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Abstract: Evaluating the quality of reconstructed images requires consistent approaches to extracting
information and applying metrics. Partitioning medical images into tissue types permits the quantitative
assessment of regions that contain a specific tissue. The assessment facilitates the evaluation of an
imaging algorithm in terms of its ability to reconstruct the properties of various tissue types and identify
anomalies. Microwave tomography is an imaging modality that is model-based and reconstructs an
approximation of the actual internal spatial distribution of the dielectric properties of a breast over a
reconstruction model consisting of discrete elements. The breast tissue types are characterized by their
dielectric properties, so the complex permittivity profile that is reconstructed may be used to distinguish
different tissue types. This manuscript presents a robust and flexible medical image segmentation
technique to partition microwave breast images into tissue types in order to facilitate the evaluation
of image quality. The approach combines an unsupervised machine learning method with statistical
techniques. The key advantage for using the algorithm over other approaches, such as a threshold-based
segmentation method, is that it supports this quantitative analysis without prior assumptions such as
knowledge of the expected dielectric property values that characterize each tissue type. Moreover, it can
be used for scenarios where there is a scarcity of data available for supervised learning. Microwave
images are formed by solving an inverse scattering problem that is severely ill-posed, which has a
significant impact on image quality. A number of strategies have been developed to alleviate the ill-
posedness of the inverse scattering problem. The degree of success of each strategy varies, leading to
reconstructions that have a wide range of image quality. A requirement for the segmentation technique
is the ability to partition tissue types over a range of image qualities, which is demonstrated in the
first part of the paper. The segmentation of images into regions of interest corresponding to various
tissue types leads to the decomposition of the breast interior into disjoint tissue masks. An array of
region and distance-based metrics are applied to compare masks extracted from reconstructed images
and ground truth models. The quantitative results reveal the accuracy with which the geometric and
dielectric properties are reconstructed. The incorporation of the segmentation that results in a framework
that effectively furnishes the quantitative assessment of regions that contain a specific tissue is also
demonstrated. The algorithm is applied to reconstructed microwave images derived from breasts with
various densities and tissue distributions to demonstrate the flexibility of the algorithm and that it is not
data-specific. The potential for using the algorithm to assist in diagnosis is exhibited with a tumor tracking
example. This example also establishes the usefulness of the approach in evaluating the performance of
the reconstruction algorithm in terms of its sensitivity and specificity to malignant tissue and its ability to
accurately reconstruct malignant tissue.

Keywords: breast imaging; microwave imaging; image reconstruction; segmentation; unsupervised
machine learning; k-means clustering; Kolmogorov-Smirnov hypothesis test; statistical inference;
performance metrics; contrast source inversion
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1. Introduction

Medical imaging with microwave tomography is investigated for breast health mon-
itoring to complement X-ray mammography. For a typical imaging scenario, a multi-
illumination approach is implemented by encircling the breast with antennas. The breast is
successively illuminated by incident electromagnetic fields from different directions and
the resulting scattered and transmitted fields are received by antennas positioned on the
breast’s periphery and recorded by the measurement system. Microwave tomography
is a model-based imaging modality that extracts internal tissue information from these
data to reconstruct an approximation of the actual spatial distribution of the dielectric
properties over a reconstruction model consisting of discrete elements. With microwave
tomography, bulk tissue characterization is the goal rather than more detailed depiction at
the cellular level.

The dielectric properties of the breast tissues are represented by a complex permittivity
where the real and imaginary components infer the ability of the tissue to store and
absorb microwave energy, respectively [1]. The breast tissue types corresponding to skin,
adipose (or fatty), transition, fibroglandular, and malignant tissues are characterized by
their dielectric properties, which is supported by a number of large-scale studies [2–7].
Therefore, the complex permittivity profile that is reconstructed to form an image may be
used to distinguish different tissue types. Estimating values of the dielectric properties
of tissues over the model in order to reconstruct an image of the interior of the breast is
achieved by solving an inverse scattering problem. The inverse problem is non-linear,
so the model values are estimated iteratively using a process summarized in Figure 1.
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Figure 1. Microwave breast imaging procedure. A breast (represented by a forward model for a numerical study or
measurements of a patient) is successively illuminated by incident fields from different directions. Microwave tomography
is a model-based modality that extracts internal tissue information from the resulting scattered and transmitted fields to
iteratively reconstruct an approximation of actual spatial distribution of dielectric properties of tissues in the breast interior.
Different tissue types are distinguished from each other by their characteristic dielectric properties.

Evaluating approaches to medical image reconstruction requires application of ef-
fective metrics to compare different techniques and assess results. Microwave image
reconstruction with tomography typically produces lower resolution images than clini-
cal imaging methods such as X-ray. For simulations of known models or experiments
with simple phantoms, direct comparisons between microwave images and known values
(i.e., comparing the dielectric properties of the forward model with the inverse model
shown in Figure 1) have been reported [8–10]. This includes examination of cross-sections
through models, the average of the error at all points in the image, or the similarity be-
tween the spatial distribution of the known dielectric properties of the forward model
and the dielectric properties estimated at each of the reconstruction model elements of the
inverse model.
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For more complex models or clinical cases, evaluation of images is often performed
through visual comparison or interpretation based on the clinical history of the patient [11,12].
Quantitative assessment of microwave images is more consistent and precise than a qualitative
approach. For evaluating variants of algorithms, assessing the accuracy of reconstructing
different tissue types provides detailed insight into the algorithm’s performance.

A more precise and consistent approach to image analysis may be carried out by auto-
matically detecting regions of interest corresponding to various tissue types or anomalies.
Accordingly, this necessitates methods capable of distinguishing between different tissue
types and anomalies to assist with image interpretation and tumor localization. Moreover,
segmenting reconstructed images into tissue types leads to the decomposition of the breast
interior into disjoint tissue masks. Metrics are applied to compare masks extracted from
reconstructed images and ground truth models. The quantitative results may be used to
reveal the accuracy with which the geometric and dielectric properties are reconstructed in
order to provide important insights into the performance of the reconstruction algorithm.

Segmenting images formed with microwave tomography can be challenging, as the
images may have spurious artefacts and the interfaces that delineate tissue types may be
blurred or incorrectly located. In addition, there may be a great deal of inhomogeneity
amongst the same tissue type that is reconstructed, inconsistent mapping between esti-
mated dielectric property values of the reconstructed model elements and the range of
dielectric properties that characterize a tissue type, and differences in electrical properties
reconstructed with variants of an algorithm [8,13–16].

The segmentation of images into different types of tissues is commonly accomplished
using a simple thresholding technique (e.g., [16,17]), whereby reconstructed model elements are
classified using ranges of values. However, this strategy assumes that there is a direct mapping
between the dielectric property value of a model element estimated by the algorithm and the
true dielectric property value of a corresponding tissue type. In practice, this is not necessarily
the case, as the accuracy with which the dielectric profile is estimated is impacted by numerous
factors, including the number of iterations, the distribution and density of the tissue properties,
and measurement parameters (e.g., frequency, number of sensors). Another challenge related
to the use of a threshold is that adjustment of the threshold value may significantly impact
the specificity and sensitivity to various tissue types. Here, sensitivity and specificity do not
refer to the performance of the microwave imaging algorithm in the context of a population of
patients, but rather in terms of ability to accurately reconstruct malignant tissues. This problem
is apparent when segmenting malignant from healthy tissues and is described in more detail
in [17]. Collectively, these problems lead to inconsistent results that contribute to unreliable
quantitative assessment of reconstructed images.

An unsupervised machine learning approach such as simulated annealing [18], or k-
means clustering may be used for image segmentation. However, it is a challenge to
determine the optimal number of clusters for the segmentation. Strategies for achieving
this task include the elbow method [19], the average silhouette method [20], and the gap
statistic method [21]. The elbow technique is a heuristic approach, and an “elbow” could
not be unambiguously identified. For many of the images, a great deal of heterogeneity of
the reconstructed dielectric properties was observed. This was particularly apparent for
images formed from data generated from the heterogeneously dense, scattered density,
and extremely dense breasts. The silhouette and gap methods lead to a large range of
values that consistently implied a very large number of clusters to partition each image.
Consequently, it was not possible to reliably implement any of these methods.

In order to address this problem, this paper presents an iterative approach that
does not require the number of clusters to be pre-selected. This is accomplished with
an unsupervised machine learning technique that is reinforced with hypothesis testing and
statistical inference.

The proposed segmentation algorithm presented in Section 2 is comprised of an
iterative clustering method that delineates the interior of the breast into regions dominated
by fatty, transition, fibroglandular, and malignant tissues. This segmentation leads to
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the decomposition of the interior into disjoint tissue masks that are incorporated into a
framework whereby both region and distance-based metrics assess image quality [22].
The metrics presented in Section 2 may be used for evaluating variants of reconstruction
algorithms, as assessing the accuracy of reconstructing different tissue types provides
detailed insight into the algorithm’s performance. Specifically, the segmentation algorithm
is applied to forward models and the corresponding microwave images reconstructed
with the finite element method contrast source inversion (FEM-CSI) approach. Applying
the metrics to the segmentation results allows for comparison between the reconstruction
and the original model. Section 3 presents, analyzes, and discusses these results. Finally,
conclusions and future explorations are presented in Section 4.

2. Methodology
2.1. Microwave Images

A high-level depiction of a typical microwave imaging algorithm is illustrated in
Figure 1. Although not shown, the breast is encircled with antennas to permit the breast
to be illuminated from a variety of locations and directions. Imaging is carried out in two
steps. In the first step, the breast is illuminated successively with incident electromagnetic
fields from each of the antennas. Hence, the breast is interrogated from multiple directions,
and the resulting scattered and transmitted fields are received by antennas located on
the breast’s periphery and recorded by the measurement system (see [10,12,15,23–29],
for examples). For a numerical experiment, an electromagnetic forward model comprised
of tissues with dielectric properties reported from large-scale studies [2–7] is constructed
with the techniques described in [30,31]. The model is sequentially illuminated with
numerical incident fields, and the calculated scattered and transmitted fields received by
the numerical antenna are stored.

Once the experimental data are collected, the reconstruction step using the inver-
sion algorithm is carried out. This second step starts with a trial guess of the distribution.
The electromagnetic model of the breast is initialized with this guess. An array of numerical
antennas within a simulated measurement chamber that approximates the actual experi-
mental system surrounds the breast and sequentially illuminates the breast with numerical
incident fields. The resulting calculated scattered and transmitted fields received at the
numerical antennas are recorded. A cost functional measures the discrepancy between the
measured and calculated fields, and an inverse solver computes the optimal change in the
parameter profile of the electromagnetic model necessary to reduce the discrepancy be-
tween these data. The trial solution is updated with these changes, and the forward solver
recalculates the electric fields. The process continues in this iterative manner—updating
and refining the reconstructed profile—until the calculated and measured fields match
which, in turn, implies that the reconstructed profile matches the actual profile.

Various inverse solvers used have been proposed, including the finite element method
contrast source inversion (FEM-CSI) [16,32,33], Gauss-Newton method, and conjugate
gradient least squares (CGLS) algorithm [34], conjugate gradient method [13], a full-wave
inversion method based on wavelet transform [35], wavelet expansion [36], the Distorted
Born iterative method [8,37], and an inversion method based on an inexact Newton-type
algorithm [38]. A significant challenge encountered when implementing these inverse
solvers is that the inverse scattering problem, along with being non-linear, is severely
ill-posed. This occurs due to the very large number of elements used by the reconstruction
model to capture fine spatial features of the breast. Meanwhile, there are a very limited
number of independent measurement data. Hence, the number of reconstruction elements
(i.e., the dimension of the solution space) far exceeds the number of independent data result-
ing in non-unique solutions. An ill-posed inverse problem manifests as small perturbations
of the measurement data leading to large errors in the reconstructions, and the convergence
to false solutions that fit the data but differ significantly from the actual solution.

To alleviate the ill-posedness of the inverse problem, reconstruction techniques typ-
ically incorporate prior information into the objective function by using some form of
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regularization. The form of regularization used in this paper to improve image quality is
to assimilate patient-specific information related to the electrical properties and anatomical
structures of the breast into the inhomogeneous background [16,17,33]. The integration
of the patient-specific information into the inhomogeneous background reduces the dis-
crepancy between the background complex permittivity and the complex permittivity of
the actual profile. In this manner, the patient-specific information serves to encourage
convergence to the actual solution and generally reduces the degree of ill-posedness of
the inverse scattering problem to improve the stability of the solution [16,39]. Moreover,
the size of the solution space is reduced by constraining the size of the imaging domain
(or reconstruction model) with knowledge of an estimation of the skin surface location.

Numerical experiments using realistic breast models based on MRI scans [30,40] are
tested in this paper, which is depicted in Figure 1 as an electromagnetic forward model.
The dielectric properties of the breast are reconstructed from scattered electromagnetic
fields by solving an inverse scattering problem using a variant of the finite element method
contrast source inversion (FEM-CSI) algorithm [16,33]. Structural information about the
breast is introduced into the FEM-CSI algorithm as an inhomogeneous background εb(r).
Results are formed by iteratively reconstructing the contrast profile given by,

χ(r) =

{
ε(r)−εb(r)

εb(r)
, r ∈ D

0, r /∈ D
, (1)

where χ(r) is the contrast profile, εb(r) is the inhomogeneous background profile, ε(r) is the
complex permittivity profile, r is a position vector, and D is the imaging domain bound by
boundary ∂D.

The use of the background profile to incorporate prior structural information is illus-
trated in Figure 2. Figure 2a depicts the scenario where there is no structural prior infor-
mation available, only knowledge of the dielectric properties of the immersion medium.
This is equivalent to using the immersion background as the trial solution. This lack of
prior information impacts the quality of the resulting microwave image, as the inversion
algorithm converges to a solution having low image quality. On the other hand, Figure 2b
portrays the case where prior structural information is available. The improvement in the
quality of regularization leads to the convergence to a solution associated with a higher
image quality relative to the case represented in Figure 2a.
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For this study, the FEM-CSI algorithm is terminated once the reconstructed image has
stabilized. For example, this may be sensed using the methodology described in [16] or by
adapting the technique presented in [41]. The complex permittivity profile is recovered
from the contrast profile by using the background permittivity with the relation,

ε(r) = εb(r)(χ(r) + 1). (2)

Using Equations (1) and (2), a list of images of the reconstructed profile is created:
the real component of the complex permittivity (Re{ε(r)}), the imaginary component of the
complex permittivity (Im{ε(r)}), and the magnitude of the complex permittivity (|ε(r)|),
which is a non-linear mapping of the real and imaginary components. Each image is
segmented separately using the algorithm described in the following sections.

2.2. Segmenting Interior into Healthy and Malignant Breast Tissue Types

The first aim of the segmentation algorithm is to recover the region containing model
elements corresponding to malignant tissue (or tissues of interest). The current image of in-
terest is denoted as I . First, the region of interest (breast interior) is defined. The boundary
∂D of the imaging domain D given in Equation (1), where D ⊂ I , is identified. The bound-
ary of a region of interest ∂R is constructed by uniformly contracting ∂D inward toward
the center ofD by some amount (e.g., 3.5 mm) using the morphological contraction method
described in [42,43]. This allows artefacts on the periphery of the imaging domain to be
excluded from analysis. The mask of the regionR bound by ∂R is constructed such that,

maskR =

{
1, r ∈ R

0, otherwise
. (3)

Hence, the region of interestR ⊂ D is extracted from I , with

R = maskR � I . (4)

All model elements outside R are assigned a value of −100. An example of R
recovered from a reconstructed image that used this contraction method is shown in
Figure 3a. Note that the immersion medium and skin are considered as background;
only the region of the breast that is interior to the skin is partitioned into tissue types.

Next, the k-means clustering technique [44] is iteratively applied to B, where B =
R ∪ Rc. The number of clusters k is initialized to three, and the k-means++ algorithm
presented in [45] is used to initialize k model elements as cluster centroids. This leads to
the delineation of R into clusters k = 2 and 3, while the background is outside of R and
is assigned cluster k = 1. This initial segmentation of B is shown in the left-most panel of
Figure 3c. Note that the color bar for Figure 3c corresponds to the number of clusters used
for the segmentation. An initial coarse estimate of the tumor region T̂ is identified with
those model elements assigned the highest value, so T̂ = c3. Since cluster c2 is withinR
but outside of T̂ , T̂ c = c2. Lastly, the background is outside ofR and is always assigned
to cluster k = 1, which means thatRc = c1.

An iterative approach is used to refine T̂ and T̂ c, so that with each iteration, the num-
ber of clusters k used in the k-means clustering algorithm is incremented by one. The itera-
tive clustering technique is summarized by Figure 4. After each iteration, T̂ and T̂ c are
updated: T̂ corresponds to the cluster with the highest-valued integer (i.e., T̂ = cmax(k)),
while the union of clusters ck with k = {2, 3, . . . , max(k) − 1} form T̂ c. At each iteration k,
the mask T̂ c is applied to the reconstructed image to extract model elements vck:

vck =

(
max(k)−1
∪

k=2
ck

)
� I

= T̂ c � I .
(5)
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Figure 4. Flow diagram of segmentation algorithm used to refine partitioning of breast interior.

The iterative progression of the segmentation process is demonstrated in Figure 3c
whereby clustering results are shown from left-to-right for k = 3, 6, 8, and 10.

The empirical distribution function (E(·)) is applied to vck. When k > 3, a Kolmogorov-
Smirnov (KS) two sample nonparametric hypothesis test evaluates the difference between
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the cumulative density functions (CDF) of the distributions of the two sample data [46,47].
The test is applied to E(vck) and E(vck−1) where vck−1 are model elements extracted over
T̂ c from the previous iteration. The test evaluates the null hypothesis (HO1) that vck and
vck−1 come from the same distribution. Note that the test does not specify the form of
the common distribution (e.g., normal distribution). Likewise, the mask T̂ is applied to
the reconstructed image to extract model elements vtk, where vtk = T̂ � I . In this case,
the KS two-sample test is performed on E(vtk) and E(vtk−1) to test the null hypothesis (HO2)
that vtk and vtk−1 come from the same distribution. A significance level of 1% is used for
both tests.

If either HO1 or HO2 is rejected, then the number of clusters is incremented by one,
and the partitioning procedure is repeated until neither HO1 nor HO2 is rejected. When nei-
ther hypothesis is rejected, this step is terminated. The union of clusters c2 − cmax{k}−1

form T̂ c, while cmax{k} forms T̂ . The probability density function (PDF) over data within
T̂ c and T̂ after each iteration is demonstrated in Figure 3d. Convergence of the PDFs is
apparent after eight iterations (i.e., k = 10, since the segmentation process starts with k = 3),
which leads to 10 disjoint clusters. Individual PDFs over data within each cluster c2 − c8
are shown in Figure 3e.

In terms of complexity, finding the global optimum of the k-means objective function is
a Non-Deterministic Polynomial acceptable (or NP-hard) problem [48,49]. To avoid solving
the NP-hard problem, as already indicated, the Lloyd’s clustering algorithm [44] is used
but offers a local search heuristic for k-means. Given enough time, the algorithm always
converges after i iterations, but it may be a local minimum. Hence, the clustering algorithm
is run multiple times d with different initializations of the centroids for each k. Then,
the result that leads to the smallest objective function value is selected. The k-means++
initialization scheme is implemented to reduce the dependence of the initialization of the
centroids on the convergence behavior [45].

The running time to implement the proposed segmentation technique is O(IkidN);
where I is the n by m image being processed, k is the number of clusters, i is the number of
iterations of the k-means clustering algorithm needed until convergence, d is the number
of times the clustering algorithm is repeated (i.e., find the result leading to the smallest
valued objective function after running the algorithm d times), and N is the number of
iterations of the segmentation algorithm required to partition the breast interior. This for-
mulation is derived from [50] and [51], and it includes N, which is necessary to implement
the segmentation algorithm. The process is repeated for the real component, imaginary
component, and the magnitude of the complex permittivity.

For images with large dimensions (i.e., large n by m), parallel schemes may be imple-
mented in python with the Scikit learn machine learning library (class sklearn.cluster.KMean)
that use OpenMp to process small blocks of data in parallel, or Matlab in which the number
of times d that the k-means algorithm is repeated is run in parallel. For the images presented,
the data has an underlying clustering structure, and it was observed that the number of
iterations i of the clustering algorithm until convergence was often small.

2.3. Mapping Clusters to Segmentation Masks and Tissue Types

So far, tissues corresponding to model elements with the highest values within the
breast are identified by T̂ = cmax{k}. Cluster c1 identifies the backgroundRc. The remain-
ing k − 2 clusters are mapped to segmentation masks as follows. Cluster c2 bounds tissue
having the lowest dielectric properties and corresponds to the lowest permittivity values
within the breast interior. Consequently, it is reasonable to map c2 to the segmentation
mask corresponding to fatty tissue. Next, clusters c3 and c4 contain permittivity values
that are higher than fatty tissue. The breast interior includes permittivity values that
exceed the maximum value of adipose tissue but are lower than the minimum of the fi-
broglandular tissue range [3]. Therefore, c3 and c4 are mapped to a transition segmentation
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mask. When max{k} > 4, the union of c5 to cmax{k}−1 corresponds to segmentation mask Ĝ
associated with fibroglandular tissues. This is defined as:

Ĝ =
(
∪max(k)−1

k=5 ck

)
. (6)

The final segmentation is comprised of masks formed by mapping clusters k = 1, 2,
. . . max{k} to tissue types with the function

s(k) =


background, k = 1,

f atty, k = 2,
transition k = 3, 4,

f ibroglandular, 4 < k < max{k},
malignant, k = max{k}.

(7)

For the unusual case that there is only one iteration of the segmentation algorithm, clusters
ck, k = 2, 3, 4, are used to identify the fatty, fibroglandular, and malignant tissues, respectively.

The segmentation algorithm is applied to both the forward model and reconstructed
images. The resulting segmentation masks are labeled as refmask and recmask, respectively.
To extract the corresponding property values, the reference mask is applied to the forward
model. These segmented property values are referred to as the reference tissue, reftissue.
Likewise, the reconstructed masks are applied to the reconstructed images. These segmented
property values are referred to as the reconstructed tissue, rectissue, of the region. An example
of the mapping of the clusters to tissue types is shown in Figure 3b. For this example, the ten
clusters shown in the far-right panel of Figure 3c are mapped to segmentation masks and
associated tissue types using Equation (7), resulting in the segmented image shown in Figure 3b.
Videos demonstrating the iterative refinement of the clusters and segmentation process are
provided in the supplemental materials [52].

2.4. Quality Assessment

To measure the image reconstruction performance quantitatively, five region-based
metrics are applied to assess the overlap between refmask and recmask. A distance-based
metric is also used to evaluate shape fidelity.

First, the accuracy of the geometry of a tissue group is evaluated with [16]

Fidelity(refmask, recmask) =
refmask

Trecmask
‖refmask‖2‖recmask‖2

, (8)

where the two 2D masks to be compared are first vectorized. The Fidelity value varies
from 0 (no similarity) to 1 (perfect similarity). Distortion of the structure and the presence
of artefacts decrease the value of this metric. This metric is useful for evaluating the
reconstruction of the fibroglandular region.

The next metric evaluates the accuracy with which both the geometric and dielectric
properties of the underlying structures are reconstructed. This is measured using the
normalized cross-correlation function (xCorrDiel) given by Equation (8), except that refmask
and recmask are replaced with reftissue and rectissue. In addition to sensing distortion and
artefacts, this metric measures how accurately the electric properties are reconstructed
within the structure.

The Dice similarity coefficient describes spatial overlap, and is given by [53]

Dice(refmask, recmask) =
(refmask ∩ recmask)

1
2 (|refmask|+ |recmask|)

=
2|refmask ∩ recmask|
|refmask|+ |recmask|

(9)

where |·| is the cardinality of non-zero model elements within a mask.



J. Imaging 2021, 7, 5 10 of 27

The fourth metric assesses the proportion of malignant tissue correctly reconstructed
within the tumor region (or ratio of tumor detected—RD). This is measured with [16]

RD(refmask, recmask) =
(refmask ∩ recmask)

|refmask|
(10)

where |refmask ∩ recmask| denotes taking the cardinality of non-zero model elements that
are in both the reference and reconstructed masks. Values close to zero imply that the
algorithm is insensitive to malignant tissue, as a very small proportion of the lesion
is reconstructed within the tumor region. Conversely, values close to 1 imply that the
reconstruction algorithm is sensitive to malignant tissue, as most of the malignant tissue is
reconstructed within the tumor region.

The final metric is artefact rejection (AR), which measures the proportion of tissue
incorrectly reconstructed as malignant tissue outside the tumor region. AR is given by [16],

AR(refmask, recmask) = 1− |recmask| − (refmask ∩ recmask)

|refmask|
. (11)

A small value of AR indicates that a large proportion of tissue has been incorrectly
reconstructed as malignant tissue outside the tumor region. Conversely, values close to
1 imply that only a small proportion of the malignant tissue is reconstructed outside the
tumor region. The metrics given by Equations (8), (10) and (11) are described in more detail
in [16,17].

The evaluation metrics given by Equations (9)–(11) are based on the region overlap
between the reference and reconstructed segmentation masks. Theses metrics are relatively
insensitive to under or over estimation of the tumor region [54], so they may not be
appropriate for evaluating shape fidelity. Hence, a distance-based evaluation metric
referred to as the Hausdorff distance (HA) described and analyzed in [54] provides an
alternative perspective. With this measure, points extracted from the interfaces (or edges)
of the reconstructed and reference masks are denoted as rec = {a1, a2, . . . , aNa} and
ref = {b1, b2, . . . , bNb}, respectively. Accordingly, the Hausdorff distance evaluates how
closely the shape of the reconstructed mask matches the shape of the reference mask.
A variant of the Hausdorff distance between rec to ref, referred to as the average Hausdorff
distance, is used for this study and is given by [55]

HA(ref, rec) = max{h(rec, ref), h(ref, rec)}. (12)

where

h(ref, rec ) =
1

Na
∑a∈rec

{
min
b∈ref
‖a− b‖

}
. (13)

As a pre-processing step suggested by [56], prior to computing Equation (12), the points
are translated such that the center of the region enclosed by the corresponding closed con-
tour is at the origin.

To complement the quantitative measures, qualitative assessment of images is en-
hanced by constructing contours from the edge points used to evaluate the average Haus-
dorff distances. Then, the contours are superimposed onto the forward model and recon-
structed masks.

3. Results and Discussion

Three general case studies are used to demonstrate the utility of the proposed image
analysis framework. For the first set of cases presented in Section 3.1, the forward model
used to generate the numerical electromagnetic data for the study remains the same.
Therefore, the shape, size, density, and tissue distribution of the breast is constant, but the
degree of structural detail of the prior information (i.e., the regularization) used by the FEM-
CSI algorithm varies. This leads to reconstructed images having a wide variety of image
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quality. The segmentation and application of metrics is shown to provide quantitative
evaluation of the impact that the degree of structural detail of prior information has on
image quality.

For the second set of cases that is presented in Section 3.2, the forward model used
to generate the numerical data varies, but the degree of prior information used by the
FEM-CSI algorithm is kept constant. Image quality is impacted primarily due to the
differences in the shape, size, density, and tissue distribution of the breast being imaged,
not the prior information. This demonstrates that the segmentation technique and the
quantitative assessment leads to consistent results across breasts with a variety of shapes
and tissue distributions.

Finally, in Section 3.3, tumor tracking cases demonstrate the potential for using the
segmentation algorithm to extract clinically useful information.

3.1. Varying Structural Detail in Prior Information

The electromagnetic model (model 1) that is used for the first set of cases is a het-
erogeneously scattered breast constructed from an MRI slice [40]. The segmentation
algorithm is applied to the real component of the complex permittivity of the forward
model. The boundary, ∂D, is set to the interface between the immersion medium and the
skin surface. The boundary of the region of interest ∂R is formed by uniformly contracting
∂D inward towards the center of the model by 3.5 mm. Mask, maskR, is formed from the
region bound by ∂R using Equation (3), and is applied to the forward model to recover
dataR with Equation (4). Figure 5a showsR extracted from the forward model of model
1. The same procedure is used to recover R over maskR for the remainder of cases in
this study.
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Figure 5. Model 1 forward model segmentation results. (a)R extracted from forward model; (c) Evolution of clusters at
k = 3, 4, 6, and 8; (d) Evolution of PDF over data within T̂ c and T̂ where numbers indicate iteration; (e) PDF over data
within cluster c2, and (f) clusters c3 (blue line) to c8 (black line). Cluster c2 corresponds to fatty tissue, c3 − c4 corresponds to
transition tissue, c5 − c7 fibroglandular tissues, and c8 corresponds to malignant tissue, which are mapped to segmentation
masks leading to tissue type image (b).

The segmentation algorithm is applied to B (where B = R ∪ Rc) and converges
after six iterations, leading to B being partitioned into eight disjoint clusters. The union of
clusters c2− cmax{k}−1 form T̂ c, while cmax{k} forms T̂ . The PDF over data within T̂ and T̂ c

after each iteration is shown in Figure 5d, demonstrating the convergence that terminates
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the segmentation process. Individual PDFs over data within each cluster c2 − c8 are
shown in Figure 5e,f. Finally, clusters are mapped to segmentation masks and associated
tissue types using Equation (7), resulting in the segmented image shown in Figure 5b.
The forward model segmentation results are used as a reference and are compared with
the segmentation results of the corresponding reconstructed images.

Numerical electromagnetic data are generated with the model 1 forward model.
For the first case (3.1a), detailed patient-specific prior information is provided. Accordingly,
the inhomogeneous background εb(r) in (1) emulates the structural information that would
be recovered from an MRI image. This process is described in more detail in [16].

The FEM-CSI algorithm reconstructs the contrast profile χ(r); then, Equations (1) and (2)
are employed to recover a list of images from (r), given by Re{ε(r)}, Im{ε(r)}, and |ε(r)|.
These images are shown Figure 6a. The tissue type and cluster images formed when the
segmentation algorithm is applied are shown in Figure 6b,c, respectively. More detailed
results in a format similar to Figure 5 showing the evolution of the PDF over data within
T̂ and T̂ c and the clusters after each iteration are furnished by Supplementary Materials
Figures S1–S10. Moreover, the detailed results for all of the cases examined in Section 3.1 and
video demonstrations are also available from the repository described in [52].
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Figure 6. Case 3.1a forward model and reconstruction results when algorithm applied to model 1 data and εb(r) is set to
detailed internal structure (a); Tissue type images (b); Final iteration of segmentation algorithm (c).

For the second case (3.1b), the inhomogeneous background εb(r) in Equation (1) is set
to information extracted from radar-based techniques described in [16,57–59] and has less
detail relative to the first case. Specifically, structural information related to the skin, fat,
and glandular regions is provided along with estimates of the mean dielectric properties
over these regions. The corresponding images reconstructed by the FEM-CSI algorithm are
shown in Figure 7a and exhibit a lower degree of quality relative to the first case. The tissue
type and cluster images are shown in Figure 7b,c, respectively.
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Figure 7. Case 3.1b reconstruction results when algorithm applied to model 1 data and εb(r) is set to
structural information related to skin, fat, and glandular regions extracted by radar-based technique
(a); Tissue type images (b); Final iteration of segmentation algorithm (c).

For the third and final case (3.1c), the inhomogeneous background εb(r) in Equation (1)
incorporates structural information related to the skin region along with a homogenous
breast interior with complex dielectric properties estimated with [16,57–59]. The recon-
structed results shown in Figure 8a exhibit the lowest degree of quality of the three cases
studied in this section, and they are the most challenging to segment. The tissue type
mapping and cluster images are shown in Figure 8b,c, respectively.
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Figure 8. Case 3.1c reconstruction results when algorithm applied to model 1 data and εb(r) is set
to structural information related to skin region extracted by radar-based technique (a); Tissue type
images (b); Final iteration of segmentation algorithm (c).



J. Imaging 2021, 7, 5 14 of 27

The consistency of the proposed approach becomes particularly useful when segment-
ing images for which interfaces that delineate tissue types are blurred or are incorrectly
located. This is evident for all three cases when segmenting the malignant from fibroglan-
dular tissue and when segmenting the fibroglandular tissues from the breast interior for
the third case. In addition to blurred interfaces, differences in electrical properties recon-
structed that depends on the degree of structural detail of the prior information used by
the FEM-CSI algorithm is also observed for the three cases. Regardless of these challenges,
the proposed segmentation methodology gives reasonable estimates of glandular and
tumor regions in all reconstructions. The qualitative image analysis is shown for all three
cases in Figure 9. The regional and distance-based metrics are applied to the glandular and
tumor regions, leading to the quantitative results shown in Tables 1 and 2, respectively.
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Figure 9. Model 1 qualitative image analysis of reconstructed images formed using various prior
information detail. Glandular mask contours (a), and tumor mask contours (b) with contours
extracted from forward model (black-line), reconstructed Re{ε(r)} (blue-line), Im{ε(r)} (red-line),
and |ε(r)| (pink-line). Forward model contour (red-line) superimposed onto union of reconstructed
tumor masks (c).

Table 1. Model 1: Glandular region metrics—varying degree of prior information.

Case Metric Real Imaginary Magnitude

Fidelity 0.95 0.95 0.95
3.1a (detailed internal structure) Dice 0.95 0.95 0.95

xcorrDiel 0.91 0.89 0.91
HA 0.66 0.66 0.66

Fidelity 0.85 0.85 0.85
3.1b (regional internal structure) Dice 0.85 0.85 0.85

xcorrDiel 0.85 0.82 0.85
HA 5.68 5.68 5.68

Fidelity 0.85 0.81 0.86
3.1c (skin region) Dice 0.85 0.79 0.86

xcorrDiel 0.83 0.75 0.83
HA 4.39 7.09 4.06
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Table 2. Model 1: Tumor region metrics—varying degree of prior information.

Case Metric Real Imaginary Magnitude

RD 0.63 0.20 0.60
3.1a (detailed internal structure) AR 0.95 0.37 0.87

Dice 0.75 0.22 0.69
HA 1.56 1.63 1.44

RD 0.77 0.01 0.69
3.1b (regional internal structure) AR 0.88 0.65 0.78

Dice 0.82 0.01 0.73
HA 1.20 2.73 1.32

RD 0.71 0.05 0.86
3.1c (skin region) AR 0.87 0.60 0.61

Dice 0.77 0.06 0.76
HA 1.44 2.42 1.49

The effectiveness of the metrics incorporating segmentation results is evident from
the results shown in Tables 1 and 2. As expected, the values of the metrics demonstrate
that reducing the structural detail in the prior information leads to a degradation of
reconstruction of the glandular structure. However, reducing this structural detail also
impacts the quality of the reconstruction of the tumor region in a more complicated
manner. For this set of examples, the specificity (implied by value of AR) degrades and the
sensitivity improves (implied by value of RD) with decreasing amounts of structural prior
information. Furthermore, each component of the reconstruction is impacted differently.
Namely, the quality of the imaginary component in terms of sensitivity (RD) and tumor
shape (HA) benefits from a greater detail of prior structural information relative to the real
component. These examples demonstrate the utility of having a framework that effectively
provides a quantitative assessment of regions that contain a specific tissue. In particular,
the regional and distance metrics provide valuable insight into a complex issue such as
the evaluation of the impact that the degree of structural detail of prior information has on
image quality.

A key motivation for developing the proposed segmentation methodology is to re-
solve the challenges that arise when using thresholding techniques. The challenges are
demonstrated by applying the thresholding technique implemented by the studies de-
scribed in [16,17] to the reconstructed images in this section. Specifically, threshold values
are set to 95%, 90%, 85% and 80% of the maximum reconstructed value within the breast
interior. In Figure 10, the black contour extracted from the forward model serves as a
ground truth for comparison with the thresholded tumor contours. Likewise, metrics are
applied to the reference and reconstructed tumor masks resulting from thresholding and
are presented in Table 3.

The results shown in Figure 10 and Table 3 demonstrate the challenge of determining
an appropriate threshold value to use with the threshold-based segmentation technique.
Namely, adjustments of the threshold values demonstrate the trade-off between sensitivity
and specificity that classification problems experience when using a methodology that
depends on a fixed threshold value. For example, setting the segmentation threshold
value for malignant tissue too low (e.g., 80%) leads to an improvement in sensitivity
(i.e., high RD value) at the expense of the deterioration of the specificity (i.e., decrease in
AR). This occurs because model elements that are within the fibroglandular structure are
incorrectly attributed to malignant tissue. Likewise, setting the threshold value too high
(e.g., 95%) impacts sensitivity by incorrectly assigning reconstructed tissue to fibroglandular
tissue when it is, in fact, malignant tissue. Accordingly, the choice of what value of threshold
to use is not obvious and, to complicate matters, it has been observed that the maximum
value of the reconstructed tissue using FEM-CSI depends on the number of iterations.
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Figure 10. Model 1 qualitative image analysis of reconstruction images using various threshold
values applied to cases 3.1a (a), 3.1b (b), and 3.1c (c). For each case, contours associated with tumor
masks from forward model, reconstructed Re{ε(r)}, and Im{ε(r)} shown with black, blue, and red
lines, respectively, superimposed onto forward model.

Table 3. Model 1 tumor region metrics: tumor region extracted with threshold technique using
various values of threshold.

Case Metric 95% 90% 85% 80%

RD 0.26 0.64 0.76 0.90
3.1a (detailed internal structure) AR 0.98 0.94 0.39 −0.62

Real component Dice 0.41 0.75 0.64 0.51
HA 3.46 1.47 1.28 1.78

RD 0.05 0.11 0.23 0.33
3.1a (detailed internal structure) AR 0.79 0.65 0.44 0.16

Imaginary component Dice 0.07 0.15 0.26 0.31
HA 3.35 2.28 1.44 1.48

RD 0.26 0.53 0.72 0.83
3.1b (regional internal structure) AR 1.00 0.98 0.90 0.66

Real component Dice 0.40 0.68 0.79 0.76
HA 3.53 1.95 1.34 1.16

RD 0.00 0.00 0.02 0.05
3.1b (regional internal structure) AR 0.86 0.74 0.61 0.41

Imaginary component Dice 0.00 0.00 0.03 0.61
HA 4.35 3.33 2.39 1.83

RD 0.21 0.52 0.73 0.82
3.1c (skin region) AR 1.00 0.99 0.84 0.61
Real component Dice 0.35 0.68 0.78 0.74

HA 4.01 2.13 1.32 1.50

RD 0.00 0.00 0.03 0.06
3.1c (skin region) AR 0.88 0.76 0.65 0.54

Imaginary component Dice 0.00 0.01 0.04 0.08
HA 4.47 3.41 2,63 2.11
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In contrast, the proposed technique does not rely on assumed dielectric property
values of the reconstructed tissues. Moreover, the proposed iterative approach does not
require the number of clusters to be pre-selected, as the unsupervised machine learning
technique is reinforced with hypothesis testing and statistical inference to automatically
determine the number of clusters.

The convenience of using this strategy is evident when observing the variation in the final
number of clusters, as shown in the bottom row of Figures 6–8. The examples demonstrate
that pre-selecting the number of clusters beforehand is not practical. Furthermore, using the
proposed strategy leads to a more precise and consistent approach to image analysis compared
to alternative methods by automatically detecting regions of interest in the image corresponding
to various tissue types or anomalies. This advantage is particularly evident when comparing
the metric values in Table 2 with those in Table 3. In Table 3, there is a significant variation in
the values of all metrics across all reconstruction components and test cases, depending on
the threshold value used. The variation in the metric values leads to inconsistent results that
contribute to unreliable quantitative assessment of reconstructed images.

It is also observed that the threshold technique requires different threshold values in order
to achieve the same results as the proposed automatic segmentation method. For example,
for case 3.1a, the thresholding technique requires values of approximately 90% and less than
85% to segment the real and imaginary components, respectively. Different threshold values
are also needed depending on the image component and the case examined. This observation
demonstrates that using the proposed technique leads to a simplification of the segmentation
process that may result in improved consistency and reliability of results. Moreover, it is not
necessary for the user to make a decision on a threshold value to use or to iteratively fine tune
threshold values depending on the image component or reconstructed image. This observation
also demonstrates the flexibility of the proposed technique and its ability to automatically
adapt to a scenario (e.g., image quality).

3.2. Varying Breast Shape and Tissue Distribution

The second part of the study is comprised of three cases, namely breast models with
different shapes and tissue distributions. The degree of prior information used by the FEM-
CSI algorithm is kept constant, so image quality is impacted primarily due to the shape,
size, and tissue distribution of the breast being imaged. The inhomogeneous background
εb(r) in Equation (1) is extracted from ultrasound data described in [60]. An electromagnetic
model (model 3.2a) described in [40] of a heterogeneously dense breast that is constructed
from an MRI slice is used for the first case.

When applied to the forward model, the segmentation algorithm converges after five
iterations, leading to B being partitioned into seven disjoint clusters. These clusters are
mapped to masks and associated tissue types using Equation (7). The forward model
segmentation results are used as a reference and are compared with the segmentation
results of the corresponding reconstructed images. Numerical electromagnetic data are
generated with forward model 3.2a. The FEM-CSI algorithm iteratively reconstructs the
contrast profile [17] and the corresponding images, given by Re{ε(r)}, Im{ε(r)}, and |ε(r)|,
are shown in Figure 11a. The tissue type and cluster images are shown in Figure 11b,c,
respectively. The qualitative image analysis is shown in Figure 12. The regional and
distance-based metrics lead to the quantitative results shown in Table 4.

Model 3.2b is an electromagnetic model of a fatty breast that is constructed from a
sequence of MRI slices described in [30]. The segmentation algorithm is applied to the
forward model and converges after four iterations. The FEM-CSI algorithm iteratively
reconstructs the contrast profile [17]. Results obtained when the segmentation algorithm
is applied to the forward model and the reconstructed images are shown in Figure 13.
The qualitative image analysis is shown in Figure 14, while regional and distance-based
metrics are summarized in Table 5.
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Figure 11. Model 3.2a forward model and reconstruction results (a); Tissue type images (b); Final iteration of segmentation
algorithm (c).
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Figure 12. Model 3.2a qualitative image analysis. Glandular mask contours (a), and tumor mask
contours (b) with contours extracted from forward model (black-line), reconstructed Re{ε(r)} (blue-line),
Im{ε(r)} (red-line), and |ε(r)| (pink-line). Forward model contour (red line) superimposed onto union of
reconstructed tumor masks (c).

Table 4. Model 3.2a quantitative results.

Region Metric Real Imaginary Magnitude

Fidelity 0.90 0.90 0.90
Glandular Dice 0.90 0.90 0.90

xcorrDiel 0.91 0.88 0.91
HA 1.66 1.64 1.66

RD 0.44 0.35 0.50
Tumor 1 AR 0.92 0.78 0.96

Dice 0.58 0.45 0.65
HA 3.80 3.66 3.71

RD 0.40 0.09 0.36
Tumor 2 AR 0.94 0.93 0.94

Dice 0.55 0.15 0.51
HA 2.85 4.52 3.39
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J. Imaging 2021, 7, x FOR PEER REVIEW 21 of 30 
 

 

Model 3.2b is an electromagnetic model of a fatty breast that is constructed from a 

sequence of MRI slices described in [30]. The segmentation algorithm is applied to the 

forward model and converges after four iterations. The FEM-CSI algorithm iteratively re-

constructs the contrast profile [17]. Results obtained when the segmentation algorithm is 

applied to the forward model and the reconstructed images are shown in Figure 13. The 

qualitative image analysis is shown in Figure 14, while regional and distance-based met-

rics are summarized in Table 5. 

 

Figure 13. Model 3.2b forward model and reconstruction results (a); Tissue type images (b); Final 

iteration of segmentation algorithm (c). 

 

Figure 14. Model 3.2b qualitative image analysis. Glandular mask contours (a), and tumor mask con-

tours (b) with contours extracted from forward model (black-line), reconstructed Re{𝜖(𝐫)} (blue-line), 

Im{𝜖(𝐫)} (red-line), and |𝜖(𝐫)| (pink-line). Forward model contour (red line) superimposed onto union 

of reconstructed tumor masks (c). 

  

Figure 14. Model 3.2b qualitative image analysis. Glandular mask contours (a), and tumor mask contours (b) with contours
extracted from forward model (black-line), reconstructed Re{ε(r)} (blue-line), Im{ε(r)} (red-line), and |ε(r)| (pink-line).
Forward model contour (red line) superimposed onto union of reconstructed tumor masks (c).

Table 5. Model 3.2b quantitative results.

Region Metric Real Imaginary Magnitude

Fidelity 0.61 0.65 0.62
Glandular Dice 0.59 0.64 0.60

xcorrDiel 0.72 0.79 0.72
HA 3.34 2.54 3.29

RD 0.34 0.76 0.34
Tumor AR 0.71 0.61 0.71

Dice 0.41 0.71 0.41
HA 1.62 1.10 1.62

Model 3.2c is used as the final case studied for this part of the study, and it is an
electromagnetic model of a dense breast that is constructed from a sequence of MRI
slices [30]. The segmentation algorithm is applied to the forward model and converges
after four iterations. The FEM-CSI algorithm iteratively reconstructs the contrast profile [17].



J. Imaging 2021, 7, 5 20 of 27

The results obtained when the segmentation algorithm is applied to the forward model
and the reconstructed images are shown in Figure 15. The qualitative image analysis is
shown in Figure 16, and a summary of the regional and distance-based metrics is provided
in Table 6.
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Figure 16. Model 3.2c qualitative image analysis. Glandular mask contours (a), and tumor mask
contours (b) with contours extracted from forward model (black-line), reconstructed Re{ε(r)} (blue-line),
Im{ε(r)} (red-line), and |ε(r)| (pink-line). Forward model contour (red line) superimposed onto union of
reconstructed tumor masks (c).

Table 6. Model 3.2c quantitative results.

Region Metric Real Imaginary Magnitude

Fidelity 0.87 0.88 0.87
Glandular Dice 0.87 0.87 0.87

xcorrDiel 0.92 0.92 0.92
HA 2.13 2.16 2.13

RD 0.37 0.16 0.69
Tumor AR 1.00 0.65 0.95

Dice 0.54 0.21 0.79
HA 2.96 2.56 1.36
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For this section, the tissue distribution of each model varied, but the prior knowledge of
internal structural information was kept the same. Even with considerable variation in breast
density and tissue distribution between models, it was demonstrated that the segmentation al-
gorithm is robust to these variations. As observed with the cases in Section 3.1, the final number
of clusters that the algorithm converges to varies, depending on the tissue distribution of the
breast and image component being segmented. Unlike thresholding segmentation techniques
that require pre-selected thresholds, or an unsupervised machine learning approach such as
k-means clustering that requires a pre-selected number of clusters, the proposed image seg-
mentation does not require prior information. Consequently, it is not data-specific, unlike these
other techniques, and it was able to reliably and consistently segment the reconstructed images
into tissue types to permit the quantitative assessment of regions that contain a specific tissue.

These results also provide insight into the impact that the breast density and tissue
distribution has on the performance of the FEM-CSI algorithm. Specifically, reconstruction
of the real and imaginary components of the malignant tissue was effectively assessed.
For the imaginary component, the metrics suggest that the reconstruction algorithm is more
sensitive to malignant tissue (i.e., higher RD value) and reconstructed the tumor region
more accurately (lower HA value) for the fatty breast compared to the other two cases.
On the other hand, for the real component, the metrics suggest that the reconstruction
algorithm is equally sensitive to the malignant tissue for all three tissue distributions.
However, similar to the imaginary component, the tumor region of the real component
was reconstructed more accurately for the fatty breast scenario. For the dense breast,
the advantages of analyzing the magnitude of the reconstructed image is evident, as there
is both an improvement in sensitivity and accuracy of the tumor region that is reconstructed
compared to the quality of the real and imaginary components.

Similar to the test cases studied in Section 3.1, the examples investigated in this section
demonstrate the utility of having a framework that effectively provides a quantitative
assessment of regions that contain a specific tissue to provide valuable insight into a
complex issue. Namely, the evaluation of the impact that the tissue distribution and breast
density have on image quality and the performance of the reconstruction algorithm can
be effectively assessed. These insights are not necessarily revealed or as obvious with a
qualitative assessment such a visual examination and image comparisons.

The test cases also demonstrate the practical utility of mapping clusters to distinct
tissue types. The tissue mapped images may be used to assist with image interpretation
and to more readily identify anomalies.

3.3. Tumor Tracking

The contrast in dielectric properties between healthy and malignant tissues reported in the
large-scale studies [2–7] may be exploited with microwave imaging in order to image malignant
tissue. This is supported with clinical studies described in [10,12,24,25] that demonstrate the
utility of microwave tomography for breast screening and therapy monitoring. Consequently,
the final part of the study is comprised of two tumor tracking examples to demonstrate that
the segmentation technique may assist with extracting clinically useful information. Similar
to the second part of the study described in Section 3.2, the degree of structural detail of the
prior information used by the FEM-CSI algorithm is the same for each case. For both cases,
the inhomogeneous background εb(r) in (1) is set to information extracted from the radar-based
technique described in [16,57–59]. Model 1, which is also used in Section 3.1, is the forward
model used to generate the numerical electromagnetic data.

For the first case (3.3a), a large tumor region is present in the forward model, as shown
in Figure 17. The segmentation algorithm is applied to the forward model and converges
after five iterations, so B is partitioned into seven disjoint clusters. These clusters are
mapped to segmentation masks and associated tissue types using Equation (7). The forward
model segmentation results are used as a reference and are compared with the segmentation
results of the corresponding reconstructed images.
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Figure 17. Model 1 forward model with large tumor embedded in fibroglandular tissues and
reconstruction results (a); Tissue type images (b); Final iteration of segmentation algorithm (c).

The FEM-CSI algorithm iteratively reconstructs the contrast profile [17]. The corre-
sponding images are shown in Figure 17a. The tissue type and cluster images are shown in
Figure 17b,c, respectively.

For the second case (3.3b), the size of the tumor region is reduced, but its location
within the forward model is approximately the same as the first case. The results when the
segmentation algorithm is applied to the forward model and the reconstructed images are
shown in Figure 7 (Section 3.1).

The qualitative image analysis is shown for each case in Figure 18. The region and
distance-based metrics are applied to the reference and reconstructed masks of the tumor
regions, leading to the quantitative results shown in Table 7.
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Figure 18. Model 1 tumor tracking qualitative image analysis. Contours for large tumor and
reduced tumor cases (a) with contours extracted from forward model (black line), reconstructed
Re{ε(r)} (blue line), Im{ε(r)} (red line), and |ε(r)| (pink line). Forward model contour (red line)
superimposed onto union of masks formed with malignant tissue reconstructed from FEM-CSI
Re{ε(r)}, Im{ε(r)}, |ε(r)| (b).
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Table 7. Model 1 tumor tracking quantitative results.

Case Metric Real Imaginary Magnitude

RD 0.46 0.17 0.30
3.3a—Large tumor AR 1.00 0.76 1.00

Dice 0.63 0.24 0.46
HA 4.90 6.67 5.71

RD 0.77 0.01 0.69
3.3b—Reduced tumor AR 0.88 0.65 0.78

Dice 0.82 0.01 0.73
HA 1.20 2.73 1.32

The potential for using the algorithm to provide clinically useful information is demon-
strated with this set of tumor tracking examples. Microwave tomography typically produces
lower resolution images than clinical imaging methods such as X-ray. Hence, segmenting
medical images formed with microwave tomography for tumor tracking examples can be
challenging as the interfaces that delineate tissue types may be blurred. This is particularly
challenging when malignant tissue is embedded in glandular tissue. Contributing to the chal-
lenge is the possibility that there may be a great deal of inhomogeneity amongst the glandular
tissue. Regardless of these challenges, the proposed segmentation procedure demonstrated the
ability to delineate the reconstructed tissue from the glandular tissue.

Once the tissue regions are extracted, metrics are applied for quantitative analysis
in order to assess the results. The metrics shown in Table 7 infer that for the large tumor
reconstruction scenario, the algorithm is less sensitive but has a higher specificity to
the malignant tissue relative to the reduced tumor scenario. The values of the average
Hausdorff distance shown in Table 7 indicate that the reconstruction algorithm did not
reconstruct the shape of the malignant region as accurately compared to the reduced tumor
scenario. The metrics collectively suggest that there is inadequate information furnished
from the images to make a judgement with respect to whether a significant reduction in
the size of the malignant region has occurred (in response to some treatment, for example).

Similar to the test cases examined in the previous sections, this set of cases demonstrate
the practical convenience of mapping clusters to distinct tissue types. The tissue mapped
images may be used to assist with image interpretation and to more readily make inferences
on the location of the malignant tissue within the glandular structure. This example also
demonstrates the utility of providing a framework for assessing the performance of the
reconstruction algorithm. For example, the metrics may be used to inform researchers with
regard to adjustments to the reconstruction algorithm or measurement system parame-
ters such as an increase in the number of sensors to improve the sensitivity and overall
performance of the reconstruction algorithm.

4. Conclusions

A medical image segmentation technique has been presented that partitions mi-
crowave breast images into regions of interest corresponding to distinct tissue types in
order to facilitate the evaluation of image quality. A key advantage for using the algorithm
over other approaches is that it supports a quantitative analysis of microwave images with-
out prior assumptions such as knowledge of the expected dielectric property values that
characterize each tissue type. Unlike supervised machine learning approaches that require
copious amounts of data to effectively train a model, it can be used for scenarios where
there is a scarcity of data. It also addresses a significant difficulty encountered by many
unsupervised machine learning approaches in that it does not require a predetermined
number of clusters to partition the image. The proposed technique is not data-specific, as it
was able to segment a variety of images with different image quality. Moreover, it was
able to reliably and consistently segment images derived from breasts with various tissue
distributions and densities into tissue types to permit quantitative assessment of regions
that contain a specific tissue.
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The segmentation into tissue types leads to the decomposition of the breast interior
into disjoint tissue masks. An array of region and distance-based metrics were applied to
compare masks extracted from reconstructed images and ground truth models. The quan-
titative results revealed the accuracy with which the geometric and dielectric properties
are reconstructed. The incorporation of the segmentation results into an evaluation frame-
work with metrics was demonstrated and effectively furnished quantitative assessment
of tissue-specific regions. The examples demonstrated the utility of having this frame-
work to provide valuable insight into a complex issue. Namely, the impact that changes
in tissue distribution and breast density have on image quality and the performance of
the reconstruction algorithm can be effectively assessed. These insights are not necessar-
ily revealed or as obvious with a qualitative assessment such a visual examination and
image comparisons.

It is anticipated that this framework may also be applied to the analysis of the data
acquisition environment to quantify changes in image quality to inform researchers on the
number and location of sensors, the incident field frequency, measurement chamber design,
and the orientation of the receivers relative to the data acquisition surface. For this study,
the numerical breast models were used for the forward model and furnished the reference
regions to compare with the tissues segmented from the image. However, when using
clinical data, the reference model may be the patient at a previous point in time to quantify
how a region changed over time in response to a treatment. The reference model for clinical
or experimental data may also be an inverse model obtained with variations on the same
algorithm or a different reconstruction algorithm (comparing the FEM-CSI inverse solver
with the Distorted Born iterative method, for example).

In addition to facilitating a quantitative analysis of images, the tissue masks facil-
itate supplying qualitative information to assist in the interpretation of the microwave
images. This qualitative information is augmented with images showing the location of
estimated tissue interfaces that provide a visual means to quickly interpret an image or the
performance of an inversion algorithm.

More broadly, the presented technique provides a general framework that may be
applied to an extensive range of medical imaging modalities. This may be particularly
useful for developing modalities for which users do not have much experience with the
reconstructed images, as well as when there is scarcity of data available for supervised
learning. Initial investigations into the application of the technique to ultrasound images
has assisted with studies reported in [17,60]. The diverse range of potential applications
that may implement the presented image analysis technique also includes liquid biopsy
analysis [61–63].

Future work includes integrating this segmentation approach with performance met-
rics (e.g., [16,17,39,60]), and composite tissue-type and probability images [64].
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