)

∂σ
(e)
x

∂εx
ε̇x(τ) dτ (5)

3. Results

For this study, cyclic and uniaxial relaxation tests were performed on six PSBV speci-
mens. Figure 2 clarifies the five stages of the testing process for each specimen. The same
figure shows the variation of the imposed displacements over time, together with the axial
force measured by the load cell.

Figure 2. Imposed displacements in the different test stages and reaction force of the PSBV for specimen
2632A/20. The stages with constant displacement have been enlarged to show the decrease in force in stages (1)
to (3), and the concavity of the load–discharge curve of stage (4).

Stages (1) and (3) are stages with constant strain: the first one up to the established
strain level εmax, and the second one divided in three stages up to εmax, 2/3 · εmax and
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1/3 · εmax. In both stages, while keeping constant the applied displacement and, therefore,
the strain, a clear relaxation of the reaction force of the PSBV specimen is observed, with a
drop of exponential type, which is a clear indication of the presence of viscoelastic effects
in the mechanical behavior of the specimen.

Likewise, stage (2) in which successive loading and unloading cycles have been
applied up to εmax at high speed, the same behavior is perceived, showing a progressive
drop in the force as the number of accumulated cycles increases.

Finally, stage (4) is divided into three load-unload stages at speeds of 0.01, 0.1 and
1 s−1 respectively. It can be seen that, the loads being triangular and applied at a constant
velocity, the force response is clearly a concave curve, which also indicates the presence of
viscoelasticity. Thus, the results obtained from the cycling and relaxation tests indicate that
the bridging vein is a viscoelastic material; therefore, a constitutive model that contemplates
such viscoelasticity is required to describe its mechanical behavior.

3.1. Relaxation Tests

The parameters of the viscoelastic model of Equation (5) were fitted from the data of
stages (1) and (3) of Figure 2. For this purpose, the set of force-time values from the instant
at which the maximum displacement is reached until the end of the stage was considered.

The axial stress (σx) is expressed in terms of the force as σx(t) = Ft/λt A0, see Equa-
tion (3). Given the low level of deformation, (ε < 5%), the material can be considered linear
elastic [23] without making large errors and employing the following relationship:

Ft

EA0
= λt

[
εx(t) +

N

∑
k=1

gk

∫ t

0
e−(t−τ)/τk ε̇x(τ) dτ

]
(6)

Note that, during the initial instants of loading, ε̇x 6= 0 and that makes the integral not
identically zero (see that once the maximum displacement ε̇x = 0 is reached, the integral
term is null). However, at the end of the stage, the specimen is completely relaxed, so the
viscoelastic contribution (VC) ends up being zero. Moreover, from practically the beginning
of the trial, both λt and εx are constants: λt = λ∞ and εx(t) = εmax. All this implies that
the quotient Ft/EA0 also tends to the constant given by λ∞εmax. Thus, measuring the
force F∞ at the end of the stage provides a way to determine the value of EA0 from the
ratio EA0 = F∞/(λ∞εmax). For that reason, calculations can be made without a direct
measurement of the elastic modulus or cross-section of the specimen by simply using the
normalization ft = Ft/EA0, where the latter magnitude ft will be called reduced force.

During the relaxation itself, λt and, therefore, also εx are constant. However, be-
fore reaching their constant value, there is a very fast sudden stretching, during which the
elongation is given by λt = 1 + δt/`0, with δt being the displacement and the stretching
rate being λ̇t = δ̇t/`0. Experimentally, it was observed that the fast stretching velocity
process can be adequately described by a function of “gamma distribution” type [24], with
the form

δ̇t =
∆max

ta

(
t
ta

)n
e−t/ta

Γ(n + 1)
(7)

where ta is a parameter related to the time required to reach the maximum displacement
and, in practice, is obtained by fitting the measured displacement velocity data. Similarly,
several preliminary tests showed that taking n = 3 is sufficient to adequately represent the
velocity at the beginning of each relaxation stage. Therefore, the displacement δt can be
obtained by integrating the above expression (see Figure 3).
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Figure 3. Experimental displacement and experimental velocity applied to a specimen, plotted together with the fit by gamma-type
function. The plot also shows the derivatives in Sections 1 and 3. It can be seen that the fit is in both cases more extreme than 0.997.

From the explicit form (7) of the velocity δ̇t, we obtain the strain rate as ε̇x(t) = δt
which, introduced in Equation (6), leads to the formula:

ft =
Ft

EA0
= λt

[
εmax +

N

∑
k=1

gk
e−α1t/θk

(1− θk)4(1− 2θk)7

11

∑
m=1

θm
k (µm + νme−α2/θk )

]
(8)

In this formula, α1 and α2 are real numbers that depend on the initial conditions of
the specimen (length) and the test velocity curve (time of load application, etc.). In the
same way, the explicit analytical integration yields the real numbers µm and νm (the same
calculation shows that νm > 0, µm < 0 for even m and νm < 0, µm > 0 if m is odd,
and furthermore one has, µ1, µ2, µ3, µ4 = 0). The only adjustable parameters in the above
expression are θk = τk/ta and gk which are dimensionless. The relaxation times are
obtained as τk = θkta. The number of adjustable parameters is 2N, where N is the number
of terms in the Prony series, see Equation (4).

Figure 4 shows the measured force data for stage 1 of one of the specimens, and the
corresponding fits with the viscoelastic model for N = 1, N = 2 and N = 3 in the Prony
series (4). The fitted parameters have been set out in Table 1. It can be seen that as N
increases, the fit improves markedly as expected, since the number of adjustable gk and gk
parameters increases:

1. Notice that, although for N = 1 the coefficient r2 = 0.889 is quantitatively adequate,
qualitatively it is observed that the fit does not adequately represent the vertical
asymptote of force drop, nor the curve in general.

2. With N = 2 there is a marked improvement in the fit (r2 = 0.990).
3. Finally, for N = 3 (r2 = 0.995), both the asymptote and the curve are adequately

represented by the viscoelastic model.
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Figure 4. Fitting of the proposed viscoelastic model, for stage (1) of one of the specimens. Fits with N = 1, N = 2 and N = 3 terms in the
Prony series are considered, with the corresponding parameters from Table 1.

Table 1. Parameters gk, τk of the viscoelastic model obtained for the specimen 635/21B for different
values of k.

N g1 [–] g2 [–] g3 [–] τ1 [s] τ2 [s] τ3 [s]

N = 1 0.360 — — 10.756 — —
N = 2 0.243 0.393 — 13.397 0.799 —
N = 3 0.215 0.221 0.398 18.162 1.885 0.211

Thus, in this study the parameters gk and τk have been determined for N = 3
(g1, g2, g3; τ1, τ2, τ3). The viscoelastic model fits have been repeated for stages (1) and
(3), the latter divided into subplots (3.1), (3.2) and (3.3), thus obtaining the parameters.
The average for each specimen is presented in Table 2.
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Table 2. Average ± standard deviation of the parameters g1, g2, g3 and τ1, τ2, τ3 of the viscoelastic model in the four
relaxation stages obtained for each specimen.

Specimen g1 [–] g2 [–] g3 [–] τ1 [s] τ2 [s] τ3 [s]

2632A 0.10 ± 0.05 0.13 ± 0.04 1.70 ± 0.29 10.96 ± 2.64 0.88 ± 0.19 0.07 ± 0.01
617A 0.21 ± 0.10 0.32 ± 0.16 0.34 ± 0.06 15.38 ± 4.90 1.99 ± 2.62 0.17 ± 0.19
617B 0.24 ± 0.07 0.13 ± 0.08 0.30 ± 0.23 13.78 ± 9.15 0.96 ± 0.70 0.09 ± 0.08
621A 0.20 ± 0.07 0.18 ± 0.10 0.48 ± 0.42 17.08 ± 16.11 1.20 ± 1.23 0.09 ± 0.10
635A 0.12 ± 0.07 0.13 ± 0.07 0.84 ± 1.13 20.73 ± 13.34 2.16 ± 1.46 0.20 ± 0.10
635B 0.14 ± 0.06 0.16 ± 0.08 1.60 ± 1.62 25.41 ± 8.22 1.76 ± 1.93 0.17 ± 0.20

It can be observed in the table that the higher the value of gk (from g1 to g3), the lower
the value of τk, thus increasing the degree of contribution of the model term, and the shorter
the relaxation time. The relaxation times decrease by an order of magnitude progressively
between τ1 and τ3, obtaining similar values among the different specimens. The aver-
age characteristic times for the sample are τ1 = 17.22± 5.17 s, τ2 = 1.49± 0.55 s and
τ3 = 0.13± 0.05 s. The average values of the contribution coefficients for the sample are
g1 = 0.17± 0.06, g2 = 0.17± 0.08 and g3 = 0.87± 0.62.

In addition, to show the importance of the viscoelastic effect in PSBVs, the VC for
the reduced force has been calculated, i.e., what percentage of the response corresponds
to the elastic effect and what amount to the viscoelastic one. The VC for all specimens,
calculated from the parameters gk and τk in Table 2, is shown in Figure 5. It can be seen
that at the initial instant, the VC is between 26 and 35%, decreasing exponentially until it
reaches approximately 0% at the end of the relaxation stretch. In fact, after 15 s of relaxation,
the specimen has relaxed to a great extent and the VC is less than 10% in all samples.

Figure 5. Evolution of VC in strength over time for the analyzed specimens: the black lines indicate the
average elastic and viscoelastic contributions as a function of time, the shaded area indicates the error interval in
the sample.

Likewise, the average VC and viscoelasticity and the confidence interval have been
determined from the parameters of the studied specimens (Figure 5). Thus, it can be seen
that initially the viscoelastic part corresponds to 29.8 ± 3.35%, decreasing to 11.4 ± 2.40%
at 10 s and 4.8± 1.06% at 25 s, while the elastic contribution starts from 69.8± 4.03%, rising
to 88.5 ± 2.64% at 10 s to 94.9 ± 1.10% at 25 s.

3.2. Fast Loading/Unloading Cycle Tests

The viscoelastic effect can also be analyzed in test stage (2), in which fast loading
and unloading cycles have been performed. These cycles are fast compared to some of
the relaxation times τk of the material. This leads to the assumption that in the time in
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which a loading and unloading cycle elapses, the BV may not have enough time to relax
the internal stresses and this is reflected in the maximum forces reached in each cycle.

Figure 6 shows the force peaks in successive cycles. It can be seen how in each new
cycle the maximum force reached is lower, showing a progressive relaxation of the tissue
of the PSBV as the number of cycles increases. For each sample, the USF (unconditioned
scale factor), defined in [12], has been calculated as the following ratio:

USF(n, T) =
F1

Fn
> 1 (9)

where n is the cumulative cycle number and T is the period of the cycles (T = 0.55). As can
be seen in the figure above, the magnitude of the USF grows progressively with the number
of cycles. In some samples, it has reached 20 cycles, while in others it has been limited to
10 cycles. From the results, it has been calculated that the USF(n = 10) = 1.14± 0.085 and
USF(n = 20) = 1.23± 0.095. In Appendix A, it is justified that the USF should be able to
be approximated by a function of the type

USF(n, T) ≈ 1 + g0

1 + g0e−α(T)n
(10)

Figure 6. Force peaks in stage (2) as a function of the number of cycles performed and USF computed and
predicted by Equation (10).

This equation has the form of Equation (A7) and that prediction is just what is observed
in Figure 6, where the fit between the above formula and the experimental data is very good
(r2 = 0.983). The results obtained for the parameters in the sample set are g0 = 0.206± 0.047
and α = 0.127± 0.028.

3.3. Load-Unload Tests

In addition to relaxation tests and fast loading cycle tests, three additional loading
and unloading tests were performed in the form of triangular waves at very different
strain rates, corresponding to stages 4a, 4b and 4c performed at constant stretching speeds
λ̇t = 0.01, 0.1 and 1 s−1. The main purpose was to verify whether the characteristic times
(τk) and contribution coefficients (gk) obtained from the relaxation tests could well explain
the shape of these curves. The displacement had a very roughly triangular shape (except
for brief periods of acceleration and deceleration), each triangular wave included about
350 measurements along the loading and unloading cycle (Np = 285, 365 and 385 points,
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respectively), that allowed making a numerical integration of the viscoelastic contribution
in (6), using Simpson’s 3/8 rule [25]:

Ik :=
∫ t=Nph

0

f (τ)︷ ︸︸ ︷
eτ/τk ε̇x(τ) dτ ≈

=
1
4

Np−3

∑
k=0

3h
8
( f (tk) + 3 f (tk+1) + 3 f (tk+2) + f (tk+3))

(11)

where h = t/Np and tk = kh. The result can be seen in Figure 7 where the measured and
model-predicted force curves are shown. The fit is reasonable although the medium and
low velocity curves show larger divergences from the model.

This could be partly due to the fact that the integration error is larger for the slower
loading curves. This happens because the number of points is similar in the three curves,
but the duration Tw of the triangular wave is different, the numerical error depends on the
time step h used for the numerical integration, which is given by the relation h = Tw/Np
(Np being similar for the three curves). The error resulting from Simpson’s 3/8 rule of
integration is given by:

e ≤ 3h5

80
Np ∑

k
max

ξk∈(tk−1,tk)

d4 f (ξk)

dτ4 < C
3T5

w
80N4

p
ε̇ (12)

Figure 7. Experimental force–time curves compared with model predictions: (a) fast curve (ε̇ ≈ 1 s−1), (b) medium velocity curve
(ε̇ ≈ 0.1 s−1) and (c) slow curve (ε̇ ≈ 0.01 s−1). The predicted curve has been obtained by numerical integration. The cumulative integration
error is larger for the slow curve and smaller for the fast curve. However, the fast curve seems to have a larger measurement error. Possibly,
for that reason, the best fit is obtained for the medium speed curve.

So, for the faster curve a smaller error was made, while for the slower curve the
integration error was larger (having a similar number of points, but the duration of the last
wave being longer, which makes the division coarser h = T/Np).

4. Discussion

The mechanical behavior of PSBVs has been previously studied by some
researchers [5,7,9,26], although most of the previous studies do not explicitly consider
viscoelastic effects in the stress/force–strain curves [10]. Some strain rate related effects are
reported, especially with respect to the influence of strain rate on the mechanical failure of
PSBVs [3,4,6,7]. Interestingly, like other biological tissues, PSBVs appear to exhibit failure
stresses negatively correlated with strain rate [10,27].

However, the relaxation and fast-cycle tests performed in this study clearly show
a viscoelastic effect in the PSBV response, especially in stress relaxation stages under
constant strain, where the force on the PSBVs is progressively reduced. This fact had
not been investigated in detail in the literature on mechanical properties of PSBV [9],
although viscoelastic effects had been measured in rapid load cycles [10].
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Regarding the results obtained, this work is possibly the first study of PSBVs estimat-
ing the necessary relaxation times of the Prony series, see Equation (4), for modeling the vis-
coelastic behavior of PSBVs. Interestingly, excellent fits (r2 > 0.99) are obtained with three
relaxation times and these differ by an order of magnitude, as τ1 = O(101), τ2 = O(100),
τ3 = O(10−1), so each of them seems to capture a different time scale. This is in agreement
with the findings of Funk et al. (2000) [12], where the viscoelasticity of ankle ligaments is
studied and where the observed scales are τ1 = O(102), τ2 = O(101), τ3 = O(100). On the
other hand, in Davis & De Vita (2012) [13], it is pointed out that the QLVE model applied
to rat tendons only captures the behavior well for t < 10 s, which is why they propose
a nonlinear viscoelastic constitutive model that overcomes the shortcomings of QLVE to
explain their data.

As for the analysis of the preconditioning, which is based on the USF given by
Equation (9), an analysis based on viscoelastic behavior has been presented here, which
allows predicting that this magnitude will vary from one cycle to another by means
of Equation (10). With only two parameters, this formula predicts a better fit than the
exponential type heuristic formula:

USFn = a0 +
3

∑
k=1

ake−bkn (13)

used in [10] and previously in [28–30]. Although the Formula (13) is numerically adequate,
it is a heuristic formula and is not directly derived from the viscoelastic behavior equations
unlike the Formula (10).

As for the applications of this work, they can be grouped into three different areas:

1. Clinicians are charged with the significant task of distinguishing between accidental
and inflicted head trauma. Some times this distinction is straightforward, but in many
cases the probabilities of injuries from accidental scenarios are unknown, making the
differential diagnosis difficult [31]. A refinement of the knowledge of the tolerance
ranges against rupture of PSBVs may provide greater accuracy in the reconstruction
of injury mechanisms.

2. Computational biomechanics can simulate many potentially traumatic situations, so
that models already allow detailed reconstructions of the sequence of events leading
to a severe SDH. Accurate knowledge of the material behavior can improve FEHMs,
as their inaccuracy is often not so much a computational problem, but a poor char-
acterization of the biomechanical behavior of brain structures. For example, a good
number of FEHMs use a stress-strain response for PSBVs that does not reflect the
measured nonlinear behavior [3], e.g., the UDS FEHM (Université de Strasbourg) [32],
the KTH FEHM (KTH Royal Institute of Technology) [33], UCDBTM (University
College Dublin) [34,35], WSUBIM (Wayne State University) [36] or G/LHM [37] also
model PSBVs as elastic beams with a linear stress-strain response [9]. The recognition
of the importance of the nonlinear behavior and viscoelasticity of brain structures has
been explicitly pointed out by the developers of YEAHM (University of Aveiro) [38]
and interestingly, some FEHMs model PSBVs as nonlinear elastic materials [39].
In particular, Equation (4), together with the averages obtained from Table 2, allow us
to compute an estimation of the viscoelastic effect, independent of the starting elastic
model for the PSBVs, which is being used in the FEHM.

3. The improvement of injury metrics used to assess restraint systems in vehicles or the
design of other preventive elements against head trauma. Currently, the estimation is
often done by the injury metric called "relative motion damage measure" (RMDM)
[40,41], used to predict the probability of a SDH due to the failure of PSBVs [42,43].
However, that metric was developed based on obsolete data [26], and the data from
this study can be used to update that injury metric.

Finally, some current limitations of the present study that could be improved in
future work:
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1. The sample used is consistent but small. So, the effects of age, gender, or other
anthropometric characteristics on the viscoelastic mechanical properties could not
be determined.

2. In addition, a QLVE model has been used in which the relaxation function is separable,
in the sense of [13]. Given the low strain levels used for the tests (since care was
taken not to cause irreversible damage to the specimen from one test stage to the
next), no effects of non-separability were found. However, further work could build
a somewhat more general model on that basis. In any case, the proposed model is
a first approximation that even explains the data that were not used for the fits (see
Section 3.3).

3. Moreover, a further extension of this work would be to examine whether the re-
laxation curves could be modeled, using the Prony series of stretched exponential
relaxation [44]. This could lead to series with fewer and/or more accurate terms,
although it is not clear if this is the case. Further work is needed in order to determine
whether the use of stretched exponentials or a more general non-separable viscoelastic
model would provide better models.

5. Conclusions

The results reported in the current study are the first complete characterization of the
viscoelastic response of PSBVs. Relaxation times and coefficients of the Prony series are
computed allowing the use of these values in combination with any hyper-elastic model
for PSBVs. The model explains accurately all the load cases considered.

In addition, the fitted constitutive parameters can be used for computational FEHMs;
these models and the obtained values could be used to reconstruct the circumstances of
head trauma and for assessing the causes of TBI. Finally, the results of this study are highly
relevant to assess acute SDH due to the mechanical failure of PSBVs.
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Appendix A. Prediction of the USF

In this appendix. we deduce what behavior is to be expected from USF(n, T), defined
in the Equation (9), and we justify mathematically why we expect a behavior given by
Formula (10). The displacement δt in the cyclic test is periodic, therefore, it can be expressed
by a trigonometric Fourier series:

δt = ∆δ

[
a0

2
+

∞

∑
m=1

am cos

(
2mπ

T
t

)
+

∞

∑
m=1

bm sin

(
2mπ

T
t

)]
(A1)

where T = 0.55 s is the period of the cyclic stretch. The stretch λt, its corresponding rate λ̇t,
the strain εx and the strain rate ε̇x can be calculated with the following formulas:

λt = 1 +
δt

`0
, λ̇t =

δ̇t

`0
, εx =

λ2
t − 1

2
, ε̇x = λtλ̇t (A2)

To estimate the viscoelastic effect we consider a finite sequence of integrals of the form

J(k)n :=
∫ tn

0
e−

tn−τ
τk

δ̇τ

`0

(
1 +

δτ

`0

)
dτ (A3)

where tn = (n− 1 + γ)T are the times for which successive force peaks occur:

J(k)n (T) =
∞

∑
m=1

amP1,m(θk) + bmP2,m(θk) + [amP3,m(θk) + bmP4,m]e
−(n−1+γ) T

τk

(1 + 4m2θ2
k )(1 + 16m2θ2

k )
(A4)

where θk = πT/τk has been introduced for brevity, and further we have Pj,m(θk) as easily
computable fourth-degree polynomials, whose coefficients depend on cos(mγπ) and
sin(mγπ). The above formula allows us to compute successive force peaks and, thus,

USF(n, T) =

1 +
N

∑
k=1

gk J(k)1 (T)

1 +
N

∑
k=1

gk J(k)n (T)

(A5)

where the gk are the same coefficients that appear in the Equation (6) and j is the index for
which |T− 1, 5τj| is minimum. It can be seen that the value of USF approaches a maximum
when the θj ∈ (4, 5) (the exact position of the maximum depends on the gk, although very
little). Taking the Equation (A4) into consideration, the expression USF(n, T) would have
the form

USF(n, T) =
1 + ∑N

k=1 gk[c(θk) + d(θk)]

1 + ∑N
k=1 gk[c(θk) + d(θk)e

−n T
τk ]

=
1 + ∑N

k=1 g̃k

1 + ∑N
k=1 g̃ke−n T

τk

(A6)

where c(θk) and d(θk) are functions which can be computed from Equation (A4), and where
the g̃k are given by

g̃k =
gkd(θk)

1 + ∑N
k=1 gkc(θk)

The expression (A6) is exact, but inconvenient, in fact, numerically it can be seen
that the summand for which it is satisfied that |T − 1.5τj| is minimal, so a reasonable
approximation can be obtained using only one characteristic time:

USF(n, T) ≈
1 + gj J

(j)
1 (T)

1 + gj J
(j)
n (T)

=
1 + g̃j

1 + g̃j exp
(
−n T

τj

) (A7)
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