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The human visual system faces many challenges, among them the need to overcome the
imperfections of its optics, which degrade the retinal image. One of the most dominant
limitations is longitudinal chromatic aberration (LCA), which causes short wavelengths
(blue light) to be focused in front of the retina with consequent blurring of the retinal chro-
matic image. The perceived visual appearance, however, does not display such chromatic
distortions. The intriguing question, therefore, is how the perceived visual appearance of
a sharp and clear chromatic image is achieved despite the imperfections of the ocular
optics. To address this issue, we propose a neural mechanism and computational model,
based on the unique properties of the S-cone pathway. The model suggests that the
visual system overcomes LCA through two known properties of the S channel: (1) omitting
the contribution of the S channel from the high-spatial resolution pathway (utilizing only
the L and M channels). (b) Having large and coextensive receptive fields that correspond
to the small bistratified cells. Here, we use computational simulations of our model on
real images to show how integrating these two basic principles can provide a significant
compensation for LCA. Further support for the proposed neuronal mechanism is given
by the ability of the model to predict an enigmatic visual phenomenon of large color shifts
as part of the assimilation effect.

Keywords: aberration, chromatic adaptation, compensatory mechanisms, computer model, visual perception

INTRODUCTION

The human eye is affected by the imperfections of its optics, which degrade the quality of the retinal
image and ultimately impose limits on vision. These imperfections have both spatial and chromatic
implications. One of the most dominant chromatic implications is the phenomenon of longitudinal
chromatic aberration (LCA). LCA is a significant and dominant attribute of the visual system and has
been studied and measured extensively (e.g., Bedford and Wyszecki, 1957; Charman and Jennings,
1976).

Longitudinal chromatic aberration is induced by the dependence of the refractive power of the
lens on wavelength. As can be seen in Figure 1, the ocular refractive power is higher for shorter
wavelengths (Bedford and Wyszecki, 1957). The accommodation mechanism of human eyes can
determine the focus for each wavelength, but it is impossible to bring all of the wavelengths to focus
simultaneously (Wandell, 1995). The phenomenon of LCA has been measured extensively, both by
psychophysically (Wald andGriffin, 1947; Ivanoff, 1953; Bedford andWyszecki, 1957; Jenkins, 1963;
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FIGURE 1 | Comparison of refractive power (chromatic shift) reported by
several studies. Note that the chromatic shift is much larger for the short
wavelengths (blue photoreceptor) than for the long wavelengths (red
photoreceptor). All the data are adjusted vertically to have a zero value at the
reference wavelength of 589 nm giving the longitudinal chromatic aberration a
refractive power of about two diopters. This image has been taken with
permission from The Optical Society (Chen et al., 2003).

Howarth and Bradley, 1986) and retinoscopy methods (Charman
and Jennings, 1976; Rynders et al., 1998). These studies showed
that LCA has a refractive power of about two diopters (D), across
the visible spectrum (Figure 1).

An alternative method of representing the chromatic aberra-
tion is through the modulation transfer function (MTF), which
describes the sensitivity as a function of the spatial frequency and
the wavelength. Due to the LCA, the MTF of the S-cone (blue)
channel has a lower frequency cutoff (by a factor of 3–5) than the
MTF of the M/L cone channels (red–green) (Shevell, 2003).

An additional factor that limits the visual acuity of the S-
pathway is the low density of the S photoreceptors at the retinal
mosaic. It is plausible that this low density has evolved in the visual
system, in order not to have more sensors than the optical MTF
can utilize. The MTF thus would be limited by both the LCA
and photoreceptor density which, as mentioned above, are not
independent factors. Calkins (2001) showed that the S-cone den-
sity can be a consequence of efficient Nyquist sampling: “. . .the
eye’s optics together with what may be called ‘typical’ viewing
conditions effectively limit any evolutionary pressure to pack S
cones into the photoreceptor mosaic with a Nyquist rate greater
than about 7–8 cycles deg-1.” If we approximate the S mosaic
as triangular for ease of calculation, this sampling rate would
correspond to an upper limit of foveal density in the human retina
of 2,000–2,500 S cones mm-2. Various anatomical measurements
of the distribution of S cones in the human retina, both direct and
indirect, converge to a similar estimate: S cones peak in density at
about 2,000 cells mm-2, just outside the center fovea, representing
5–10% of the cone population (Curcio et al., 1991).

The consequence of the LCA is that the retinal image will
be focused only for the “green” wavelengths, and for the most

part will be out of focus for the bluish wavelengths. The con-
sequent image would be expected to have colored borders
(“fringes”)—similar to that seen with a cheap lens (Valberg, 2005).
Although it is not possible to remove these chromatic defects
from a lens, an efficient optical system should be designed to
minimize the distortion caused by the LCA. For example, it
is possible to correct chromatic aberration through a combi-
nation of two or more lenses, in such a way that the aberra-
tion of each lens compensates for the aberration of the other
lens (achromatic lens). In the human visual system, this solu-
tion is impractical since we are continuously changing the focal
distance.

A recent proposal suggests that Müller glial cells may play a
role in reducing the chromatic aberration due to the fact that
peripheral light at larger tilt angles will be rejected more readily
(Labin and Ribak, 2010). Another suggestion is that the short-
wavelength absorbing pigments of the ocular media may have
a function in limiting the chromatic aberration (Walls, 1963;
Nussbaum et al., 1981). However, spectral filtering in the ocular
media has a relatively small effect on the MTF (Shevell, 2003) and
none of these optical features (Walls, 1963; Labin and Ribak, 2010)
is sufficient to explain the lack of perceived distortion at sharp
achromatic edges.

It is therefore intriguing to understand how notwithstanding
the imperfections of the ocular optics, including the LCA, the
perceived visual appearance is still a sharp and clear image. Since
the optical systemof the eye cannot apparently account for the cor-
rection, it is reasonable to suppose that the neuronal system acts
to reduce the distortion (Shevell, 2003; Valberg, 2005). It should
be appreciated that a non-optical system, such as the neuronal
mechanism, cannot fully compensate for the optical limitations,
since some of the physical information is lost. (This is exhibited
by the limited MTF.)

Several studies have indeed suggested that there must be neu-
ral compensation for the eye’s aberrations. Although no specific
mechanismhas been described (Hay et al., 1963; Artal et al., 2004),
a number of compensatory options have been suggested, most of
which are related to the McCollough effect (ME) (Hay et al., 1963;
Broerse et al., 1999; Grossberg et al., 2002). The ME is a long-term
after-effect that can last from hours up to 3 months (Jones and
Holding, 1975).

The rationale to associate the ME with the LCA phenomenon
derives mainly from its long-lasting temporal property, and its
relation to chromatic edges (McCollough, 1965). The proposed
compensatory models are composed of oriented receptive fields
(RFs) (multiplexed simple cells) consisting of both chromatic-
and achromatic-separated subunits (Broerse et al., 1999; Gross-
berg et al., 2002). The elimination of the chromatic distortion is
then explained by invoking a learning mechanism that inhibits
the appearance of chromatic edges adjacent to achromatic
edges.

These models have been supported by experiments that
demonstrate that there is a long-term adaptation to chromatic
aberration caused by a wedge prism. It has been demonstrated
that dispersion of light passing through a wedge prism produces
bluish and yellowish fringes on achromatic edges. These perceived
fringes disappear when the prisms are worn for a long period of
time (about 2 days) (Hay et al., 1963). This adaptation of the visual
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system supports the existence of a long-term corrective neural
compensation mechanism.

These models can be accounted for neuronal compensation
only when the chromatic aberration refractive power is constant.
However, the refractive power of the LCA constantly changes
due to the pupil size (that is determined by the amount of light
and the accommodation of the eye). The temporal scale of pupil
size change is within the range of 200–500ms, which is faster by
orders of magnitude than the neuronal adaptation mechanisms
described above (which can last hours to months). Consequently,
there is necessity for an additional mechanism that compensates
for chromatic aberration and is less dependent on a momentary
magnitude of chromatic aberration.

This means that a neural mechanism that compensates for
general LCA phenomenon still remains to be discovered. If such
a neural mechanism exists, it is expected that not only will it
have the ability to compensate for the LCA phenomenon but will
also be able to predict the visual phenomena generated by the
compensation neuronal mechanism.

In this paper, we propose a plausible computational model
of the retina that can compensate for LCA. The model is based
on well-known retinal color-coding RFs and does not require a
learning process. The validity of the suggested model is supported
by its ability to predict related visual phenomena.

MODEL

The model computes the perceived color in accordance with the
response of retinal color-coding ganglion cells (Daw, 2012). This
calculation involves two main stages. The first stage evaluates the
response ganglion cells of type I (L/M and M/L, on center cells)
and type II (S/LM, on coextensive cells). This stage includes the
calculation of the RF response of each color-coding cell that also
exhibits a remote adaptation mechanism. In addition, this stage
also includes two separated pathways related to the luminance and
chromatic knowledge of the two cell types. The second stage of
the model proposes a novel transformation of the ganglion cell
response into a perceived image by using an inverse function.
The source code for the model simulation is available at https:
//github.com/yubarkan/LCAcompensation/.

Response of the Opponent RF
The retinal ganglion cells receive their input from the cones
through several chemical and electrical processing layers (Shevell,
2003). The retinal ganglion cells then perform an adaptation of
the first order. The adaptation of the first order is modeled here
through adaptation of the cell inputs, rather than adaptation of
the RF subregions (Spitzer and Semo, 2002; Spitzer and Barkan,
2005). We therefore define the adapted ganglion cell input signals
as follows:

Lpr_adapted =
Lphoto−r

Lphoto−r + σL
(
Lphoto−r + Lremote

) ,

Mpr_adapted =
Mphoto−r

Mphoto−r + σM
(
Mphoto−r + Mremote

) ,

Spr_adapted =
Sphoto−r

Sphoto−r + σS
(
Sphoto−r + Sremote

) , (1)

where Ladapted, Madapted, and Sadapted are the adapted inputs from
the cones and σL,M,S are remote and local adaptation signals and
are defined as

σL = a · Lphoto−r + b + c · Lremote,

σL = a · Mphoto−r + b + c · Mremote,

σS = a · Sphoto−r + b + c · Sremote, (2)

where the remote signals are defined as

Lremote(x, y)=
∫∫

cen−area

Lphoto−r(x′, y′)· fremote(x − x′, y − y′)· dx′ · dy′,

Mremote(x, y)=
∫∫

cen−area

Mphoto−r(x′, y′)· fremote(x − x′, y − y′)· dx′ · dy′,

Sremote(x, y)=
∫∫

cen−area

Sphoto−r(x′, y′)· fremote(x − x′, y − y′)· dx′ · dy′.

(3)

The “remote” area is composed of an annulus-like shape around
the entire RF region (Spitzer and Barkan, 2005). Its weight func-
tion (f remote) is modeled as a decaying exponent at the remote area
as follows:

fremote(x, y) =
1

π · ρremote
exp

(
− x2 + y2

ρremote
2

)
; x, y ∈ remote_area.

(4)
The spatial response profile of the two subregions of the reti-

nal ganglion RF, “center” and “surround,” is expressed by the
known difference-of-Gaussians (DOG). It should be noted that
the calculation of the DOG is performed on the adapted inputs.

The “center” signals of the two spectral regions, Lcen, Mcen, are
defined as integrals of the adapted inputs (Ladapted,Madapted; Eq. 1)
over the center subregion, with a Gaussian decaying spatial weight
function (fc):

Lcen(x, y) =
∫∫

cen−area

Lpr_adapted(x′, y′) · fc(x − x′, y − y′) · dx′ · dy′,

Mcen(x, y) =
∫∫

cen−area

Mpr_adapted(x′, y′) · fc(x − x′, y − y′) · dx′ · dy′,

(5)

while Lcen(x,y) at each location represents the subregion response
of the center area, which is centered at location x, y, . . .fc and is
defined as

fc(x, y) =
1

π · ρcen
exp

(
−x2 + y2

ρcen
2

)
; x, y ∈ center_area, (6)

where ρ represents the radius of the center region of the RF. The
“Surround” signals are defined in the same manner as follows
(with a spatial weight function three times larger than that of the
“center”):

Lsur(x, y) =
∫∫

sur−area

Mpr_adapted(x′, y′) · fs(x − x′, y − y′) · dx′ · dy′,

Msur(x, y) =
∫∫

sur−area

Lpr_adapted(x′, y′) · fs(x − x′, y − y′) · dx′ · dy′,

(7)
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where fs is defined as a decaying Gaussian over the surround
region:

fs(x, y) =
1

π · ρsur
exp

(
−x2 + y2

ρsur
2

)
; x, y ∈ surround_area. (8)

The total weight of fc and fs is 1.
The response of the cells is expressed by the subtraction of the

center and surround-adapted responses as follows:

L+M−(x, y) = Lcen(x, y) − Msur(x, y),

M+L−(x, y) = Mcen(x, y) − Lsur(x, y). (9)

The S/LM retinal color-coding cell is known as the small bis-
tratified ganglion cell. The RF of this cell is known in the literature
to be coextensive (type II), i.e., it has mainly chromatic oppo-
nency rather than spatial opponency (Hubel and Wiesel, 1968;
de Monasterio, 1978; Derrington et al., 1984). Accordingly, the
response of the S-cone opponent is modeled here as a type-II
RF. The S/LM signal was therefore modeled through integration
of the chromatic difference (S/LM) over the whole RF of this
cell type:

S+LM−(x, y)

=
∫∫

blue−RF−area

[
Sadapted(x′, y′) −

Ladapted(x′, y′) + Madapted(x′, y′)
2

]

· fs_center(x − x′, y − y′) · dx′ · dy′. (10)

The spatial weight function of the RF, fc_center, is defined as in
Eq. 7.

Transformation to Image
The purpose of this stage is to model how the visual system
transforms the RF responses to a perceived image. We suggest
that in order to eliminate the effect of the blurred S/LM channel,
the visual system has to very precisely exclude this channel from
the processing of the high-spatial resolution channel. This sug-
gestion is in accordance with the consensus in the literature and
with accumulated evidence indicating that the chromatic infor-
mation that includes the S/LM information is processed through
a unique pathway, i.e., the koniocellular pathway (Hendry and
Reid, 2000). Additional support for our proposal is derived from
the observation that the L and M data that code high-spatial
resolution information are processed independently through the
parvocellular pathway (Livingstone and Hubel, 1988; Van Essen
and Gallant, 1994; Hendry and Reid, 2000; Sincich and Horton,
2005).

In order to perform a transformation from the opponent sig-
nals [L+M−, M+ L−, and S+ (L+M)−] to perceived triplet
LMS values, we propose a functional minimization framework.
We imply that the perceived values should satisfy the following
equations:

L+M− = Lper − Msurround_per,

M+L− = Mper − Lsurround_per. (11)

Lsurround_per and Msurround_per are defined in Eq. 7, but here they
are related to the perceived domain rather than adapted input
signals. We define the following error function:

E(Lper,Mper) =
[
Lper − (L+M− + Msurround_per)

]2

+
[
Mper − (M+L− + Lsurround_per)

]2
. (12)

This function is the square error between the estimation of
Lper, Mper, and the satisfaction of Eq. 12. This error function can
be minimized by various methods. For simplicity, we show the
implication of the gradient descend method as follows (Snyman,
2005):

∂Lper

∂t = −∂E(Lper,Mper)
∂Lper

,

∂Mper

∂t = −∂E(Lper,Mper)
∂Mper

. (13)

Thus, we obtain the following iterative equations:

Liper = Li−1
per + dt ·

[
2 ·

(
Li−1

per − L+M− − Mi−1
surround_per

)
+ 2 · fs(0, 0) ·

(
Mi−1

per − M+L− − Li−1
surround_per

)]
,

Mi
per =Mi−1

per + dt ·
[
2 ·

(
Mi−1

per − M+L− − Li−1
surround_per

)
+ 2 · fs(0, 0) ·

(
Li−1

per − L+M− − Mi−1
surround_per

)]
.

(14)

This iteration process provides the perceived L and M values,
independently of the S/LM channel (see the rationale above).

The perceived S-channel value (Sper) is calculated after evaluat-
ing the L and M perceived values (Eq. 14) by using the following
equation:

Sper = S+(L + M)− + (Lper + Mper)/2. (15)

According to our model, the Sper contributes to the perceived
color and not to the perceived luminance. Thus, the perceived
brightness is expressed solely by the L and M values.

METHODS

In this section, we describe the different tools and parameters used
in the model simulation. The same sets of parameters were used
for all the simulated images that are presented in Section “Results.”

Modeling Human Optics
In order to evaluate the ability of our model to compensate
for chromatic aberration, it is necessary to simulate the results
from human optics on test images. We have used the Image
System Engineering Toolbox for Biology ISETBIO,1 which pro-
vides a unique ability to simulate human optics in a real scene.

1https://github.com/isetbio/.
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FIGURE 2 | Demonstration of the longitudinal chromatic aberration (LCA)
model on an achromatic grid (A). (B) Retinal image, simulated by ISETBIO
toolbox (see Methods). (C) Model prediction for perceived image.
(D) Enlarged section of the retinal image (B), the LCA can be seen in vicinity
of the edges as lines of a blue–yellow color. (E) Enlarged section of model
prediction (C), where there is a correction of the chromatic distortion.

For this purpose, we have used high-resolution, high-dynamic,
multispectral image (HDRS) taken from the ISET High-Dynamic
Range Multispectral Scene Database available by the Image Eval-
uation Tools.2 ISETBIO also includes the WavefrontOptics code
developed by David Brainard, Heidi Hofer, and Brian Wandell.
Their code implements methods to model human eyes by taking
adaptive optics data from wave-front sensors and calculating the
optical blur as a function of the wavelength. The toolbox relies on
data collected by Thibos et al. We have chosen an illumination of
blackbody at 6,500K and uses WavefrontOptics to simulate the
retinal image produced by human optics. Figure 2 is produced by
this method.

Response of the Opponent RF
In the first stage of the model, the adapted signals are calculated
(Eqs. 1–4). The remote area was simulated as an annulus with a
diameter of 35 pixels. The adaptation parameters were chosen as
follows: a = 1, c = 1, representing equal strength for the local and
remote adaptations (Eq. 4). The parameter “b,” which determines
the strength of adaptation (Dahari and Spitzer, 1996; Spitzer and
Barkan, 2005), was taken as b = 3.

The calculation of surround signals (Eq. 7) was calculated with
fs (Eq. 8) having a decay constant (ρ) of 3 pixels. The response
of the RFs was obtained by subtracting the center and surround-
adapted responses (Eq. 9).

Transformation to Image (Inverse Function)
The purpose of this section is to perform a transformation from
the RF responses to a perceived image. The transformation was
performed using the Jacobi iterative method (Eq. 14). The itera-
tion process was initiated (i= 0) by assuming achromatic stimuli.
Specifically, all channels were initiated with the following values:

L0
per = M0

per = S0
per =

Ladapted + Madapted

2
.

2http://www.imageval.com/public/Products/ISET-SceneDatabase.html.

FIGURE 3 | Blue–yellow chromatic contrast. Blue–yellow chromatic contrast
at a cross-section of the retinal image is presented, across a horizontal line in
Figure 2 (in blue), while the model correction for longitudinal chromatic
aberration (LCA) is represented by the red line. It can be seen that the LCA,
which is represented by the blue spikes, is reduced significantly by the model
correction (red line), which eliminates the chromatic distortion.

The iterative process converges to the predicted perceived
image, while the color “fills-in” the stimulus.

RESULT

The ability of the model to reduce the effect of LCA was tested on
both the artificial and natural images. Retinal images were simu-
lated by using the ISETBIO toolbox, which takes into account the
properties of the human optical system (see Methods). The LCA
effect is very prominent when zooming into areas of luminance or
chromatic edges (Figure 2).

Figure 2 demonstrates the model’s performance on an artificial
achromatic grid (Figure 2A) composed of equal energy squares.
The image that is cast on the retina was calculated using ISETBIO
(Figure 2B). It can be seen that this image (which simulates the
eye’s optics, including the LCA) has major chromatic distortions
adjacent to the borders (Figures 2B,D). The distortion appears
“yellowish” (lack of blue) on the bright side of the border and
“bluish” on the darker side. Figures 2C,E present the effect of
the model, which simulates the retinal response and its perceived
image.Figures 2B–E show that themodel succeeds in significantly
reducing the chromatic-border distortion.

Figure 3 plots the chromatic contrast, defined as the ratio
between the value of the blue and yellow channels [B/(R+G)],
across the x-axis of Figures 2B,C. This chromatic contrast rep-
resents the chromatic deviation from neutral hue (achromatic
region). An achromatic region is characterized by a contrast value
of 1, while the higher and lower values represent deviations toward
bluish and yellowish chroma, respectively.

The blue curve plots the chromatic contrast across the cast
image (Figure 2). The fringes of the plot are indicated by the
large negative and positive spikes next to the borders (x= 90). The
results given by our model (red line) show a significant reduction
of the spike magnitude, indicating a significant reduction of the
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FIGURE 4 | Demonstration of the longitudinal chromatic aberration (LCA) model. Demonstration of the model performance on the toys’ image (A) provided by Brian
Wandell. (B) Retinal image, simulated by ISETBIO toolbox (see Methods). (C) Model prediction of the perceived image. (D) Enlarged section of retinal image (the LCA)
can be seen in the vicinity of the edges as blue–yellow colored lines. (D,E,F) represent a magnified image of the puppy’s eyes and the chromatic pattern zone in the
background of the images (A,B), and model prediction (C). The correction can be observed only after enlargement (F). The bluish color, a manifestation of the
chromatic aberration, is prominent in (E) and the model’s correction is seen clearly in (F). The change in the bluish chroma is also clear in the background pattern in
(E) and the greenish restoration in (F).

chromatic fringes. The deviation from white is also significantly
diminished. It should be noted that there is some constant hue
generated mainly on the “black” squares, which is a side effect of
the ISETBIO simulation, rather than an ideal achromatic appear-
ance (contrast value of 1).

We also tested themodel’s ability to compensate for LCAon real
images (Figure 4A), taken from the ISETBIO HDRS library. The
optics of the eye was simulated using the ISETBIO (Figure 4B; see
Methods). The results show that the model succeeds in correcting
the chromatic distortions around borders (Figure 4C). The cor-
rection is prominent in the distorted puppy dog’s eye color and
the distorted green–white pattern behind the dog (Figure 4D-F).
Although the model significantly reduces the distortion caused by
LCA, it can also cause some minor chromatic artifacts.

The neuronal mechanism that we propose as capable of cor-
recting for chromatic aberration is bound by the limitations of
the spatial frequency of the S/LM channel (Eq. 10; see Model). In
other words, a crucial part of the model suggests that the S/LM
channel is processed through a spatial low-pass filter. If such a
mechanism actually exists, we would predict that it would lead
to visual phenomena that are prominent at stimuli with high
frequencies of blue/yellow chromaticity. We would expect to see
these phenomena as a blue–yellow assimilation effect, at high-
spatial frequencies or among adjacent chromatic regions with
sharp edges. These characteristics correspond closely to with a
recent outstanding chromatic illusion, which is termed as “Chro-
matic induction from S-cone patterns” and described by Monnier
and Shevell (2004) (Figure 5).

This illusion describes the perception of a chromatic specific
narrow ring with color that differs completely, depending on the
specific chromaticity of an adjacent ring (Figure 5). Psychophys-
ical methods of analysis indicate that the chromatic shift is not
directly dependent on the absolute blue channel intensity (S) of
the blue component of the adjacent rings but rather on the relative

amount of “blue” and “yellow” intensities (S/LM) in the adjacent
rings (Shevell and Monnier, 2006).

We also tested our model on S-cone pattern stimuli, which
have been reported by Monnier and Shevell (2004) to demon-
strate prominent chromatic induction. The results (Figure 5) show
that our model succeeds in predicting the trend of the perceived
chromaticity shift toward the chromaticity of the adjacent ring
(Figure 5D). The predicted chromatic shifts, between the two test
chromaticities (the orange and pink rings) in terms of chromatic
contrast [S/(L+M)], are about 0.31. This shift agrees with the
perceived colors as measured psychophysically by Shevell and
Monnier.

DISCUSSION

This manuscript describes a neuronal mechanism and a com-
putational model, based on retinal chromatic RFs and visual
pathways, that compensate for LCA. The model can significantly
reduce the chromatic distortion at both the artificial and natu-
ral images (Figures 2 and 3). The proposal is supported by the
observation that an artifact of chromatic assimilation, which is
a predicted consequence of the model, corresponds to a well-
known chromatic assimilation phenomenon described previously
(Shevell and Monnier, 2005).

The model is based on the specific spatial and chromatic
structure of the blue–yellow channel (S/L+M) RFs, which are
spatially coextensive “type-II” small bistratified cell (SBC) (see
Model; Hubel and Wiesel, 1968; de Monasterio, 1978; Derrington
et al., 1984; Tailby et al., 2008; Crook et al., 2009; Martin and Lee,
2014) and correspond to the activities of the SBCs. These type-
II RFs are incorporated into a retinal adaptation model (Spitzer
and Barkan, 2005), and then the RF responses are subjected to
an inverse function that mediates a transformation to perceived
values. This transformation enables an evaluation of the model by

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2018 | Volume 6 | Article 126

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Barkan and Spitzer Neuronal Mechanism for Compensation of LCA-Derived Algorithm

FIGURE 5 | (A) S-cone pattern reported by Shevell and Monnier (2005). The pink and orange rings are actually physically identical. (B) Our model prediction.
(C) Zoom-in version of (A) shows that the central ring is identical. (D) Zoom-in version of (B) shows that the model successfully predicts the chromatic shift, and the
left-hand side ring appears pinkish.

consideration of an image domain, rather thanmerely on the basis
of the RF responses.

There has been some dispute in the literature regarding the spa-
tial coextensive nature of the SBC. The coextensive nature of the
SBC has been described by many electrophysiological researchers
(Hubel and Wiesel, 1968; de Monasterio, 1978; Derrington et al.,
1984). A recent experiment reported that the SBC RF may not be
spatially coextensive (Field et al., 2007). However, these results
have been criticized first because the data in Field et al. (2007)
were collected in the far retinal periphery (30–75° eccentricity),
where more recent and broad reports of the RF were recorded
within the central 20°(Hubel and Wiesel, 1968; de Monasterio,
1978; Derrington et al., 1984). Crook et al. (2009) found that
the S-ON and LM-OFF responses were spatially coextensive, or
nearly so. Furthermore, this trend of resultswas supported by large
previous papers including recent reports and a review (Tailby et al.,
2008; Crook et al., 2009; Martin and Lee, 2014).

A logical conclusion may be that the development of visual
system has been strongly influenced by the natural visual scenery.
Most of the sun’s spectral energy on earth is yellowish (550 nm)
(Figure 1.2.1 inWyszecki and Stiles, 1982), giving fewer chromatic
edges in natural scenes than achromatic edges, andwith a predom-
inance of red–green chromatic edges over blue–yellow (Hansen
and Gegenfurtner, 2009). The peak of the spectral luminance effi-
ciency of the visual system (Wyszecki and Stiles, 1982) is similar to
the peak of the sun’s spectral energy with the ocular lens tuned for
optimal focus at the same wavelength. The chromatic aberration
occurs in the short wavelengths, where there is both less solar
irradiance and fewer chromatic edges in natural images. It there-
fore appears that the ocular lens is designed to provide the opti-
mal performance at the prominent natural wavelength (~550 nm)
while allowing the aberration at shorter wavelengths, which are
less significant both for spatial and luminance information.

Although the ocular lens is tuned to the most “important wave-
lengths,” it still suffers from the consequences of the chromatic

aberration. It is plausible that the neural system compensates for
some of these optical imperfections (Wandell, 1995). We pro-
pose that the visual mechanism utilizes the absence of sharp
blue–yellow edges to diminish the effect of chromatic distortions.
In the model, this is replicated by the following mechanisms,
whose existence is supported by psychophysics and neurophysi-
ologic findings.

Luminance and high-spatial resolution chromatic information,
under photopic light conditions, is obtainedmainly from theL and
M channels—which suffer less from LCA. This idea is supported
by psychophysical evidence showing that the contribution of the
S cone to luminance perception is negligible or null (Eisner and
MacLeod, 1980; Wyszecki and Stiles, 1982). This knowledge has
been also applied in the definition of the classical CIE color space
where, for example, the V(λ)s describing the spectral luminance
efficiency (i.e., perceived brightness vs. wavelength) come mainly
from greenish and red light (Wyszecki and Stiles, 1982). As a
result, brightness is calculated by perceived L and M values with
almost no input from the S channel (Eq. 14), while the calcu-
lation of the chromaticity takes the contribution of the S value
into account as well as the contribution of the other chromatic
channels (Eq. 15).

The opponent RF structure of the S channels (SBCs) is both
spatially coextensive and chromatically complementary (Dacey,
1996; Rodieck, 1998; Eq. 10). Such an RF blurs the blue–yellow
information, so that their chromatic mixture yields an achromatic
color. In addition, the spatio-chromatic structure [of S/(L+M)
RF] yields a null response to achromatic edges, also in the pres-
ence of LCA affecting the S channel. In this way, the unique
spatio-chromatic property minimizes the chromatic distortion
(see Results; Figure 2).

In order to maintain the compensatory advantage at the reti-
nal stage, which separates high-spatial frequency information
from low-spatial frequency chromatic information, the system
has to further process these two channels separately. There are
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physiological findings, which show that the SBC RF (with B/Y
chromatic structure) indeed feeds a distinct chromatic pathway,
i.e., the koniocellular pathway (Hendry and Reid, 2000). The
origin of the koniocellular pathway lies in the SBC in the retina,
and the pathway is then relayed by the koniocellular layer in the
LGN to the cytochrome-oxidase blobs in V1. Several studies have
reported that information on color per se and information on
form are separated (Livingstone and Hubel, 1988; Van Essen and
Gallant, 1994; Sincich and Horton, 2005). The information on
form is derived solely from the parvocellular pathway [which lacks
the S/(L+M) information]. The information on color, however,
comes from both the koniocellular and parvocellular pathways.
The parvocellular pathway sends inputs from layer 4cβ to the
blobs in layer 2/3, area V1. The two separate pathways (color and
form) do have different anatomical inputs in the V2 area. Here,
the thin stripes that code the color information are fed both from
the konio and parvo pathways, whereas the pale strips, which
code the form information, are fed only by the parvo pathway.
The “form” pathway is therefore not affected by the deficiencies
of the S/(L+M) pathway. Both pathways project to area V4 and
additional higher visual areas.

Previous studies that proposed neuronal mechanisms to com-
pensate for chromatic aberration (Hay et al., 1963; Broerse et al.,
1999; Grossberg et al., 2002; Vladusich and Broerse, 2002) related
these mechanisms to long-term after-effects, such as the ME—a
long-term orientation-contingent color after-effect (McCollough,
1965). Vladusich and Broerse (2002) proposed a learning neu-
ronal model that inhibits the fringes at luminance boundaries
(caused by chromatic aberrations). Grossberg et al. (2002) pro-
posed a learning mechanism whose primary function is to
adaptively align the representations of the boundaries and sur-
faces, which are shifted due to the process of binocular fusion.
Their mechanism was able to predict the ME. Since the ME
has been previously suggested as the compensation mechanism
for chromatic aberration, the model presented by Grossberg
et al. (2002) was also regarded as a compensation model for
LCA.

In our opinion, there are two main arguments against the idea
thatMEmodels can completely explain neuronal compensation to
LCA. The first limitation of the abovemodels (Broerse et al., 1999;
Grossberg et al., 2002; Vladusich and Broerse, 2002) is that they
assume that the magnitude of LCA effect depends solely on the
magnitude of the luminance edge. However, the LCA effect also
depends on additional optical factors, such as the pupil aperture
(DeValois andDeValois, 1991), whose size changes dynamically in
response to the level of ambient illumination and accommodation.
Such learning mechanisms, therefore, would be expected to yield
chromatic artifacts when the pupil aperture size changes and
would therefore require continuous adaptation of the learning
mechanism. The learning models described above may therefore
be more applicable to transverse chromatic aberration (TCA),
which does not depend on the pupil size. Thus, there could be
two different and complementary mechanisms for the two types
of aberrations, i.e., TCA and LCA.

An additional limitation of previous models (Broerse et al.,
1999; Grossberg et al., 2002; Vladusich and Broerse, 2002) is
their assumption that the LCA is triggered only by achromatic

boundaries. In fact, chromatic aberration (and specifically the
LCA) also occurs at iso-luminance chromatic boundaries, where
there are no achromatic boundaries (Figure 1). Consequently,
the above models fail to explain how the visual system processes
chromatic fringes at non-achromatic borders.

The two types or mechanisms, the current proposed retinal
model, and the above learning mechanisms can be synergetic in
the visual system. The retinal mechanism performs an early-stage
correction that eliminates most of the LCA effects, regardless of
the degree of illumination and eye accommodation. The cortical
learning mechanism (Watanabe et al., 1992; Broerse et al., 1999;
Grossberg et al., 2002; Vladusich and Broerse, 2002; Grossberg,
2003) performs long-term adaptation that can adapt to specific
ocular changes (such as lens defects that can be caused by aging or
physical damage, etc.).

Although several studies have examined the improvement of
visual acuity through optical correction of LCA (Campbell and
Gubisch, 1967; Yoon and Williams, 2002; Artal et al., 2010), none
found better than minor improvement (or none) of the contrast
sensitivity. One may argue that these results suggest that LCA
is not a real problem of the optical system, since correcting it
does not create any significant improvement. However, in our
opinion this would be an erroneous conclusion, since the whole
visual pathway is already optimized to contend with the optical
limitations. Therefore, correction of the optical limitations is not
able to improve the situation further and it is necessary to invoke
neuronal processing (including photoreceptor accommodation,
RF structure and size, the different neuronal processing pathways,
etc.).

Furthermore, LCA is expected to be manifested not only adja-
cently to achromatic edges but also in many other spatial and
chromatic configurations. For example, one would also expect
LCA at iso-luminance chromatic edges and non-oriented edges
(such as textures or dots on a uniform background). In such
configurations, the visual image is clear, despite the fact that the
“leakage” of short-wavelength colors is still expected to influence
the chromatic appearance, and the postulated models are unable
to provide compensation.

The strength of a computational model can be enhanced by
showing its ability to predict additional phenomena. Evidence for
the competence of our model comes from its ability to predict
the enigmatic visual phenomenon of the large chromatic shifts by
S-cone pattern (Shevell and Monnier, 2005; Figure 5).

Shevell and Monnier (2006) and Cao and Shevell (2005) sug-
gested that the large color shifts are mediated by a spatially antag-
onist S+ /S− cortical RF. The “S” term referred to the S-cone
response normalized by the luminance. Cells with this type of
response while not found in the retina have been identified in
some neurons in V1 and V2 visual areas (Conway, 2001). Signif-
icantly, our model is based on retinal RFs (rather than cortical)
(Hubel and Wiesel, 1968; de Monasterio, 1978; Derrington et al.,
1984).

In addition, Shevell et al. also showed that the effect is
more prominent with high-spatial frequency of the rings. We
assume that this was the incentive to include spatially antagonist
RFs in their qualitative model. We suggest, however, that an
additional mechanism is recruited for low-frequency stimuli, i.e.,
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simultaneous contrast mechanism (see Model, adaptation of the
first order). Such a mechanism could originate from a retinal
source (Spitzer and Barkan, 2005). This suggestion should be
supported by additional experimental data, which should deter-
mine whether the effect originates from retinal vs. cortical mech-
anisms, as suggested previously (Cao and Shevell, 2005; Shevell
and Monnier, 2006).

In summary, in this manuscript, we propose a model which
explains how the visual system compensates for LCA. This
compensatory mechanism can also explain additional visual

phenomena, such as the large chromatic shifts by S-cone pattern,
for which the underlying mechanism is still unknown. In addi-
tion, this mechanism can explain the necessity for two separate
chromatic visual pathways, i.e., koniocellular and parvocellular
pathways.
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