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Although mesothelioma is the consequence of a protracted immune response to

asbestos fibers and characterized by a clear immune infiltrate, novel immunotherapy

approaches show less convincing results as compared to those seen in melanoma

and non-small cell lung cancer. The immune suppressive microenvironment in

mesothelioma is likely contributing to this therapy resistance. Therefore, it is important

to explore the characteristics of the tumor microenvironment for explanations for

this recalcitrant behavior. This review describes the stromal, cytokine, metabolic, and

cellular milieu of mesothelioma, and attempts to make connection with the outcome of

immunotherapy trials.

Keywords: mesothelioma, microenvironment, immunotherapy, tumor-associated macrophages, myeloid-derived

suppressor cells, T-cells

INTRODUCTION

Malignant pleural mesothelioma (MPM) has a justified reputation for being resistant to therapy.
Large case series of patients with mesothelioma indicate a median overall survival of only 9.5
months (1). The epithelioid histological subtype is the most common variant; it has polygonal,
oval or cuboidal cells and is associated with a better median overall survival of 13.1 months
(1, 2). However, the sarcomatoid variant with spindle-shaped cells has a median survival of
only 4 months (1). Both surgery and radiotherapy have limited roles in the management of the
disease (3). VEGF inhibition in combination with chemotherapy results in a modest increase in
survival for patients with malignant pleural mesothelioma (4). However, the first randomized
trial of immune checkpoint inhibition using tremulimumab, an anti-CTLA-4 antibody, failed
to improve median overall survival (5). In addition, nintedanib, a multi-tyrosine kinase small
molecule inhibitor targeting VEGFR1-3, PDGFRα/β and FGFR1-3 receptor signaling, did not
prolong progression-free survival when added to chemotherapy (6). Various Phase 2 trials,
such as the MAPS2 trial of nivolumab and ipilimumab, show promising activity and require
confirmation in larger Phase 3 trials (7), While Phase 1 and Phase 2 trials of immunotherapies have
produced modest signals to date, checkpoint inhibition in real-life clinical settings have reported
limited effects. For example, in Phase 1b and 2 trials of pembrolizumab, the median survival is
between 11.5 and 18 (8, 9), but median survival is only 7.2 months when prescribed off-label in
palliative settings (10). Furthermore, the results from the randomized Phase 3 PROMISE-meso trial
indicated that pembrolizumab was not superior to single-agent chemotherapy in pre-treated MPM
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(11). While several trials using immunotherapy monotherapy,
combination immunotherapy or immunotherapy in
combination with chemotherapy are underway in mesothelioma,
it is pertinent to examine the tumor immune microenvironment
for explanations as to why mesothelioma is so resistant
to therapy.

THE INFLAMMATORY RESPONSE AND
CARCINOGENESIS

The inflammatory response to asbestos is a cardinal feature
of mesothelioma’s pathogenesis and microenvironment. The
inflammatory response to asbestos fibers that reach the outer
pulmonary parenchyma is one hypothesis for how amphibole
fibers and fluid enter the pleural space in the first place (12).
In addition, mesothelial cells in contact with asbestos fibers
generate CCL2 (13), attracting macrophages which become
embroiled in “frustrated phagocytosis” due to the size and
biopersistence of amphibole fibers (12). Macrophage production
of Reactive Oxygen Species (ROS) and nitrogen species augments
the reactive oxygen/nitrogen species already catalyzed by the
iron in asbestos fibers (14–18). The quantity of hydroxyl free
radicals and nitric oxide free radicals have been associated with
the extent of DNA strand breaks and gene deletions in cultured
cell lines and are considered responsible for keymutagenic events
(14, 15, 19).

Furthermore, cells which have sustained genotoxic damage
would ordinarily undergo poly(ADP)ribose polymerase-induced
programmed cell death (20) but are “rescued” by aspects of
the inflammatory response. For example, macrophages are
key producers of TNF-α (17), not only as a consequence of
frustrated phagocytosis (21), but also in response to the release
of High Mobility Group Box 1 frommesothelial cells undergoing
programmed cell death (20). TNF-α acting on upregulated
TNF-α receptors and the NF-κB pathway can protect human
mesothelial cells from cell death in vitro (22). This effect can
be abrogated by antibodies to TNF-α or inhibitors of NF-
κB (22). While TNF-α receptor knockout mice have not yet
been studied in mesothelioma models, these mice are protected
from fibroproliferative lesions when exposed to asbestos (23). In
summary, the innate immune system, particularly macrophages,
contribute to a milieu that promotes mutagenesis as well as the
survival of mutated mesothelial cells.

Abbreviations: CTLA-4, Cytotoxic T lymphocyte Associated Protein; ECM,

Extracellular Matrix; FGF, Fibroblast Growth Factor; G-CSF, Granulocyte Colony

Stimulating Factor; GM-CSF, Granulocyte and Macrophage Colony Stimulating

Factor; HGF, Hepatocyte Growth Factor; iNOS, Inducible Nitric Oxide Synthase;

M-CSF, Macrophage Colony Stimulating Factor; MMP, Matrix Metalloproteases;

MPM, Malignant Pleural Mesothelioma; NF-κB, Nuclear Factor Kappa-Light-

Chain-Enhancer of Activated B cells; PD-1, Programmed Cell Death Protein 1;

PD-L1, Programmed Death Ligand 1; PDGF, Platelet Derived Growth Factor;

PMN-MDSC, Polymorphonuclear Myeloid Derived Suppressor Cells; ROS,

Reactive Oxygen species; SMA, Smooth Muscle Actin; TAM, Tumor Associated

Macrophages; TIM3, T-cell Immunoglobulin and Mucin-Domain Containing-3;

TGFβ, TransformingGrowth Factor β; VEGF, Vascular Endothelial Growth Factor.

EXTRACELLULAR MATRIX AND
STROMA—MORE THAN A SCAFFOLD

In mesothelioma, the surrounding stroma is not merely a
scaffold but promotes tumor growth, invasion and protection
from an anti-tumor immune response. Many genes related to the
synthesis of, and interaction with, extracellular matrix (ECM)
are upregulated in RNA expression analyses of mesothelioma
specimens (24–27). These ECM-related genes are more
associated with biphasic (25), desmoplastic (27) and sarcomatoid
variants (27)—the histological subtypes with poorer prognoses.
Mesothelioma cell lines can also produce various ECM
components such as type IV collagen, laminin and fibronectin,
as well as integrins which bind to these proteins (28, 29). ECM
components have autocrine and paracrine effects that stimulate
mesothelioma cell chemotaxis and haptotaxis (28, 29). Under
the influence of various growth factors mesothelioma cell lines
can also produce matrix metalloproteases (MMP) to remodel the
ECM and permit invasion (30). Some of these MMPs such as
MMP2 and MMP14 are also associated with a poorer prognosis
in mesothelioma (31, 32). Furthermore, there is an association
with these stroma-related genes and so-called “immune deserts,”
tumor regions with little lymphocytic infiltrate, suggesting that
the stroma and ECM are acting as a barrier to the immune
response (26).

When comparing mesothelioma tissue and cell lines, we can
conclude that stromal cells and cancer-associated fibroblasts
or fibrocytes contribute some of the signals seen in these
RNA analyses (25). Activated fibroblasts are present in most
mesothelioma tissues (33) and are identified by alpha smooth
muscle actin (SMA). Although not studied in mesothelioma, two
separate origins of cancer-associated fibroblasts and fibrocytes
have been described: α-SMA expressing fibroblasts are tissue-
derived, but fibrocytes with spindle-shaped nuclei are derived
from macrophages or dendritic cells (α-SMA-, HLA-DR+ with
moderate expression of CD68) (Figure 1) (34). Mouse models
suggest that fibrocytes migrate to areas of hypoxia under
the influence of CXCL12 and CXCR4 (35). Cancer-associated
fibroblasts and fibrocytes can synthesize ECM components
such as collagens, hyaluronan, laminin, and fibronectin and
remodel ECM with MMP (36). Furthermore, these spindle-
shaped stromal cells develop a positive-feedback relationship
with tumor cells by secreting growth factors. For example, TGF-β
and IL-6 are consistent features of the mesothelioma secretome
(37) and are cardinal activating molecules for fibroblasts. In
addition, Fibroblast Growth Factor 2 (FGF2) is seen in most
mesothelioma tissue specimens by immunohistochemistry (IHC)
(33, 38, 39) and leads to proliferation of fibroblast cell lines
in vitro and migration to the malignancy in xenograft models
in SCID mice (33). Furthermore, FGF2 leads to fibroblast
production of hepatocyte growth factor (HGF) and platelet-
derived growth factor A (PDGF-A) which can in turn stimulate
the growth and migration of mesothelioma cell lines (33, 40).
The HGF-receptor (c-MET) and the PDGF receptors α and
β, are detected in the majority of mesothelioma specimens by
IHC (41, 42). Unexpectedly, Phase 2 and Phase 3 clinical trials
of PDGFR inhibition by the small molecular tyrosine kinase
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FIGURE 1 | The immune microenvironment in mesothelioma. In the center of the schematic are mesothelioma cells. The second circle lists the chemokines, growth

factors and checkpoints present in the microenvironment which attract and program the immune cell infiltrate. These cells include: cancer associated fibroblasts,

Polymorphonuclear (PMN) Myeloid Derived Suppressor Cells (MDSC), T-cells and Tumor Associated Macrophages (TAMs). The direction of the arrowhead depicts

which cells are influenced by these signals. The outermost circle describes both the phenotype and function of the immune infiltrate. Tumor associated macrophages

have immunosuppressive effects on T-cells via increased IL-10 and prostaglandin E2 production. PMN-MDSC have immunosuppressive effects on T-cells via

production of Reactive Oxygen Species (ROS) and upregulation of PD-L1. At the bottom of the schematic in blue, various metabolic factors also influence the activity

of T-cells including hypoxia, hypoglycaemia, reactive oxygen species, and competition for amino acids.
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inhibitors vatalanib or nintedanib did not show major activity (6,
43). However, targeting FGFR using small molecules (44) or FGF-
ligand “traps” (45), c-MET by tyrosine kinase inhibitors (46),
or fibrosis with pirfenidone (47) continues to elicit considerable
research interest.

Finally, in addition to molecules actively secreted by
mesothelioma cells, cancer-associated fibroblasts have been noted
to produce TGFβ, IL-6 and CCL2 (36). These molecules are
detected in pleural effusions of patients with mesothelioma (37)
and as such cancer-associated fibroblasts may contribute to
the recruitment and differentiation of immunosuppressive cells.
They can also contribute to VEGF production and subsequent
angiogenesis (36, 37). In summary, the stroma and stromal
cells provide a scaffold for invasion, a barrier to the immune
response and stimulate tumor growth and the differentiation of
immunosuppressive cells.

THE MESOTHELIOMA SECRETOME AND
METABOLOME

Before describing the cellular components of the tumor immune
microenvironment, it is important to recognize that the
chemotaxis and differentiation of these cells is influenced by
chemokines, growth factors and metabolites. Examination of
pleural fluid, patient-derived tumor cells and tumor cell lines
are invaluable in evaluating the “secretome.” The mesothelioma
secretome includes the chemokines CCL2, CCL4, CXCL10,
CXCL5, CXCL1, and CXCL12, the cytokines IL-10 and IL-6, and
the growth factors TGFβ, VEGF, MCSF, GM-CSF, G-CSF, FGF,
and PDGF (33, 37, 48–53). These molecules can have autocrine
effects and are responsible for the chemotaxis and differentiation
of immune cells.

Hypoxia is one of the cardinal features of the mesothelioma
metabolome. It is likely that tumor cells are exposed to fluctuating
oxygen levels due to rapid tumor proliferation, stromal reactions,
and angiogenesis (54). In patients with mesothelioma, this
hypoxia is noted on F-fluoromisonidazole (FMISO) Positron
Emission Tomography (PET) scans, and is associated with
increased metabolic activity on Fluorodeoxyglucose (FDG)-
PET (55). Evidence of hypoxia has also been demonstrated
using immunohistochemical detection of Hypoxia Induced
Factor 1α (HIF1α) (56). Hypoxia is capable of profoundly
enhancing the growth of mesothelioma cell lines: including
clonogenicity, stemness, resistance to chemotherapy, epithelial
to mesenchymal transition, migration, morphological changes
with pseudopodia, and various phenotypic changes (increased
expression of HIF1α/2α, CD44 and Oct4, Bcl2, E-cadherin,
vimentin and Glut1) (57). In addition, hypoxia results in the
influx of additional immune cells via increased expression of
CXCL12 (35) and stimulates angiogenesis by the upregulation
of VEGF expression (54, 58). Furthermore, hypoxia, acting
via increased HIF1α-expression, increases PD-L1 expression in
tumor cell lines as well as in murine macrophage and dendritic
cells (58). In myeloid derived suppressor cells (MDSCs), HIF1α
expression is associated with increased arg1 and inos and the
suppression of T-cell proliferation in mice (59). Knockout of

HIF1α was able to abrogate all these effects (59). Hypoxia also
induces MDSC production of IL-6, IL-10, and TGFβ1 (58).
Apart from MDSCs, murine macrophages exposed to hypoxia
increase HIF1α expression and have enhanced suppression of
T-cell proliferation (60). HIF1α knockout also abrogated this
effect (60).

Apart from oxygen, infiltrating immune cells compete with
mesothelioma cells for key nutrients. Mesothelioma cells can
upregulate Glucose Transporter 1 (Glut1) in order to more
efficiently access glucose and this is evident on IHC (61). Elevated
Glut1 levels has been recognized as a poor prognostic factor (62).
Mesothelioma is typically a low glucose environment and glucose
is reduced in mesothelioma-associated pleural effusions (63). In
such an environment, competition for glucose can substantially
affect T-cell function (64). Similar competition occurs for
essential amino acids. For example, mesothelioma can increase
L-type Amino acid Transporter 1 (LAT1)-expression and this
has also been associated with poor prognosis in univariate
analyses (65). LAT1 transports both arginine and tryptophan
and therefore the tumor can deprive T-cells of amino acids
essential for T-cell proliferation and function (64). Mesothelioma
cells may also express increased levels of Indoleamine-pyrrole
2,3-dioxygenase (IDO) (66) which metabolizes tryptophan into
kynurenine, inhibiting T-cell glycolysis and function (64). To
conclude, the mesothelioma secretome and metabolome both
attract and program infiltrating immune cells.

IMMUNE CELL INFILTRATE

Tumor-Associated Macrophages
Tumor associated macrophages (TAMs) are prominent in the
tumor microenvironment; they are associated with a poor
prognosis and mouse models suggest that they could be a
potential target for treatment. TAMs are generally the most
prominent cells in the immune infiltrate when analyzed by
flow cytometry of pleural effusions and constitute on average
26–42% of the cellular immune infiltrate in mesothelioma by
IHC (51, 67–69). While not the subject of specific analysis in
mesothelioma, most of the CD163+ TAMs in other malignancies
are monocyte-derived from the peripheral blood rather that
tissue-resident macrophages (34). Chemokine signals that attract
monocytes in mesothelioma include CCL2, CCL4, CCL5, and
CXCL12 and these appear to be of mesothelioma cell origin
(Figure 1) (37, 52, 53). Murine experiments of asbestos-induced
mesothelioma also implicate CCL7, CCL8, CCL3, and CX3CL1
but these have not been detected or investigated in humans to
date (70). In relation to macrophages, CCL2 has been studied
in most detail in mesothelioma with CCL2 concentrations in
malignant pleural effusions being substantially higher compared
to benign pleural effusions and pleural effusions from patients
with lung adenocarcinoma (24, 71). CCL2 acting via CCR2
appears to be the key chemokine in monocyte trafficking in
MPM. Monocytes migrate toward malignant pleural fluid or
mesothelioma cell line supernatant and neutralizing antibodies to
CCL2 or CCR2 substantially reduce this migration in Transwell
experiments (48). However, CD14+ monocytes found in pleural
and peritoneal effusions of patients withmalignantmesothelioma
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are also noted to express CXCR4, CCR5, and CXCR1 with
varying degrees of positivity in flow cytometry (72). Other
chemokine receptors that can be found on monocytes, such as
CX3CR1 and CCR1, are also upregulated in RNA-seq analyses of
asbestos-induced mesothelioma in mice (70).

Monocytes and macrophages are programmed into
suppressor cells by various components of the mesothelioma
secretome (Figure 1). For example, primary cells from patients
with MPM that are capable of producing M-CSF and IL-34,
and MCSF can be detected in pleural effusions (48, 73). These
growth factors are implicated in monocyte and macrophage
development but may also have autocrine functions as well (73).
Other key cytokines for macrophage activation such as TGF-β
and IL-10 have been identified in pleural fluid and supernatant
from mesothelioma cultures, also suggesting a tumor origin
(51, 74). IHC of MPM samples have confirmed the presence
of TGFβ (38) and this feature appears to distinguish MPM
from primary lung cancers (74, 75). An autocrine feedback
loop has also been proposed for TGF-β (76). Apart from the
immunosuppressive and polarising cytokines described above,
the macrophage checkpoint and “don’t eat me signal,” CD47, was
found to be expressed in high levels in the majority of patients
with epithelioid mesothelioma (77).

TAMs develop an immunosuppressive phenotype
in mesothelioma; human monocytes cultured with
malignant pleural effusions developed a CD14midCD16hi

immunosuppressive phenotype, resembling cells cultured with
M-CSF (48). Furthermore, Izzi et al. performed a comprehensive
array of macrophage function tests to show that co-culture
of THP-1-derived macrophages with a single mesothelioma
cell line resulted in reduced phagocytic activity, increased
IL-10 production, increased collagenolytic activity for tissue
remodeling, and increased arachidonic acid and prostaglandin
E2 production (78). Curiously, contrasting effects were noted
on monocytes (78). When co-cultured with immunosuppressive
macrophages, mesothelioma cells proliferate more and have
reduced sensitivity to chemotherapy with cisplatin or pemetrexed
(48). The functional importance of macrophages in promoting
mesothelioma is attested in a syngeneic, immunocompetent,
orthotopic mouse model of mesothelioma (79). When the local
macrophage population was selectively removed using liposome-
encapsulated clodronate, reduced tumor number, invasiveness,
and metastases were observed (79).

There have been conflicting reports on the prognostic
effect of macrophages in epithelioid and non-epithelioid
mesothelioma (68, 80). However, more precise biomarkers using
an immunosuppressive to pan-macrophage ratio with CD163
to CD68 correlated with poor overall survival in a cohort of
patients with epithelioid mesothelioma (81). Greater quantities
of circulating monocytes are also associated with worse outcomes
from cytoreductive surgery (68). The effect is associated with
tumor bulk but is still seen when controlling for disease stage
(68), suggesting that both tumor size and its distinct secretome
could be influencing peripheral blood monocyte counts. A low
peripheral blood lymphocyte-to-monocyte ratio has also been
identified as a marker of poor prognosis (82). In summary, TAMs
are numerous, programmed by the mesothelioma secretome,

have an immunosuppressive phenotype and function, and are
associated with poor prognosis.

T-Lymphocytes
The CD3+ T-lymphocyte is the second most common immune
cell present in the mesothelioma microenvironment and
constitute on average 20–42% of the immune cell infiltrate (69,
80, 83). CD8+ T-cells are almost universally present and CD4+
and CD4+ FoxP3+ T-cells are also present in the majority
of patients (67, 83). Of interest, the number of T-regulatory
cells in pleural effusions of MPM patients is lower than in
other solid tumors (74). With regards to T-cell trafficking, apart
from CXCL12 discussed previously, the mesothelioma secretome
also includes CXCL10 (37). CXCL10 is produced in greater
concentrations in pleural fluid compared to the supernatant of
primary cells, suggesting additional origins of the chemokine
rather than solely from tumor cells (37). The CXCR3 chemokine
receptor for CXCL10 is upregulated in murine models of
asbestos-induced mesothelioma (70). CCL5 is also substantially
elevated in the peripheral blood of patients with mesothelioma
compared to asbestos workers and healthy individuals (84) and
the CCR5 receptor is present on T-cells in pleural effusions (72).
Other chemokine receptors on T-cells in pleural effusions include
CXCR4 and CCR7 (72).

The mesothelioma microenvironment includes both
neoantigenic stimuli as well as checkpoint molecules which can
affect T-cell programming. Although next generation sequencing
of mesothelioma originally identified few neoepitope generating
mutations (85), more recently mate-pair seq based analysis has
identified higher numbers of neoepitope generating mutations
which were probably from chromosomal rearrangements missed
by NGS (86). When analyzing predicted neoantigen load and
TCRβ diversity in MPM, it is noted that in general the most
diverse polyclonal TCRβ repertoire is associated with fewer
predicted neoantigens. In contrast oligoclonal expansion is
associated with high neoantigen loads presumably due to clonal
expansion (87). While neoantigens may prompt T-cell activation
and proliferation, various checkpoint molecules are also evident
in the mesothelioma microenvironment and are discussed in
more detail elsewhere in this issue. PD-L1 is detected by flow
cytometry of pleural effusions as well as IHC (88–91) and has
been associated with poor prognosis (88, 89). Of interest, PD-L1
expression is associated with a higher objective response rate to
nivolumab but is not entirely predictive of response (7). This
finding is reflected in other malignancies treated with PD-1 or
PD-L1 inhibition, indicating that other parameters including
tumor mutational burden or tumor-infiltrating lymphocytes also
influence response to PD-1 or PD-L1 blockade (92, 93). Galectin
9, a ligand for TIM-3 has also been detected by IHC and by
flow cytometry on human macrophages (94). T-regulatory cells
are consistently detected in MPM IHC and flow cytometry of
associated pleural effusions (37, 67, 74, 80). The T-regulatory
compartment develops in the context of abundant TGF-β and
presumed inadequate stimulation by dendritic cells (37, 74). It
has also been shown that PD-L1 signaling via PD-1 is responsible
for the plasticity of some TH1 cells, converting them to inducible
T-regulatory cells (95).

Frontiers in Oncology | www.frontiersin.org 5 December 2019 | Volume 9 | Article 1366

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chu et al. The Immune Microenvironment in Mesothelioma

As a result of the above influences, the phenotype of
infiltrating T-cells is varied. The CD8+ T-cells that are present in
pleural effusions show higher levels of CD25+ compared to other
malignancies, generally indicative of activation (74). In addition,
there is an increase in perforin expression in CD8+ T-cells which
correlated with the number of neoepitopes that are present in
the tissue (87). Despite these signs of activation, CD8+ cytotoxic
T-cells also display phenotypic markers of exhaustion including
PD-1+, TIM3+, and LAG3+ (88). CD4+ T-helper subsets and
function inmesotheliomas have not been extensively investigated
but again clear signs of exhaustion are evident with significant
levels of PD-1+, TIM3+, and LAG3+ detected by flow cytometry
(88). Of the T-cells present in mesothelioma, the majority have an
effector memory phenotype (69).

Although one cannot draw conclusions regarding causation,
T-cell numbers are associated with patient prognosis. Two
studies have shown that epithelioid mesotheliomas infiltrated
by more CD4+ T-cells were associated with a better prognosis
(67, 80). A third study showed an association with prognosis
that was only statistically significant in univariate analysis
(53). This association has not been confirmed in sarcomatoid
tumors (80). Only one comparatively small study demonstrated
a poorer prognosis in multivariate analyses of low CD8+ T-
cell counts (83). Interestingly, low CD8+ T-cell count was also
a poor prognostic factor in patients undergoing extrapleural
pneumonectomy (96). High proportions of FoxP3 positive T-
cells have been associated with a poor prognosis in analyses of
epithelioid and sarcomatoid tumors (80).

Although it is presumed that this T-cells infiltrate has some
functional significance, the clinical experience with intrapleural
IL-2 has been disappointing. While there is yet to be any
randomized trial of IL-2, in one study the overall survival did not
differ substantially from historical controls who underwent the
same intensive therapy with pleural decortication, intrapleural
postoperative epidoxorubicin, adjuvant radiotherapy followed by
chemotherapy and did not receive any IL-2 (97). Immunological
effects seen in response to IL-2 include an increase in both CD8+
T-cells as well as FoxP3+ T-cells (97). This suggests that the T-
regulatory cells are acting as a “sump” for IL-2 in this context.
There is also conflicting evidence regarding the effects of anti-
CD25 therapy in murine experiments (98, 99). In summary, T-
lymphocytes are programmed by the mesothelioma secretome,
neoantigens and checkpoint molecules and are associated with
altered prognosis. The remaining challenge is to determine
whether they can be successfully redirected into a robust anti-
tumor response.

Chimeric Antigen Receptor (CAR) T-cell therapy is one
such method of enhancing patient T-cell responses against
mesothelioma and is discussed in more detail elsewhere in this
issue. The requirement for neoantigens is bypassed by directing
the CAR T-cell receptor to a tumor-associated antigen, such
as mesothelin. The fibrous stroma can be circumvented by
locoregional administration (100, 101), or designing CAR T-cells
to target antigens that are expressed by both the tumor and
cancer-associated stroma such as Fibroblast Activation Protein
(102), or by adding chemokine receptors such as CCR2 to
enhance trafficking to tumor (103). T-cell metabolism can be

manipulated by the choice of costimulatory molecules, such as
4-1BB (104, 105). Exhaustion can also be ameliorated by the
concomitant use of PD-1 inhibitors (100, 101), or designing
CAR T-cells with dominant negative PD-1 receptors to prevent
signaling via native PD-1 (100). Switch receptors have also been
designed for mesothelin CAR T-cells with extracellular PD-1
linked to intracellular CD28 (106). Other modifications such
as mutating the CAR CD3ζ Immunoreceptor Tyrosine-Based
Activation Motifs have also been shown to prevent exhaustion in
other disease models (107), and these principles are likely to be
applicable to mesothelioma. These developments address some
challenges posed by the tumor microenvironment and results of
early clinical trials are eagerly anticipated.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSC) can be
polymorphonuclear (PMN-MDSC) or monocytic (M-MDSC).
However, the distinction between MDSC and other immune
cells such as TAMS is still unclear despite proposed standardized
nomenclature and markers for identification (108). The
granulocytic infiltrate is less prominent and on average is
6–9% of the cellular infiltrate (49, 69) but still has prognostic
implications and functional importance. Neutrophilic infiltrate
can be detected by IHC, perhaps with greater sensitivity using
CD66b (which also detects eosinophils) and CD15 compared to
neutrophil elastase (49, 69, 80). Apart from CXCL12 and CXCR4
previously mentioned, other neutrophil chemoattractants
include CXCL5 and CXCL1 which are detected in patient-
derived mesothelial cell supernatants, and CXCL5 also reaches
detectable levels in pleural effusion (37). Murine mesothelioma
models show upregulation of the granulocyte chemokine
receptor CXCR2 for these ligands (70).

Granulocytic growth factors are produced in the
mesothelioma secretome including GM-CSF, G-CSF, VEGF,
and IL-6 (37, 49). Furthermore, in the mesothelioma
microenvironment granulocytes develop a phenotype consistent
with PMN-MDSC and express CD15+, CD11b+, CD66b+, and
are CD14/CD33 double-negative (49, 108). These polarizing
growth factors likely have systemic effects as increased
populations CD11b+CD15+HLADR- granulocytes are also
noted in the peripheral blood of patients with mesothelioma
compared to healthy controls (49). These cells function as
MDSCs and inhibit the proliferation of T-cells compared
to CD15+ cells from normal pleura or from the peripheral
blood of healthy donors (49). The inhibitory effect of these
MDSC is predominantly through the generation of ROS;
peripheral blood granulocytes from patients with MPM show
increased ROS expression and the proliferation of T-cells can
be restored with inhibitors of ROS such as N-Actyl Cysteine
(49). Free radical species can also affect T-cell function by
nitration of the T-cell receptor (109), downregulation of CD3ζ,
and H2O2-mediated reduction in cytokine production (110).
PD-L1 expression on granulocytes has also been associated
with fewer T-cells in the tumor (49). While various alternative
mechanisms of immunosuppression have been attributed to
MDSCs, in vitro assays with peripheral blood granulocytes
indicate that immunosuppressive cytokines, arginase expression
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or iNOS expression were the same in patients and healthy
controls (49). Moreover, arginase or iNOS inhibitors did
not restore T-cell function (49). However, it is important
to note is that these experiments assessed peripheral blood
granulocytes in patients rather than tumor-associated MDSCs.
The presence of greater neutrophilic infiltrate in tumor and
an increased peripheral blood neutrophil to lymphocyte
ratio is associated with a poorer prognosis in epithelioid
mesothelioma (80, 111).

Chemotherapies that are recognized to reduce MDSCs have
been used to treat MPM. 5-Fluorouracil or paclitaxel did not
show positive effects whereas mixed results were seen with
gemcitabine (112). In summary, PMN-MDSC are relatively
abundant and are also associated with prognosis. However, it is
remains to be seen if eliminating these cells with targeted therapy
will be successful.

Other Cells
B-cells have been detected in both tumor and stroma in
MPM to varying degrees (26, 53, 69, 80). Higher B-cell counts
have been associated with a better prognosis in multivariate
analyses of patients with epithelioid mesothelioma (53, 80).
However, it is yet to be determined whether this is an
epiphenomenon or whether the B-cells themselves have a
functional role. Autoantibodies have been detected in the sera
of a fraction of patients with mesothelioma (113). Some of these
antibodies appear to be tumor-specific and target the nuclear
fraction (113). However, in a more comprehensive analysis
of sera from patients with MPM against a limited panel of
autoantigens, the percentage of patients with autoantibodies was
not markedly elevated compared to other patients with asbestos-
related diseases or asbestos-exposed healthy controls (114).
The antibody subclasses from B-cells taken from mesothelioma
tissues appear to be predominantly IgG1 and IgG3 which
are known to activate complement (115). The analysis of B-
cell cytokines or B-regulatory cells is currently limited in
mesothelioma (116).

CD3-CD56+ Natural Killer (NK) and CD3+CD56+ Natural
Killer T (NKT) cells are found in the majority of mesothelioma
tissues but only in very small numbers (69, 80, 96, 117, 118).
In pleural effusions they are found to have typical inhibitory
receptors (NKG2A) and activation receptors (NKG2D) but are
also CD56bright, a subset associated with poorer cytotoxicity but
enhanced cytokine production (117). A greater proportion of
peripheral blood NK cells also express the exhaustion marker
TIM3+ (119). While pleural effusion NK cell function is
reduced in degranulation assays compared to the peripheral
NK cells from healthy donors, similar changes were noted
in NK cells from non-malignant pleural effusions (117). The
interpretation of these data is problematic given that there
is no healthy control or reference range for pleural NK cell
cytotoxicity (117). However, it is noteworthy that after treatment
with IL-2 in vitro, the cytotoxicity of NK cells from various
malignant effusions can be restored, suggesting some reversibility
in impaired function (120). In murine mesothelioma tumor
models, removing NK cells by anti-asialo GM1 antibodies did
not alter tumor growth, nor was tumor growth accelerated in

beige mice with impaired NK cell function (121). The presence
of NK cells as detected by IHC has also not been associated
with altered prognosis in either epithelioid or sarcomatoid
mesothelioma (80). In conclusion, current evidence does not
indicate that NK cells are key players in the mesothelioma
tumor microenvironment.

Mast cells have been detected in mesothelioma tumors treated
with IL-2 and high counts of tryptase-positive mast cells has been
associated with a better prognosis but this is awaiting further
confirmation (122). Dendritic cells do not constitute a large
population in the mesothelioma tumor microenvironment when
assessed with antibodies to CD123 in IHC (69).

While this review focuses on the immune aspects of
tumor microenvironment, it is prudent to acknowledge
that angiogenesis is a simultaneous and interlinked
process that also requires therapeutic intervention. In fact,
immunosuppression and angiogenesis are intrinsically
interconnected repair mechanisms co-opted by malignancy
(123). Both have linked physiological roles, but both
occur in an unchecked and disorganized manner in
the context of the tumor microenvironment (123). As
we have discussed, both share metabolic and growth
factor stimuli, such as hypoxia, VEGF, HGF, TGF-
β, angiopoietin, and prostaglandin E2 (37, 123–125).
Studies in mesothelioma and other malignancies indicate
that both processes are driven by tumor cells, cancer
associated fibroblasts, MDSCs, TAMS, and T-regulatory
cells (33, 36, 126, 127). In addition, angiogenesis measured
by microvessel density is an independent marker of poor
prognosis in mesothelioma (128) and anti-angiogenic
therapy with Bevacizumab improves median overall survival
(4). While anti-angiogenic therapies in mesothelioma
require further refinement and are discussed elsewhere
in this edition, it is likely that successful immune-based
treatments would also benefit from incorporating ancillary
anti-angiogenic treatments.

CONCLUSIONS

While checkpoint inhibition represents an exciting development
in the treatment of several solid tumors, the outcomes in
mesothelioma have been less positive and may well be affected
by the complex structure of the tumor microenvironment
in mesothelioma. While more comprehensive descriptions of
the tumor microenvironment and suppressor cells have been
presented elsewhere, we have chosen to focus on research
that relates specifically to mesothelioma, given the evidence
that MPM poses unique challenges when compared to other
malignancies. We recognize that this review may not adequately
emphasize the significant heterogeneity between patients and
within the tumor microenvironment itself. However, we hope
that providing a better understanding of the stromal tissue, the
secretome, metabolome and relevant immunosuppressive cells
will assist in finding the rationale for more effective therapy
combinations in the future.
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