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Abstract

Microorganisms are acknowledged for their role in shaping insects’ evolution, life history

and ecology. Previous studies have shown that microbial communities harbored within

insects vary through ontogenetic development and among insects feeding on different host-

plant species. In this study, we characterized the bacterial microbiota of the highly polypha-

gous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), at different instars and

when feeding on different host-plant species. Our results show that the bacterial microbiota

hosted within the Mediterranean fruit fly differs among instars and host-plant species. Most

of the bacteria harbored by the Mediterranean fruit fly belong to the phylum Proteobacteria,

including genera of Alphaproteobacteria such as Acetobacter and Gluconobacter; Betapro-

tobacteria such as Burkholderia and Gammaproteobacteria such as Pseudomonas.

Introduction

It is widely acknowledged that microorganisms harbored by insects, in particular bacteria, play

an important role in their hosts’ biology and natural histories [1–7]. Indeed, microorganisms

possess metabolic properties that are often absent in insects, enabling their hosts to: overcome

plant defenses [8], tolerate extreme temperatures [9], acquire immunity against their natural

enemies [10], survive feeding nutrient-limited diets [11] and detoxify plant defense com-

pounds [12, 13].

Variations in microbiota composition among insects feeding on different host plant species

suggest that insect microbiota may play a role in the definition of herbivorous insects’ host

ranges [3, 4, 14, 15]. On the other hand, variation in insect diet may influence the microbiota

associated with polyphagous insects feeding on different host-plant species [14, 16–18]. In

other words, insect-associated microbial communities may be diet-dependent [19], which has

been observed, for example, in bumblebees when reared on artificial diet and moved to out-

doors [20], among different castes and ages in Macrotermes gilvus (Hagen) according to their

respective diets [21], and in many other insect species (see Discussion section). In addition,

the reorganization of insect microbiota composition across different instars has been
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investigated for several insect species. In a comprehensive study, changes in gut microbiota

were reported in 218 species belonging to 21 insect orders [22].

Tephritid fruit flies are devastating agricultural pests that can impact several different agri-

cultural crops. Among Tephritid fruit flies, the Mediterranean fruit fly (Ceratitis capitata
Wied.) represents a serious threat to several crops, with worldwide losses amounting to several

billion USD [23], and a host range comprising more than 350 plant species [24]. Before this

study, the complete structure of the microbiota associated to C. capitata was poorly known,

with surveys mainly dealing with culture-dependent techniques or molecular approaches with

low resolution (mainly DGGE) [25–28]. In C. capitata, variation in gut bacterial communities

has been reported between larvae and adults using pyrosequencing [29].

To our knowledge, we are still missing information on the complete microbiota associated

to C. capitata, and in particular we lack information on microbial composition for pupae and

at different moments of larval phase. As well, to date, there is no available data on changes in

medfly microbiota accordingly to the host plant. Thus, in this study, we characterize the bacte-

rial communities harbored by C. capitata, across different instars and host plant species, using

16S rRNA gene metabarcoding [30, 31]. We predict that microbial assemblages hosted by C.

capitata will vary across instars, likely supporting the insect’s specific needs at each stage of

metamorphosis. Also, we hypothesize an effect of host-plant species on larval microbial com-

munity, since insect’s microbiota can adapt to exploit different diets, or the diet itself can have

a major effect on insect’s microbial community.

Materials and methods

Ethics statement

The study was carried out on private land and the owner of the land gave permission to con-

duct the study on this site. The study did not involve endangered or protected species.

Samples for instar-associated microbial community

Sampling was carried out in the rural area of the province of Reggio Calabria, Italy (38.07 N,

15.71 E) during 2015. First instar larvae, 3rd instar larvae, pupae and adults of C. capitata were

collected from orange fruits (Citrus sinensis), in order to assess the instar-dependent variation

in the bacterial microbiota. First instar larvae were collected directly opening the fruits, 3rd

instar larvae were collected waiting for their exit from fruits. A group of 3rd instar larvae were

left to pupate and, another group, to become adults in order to collect respective samples.

Pupae chosen to become adults were kept inside 30 x 30 x 30 cm plastic cages (Bugdorm-1,

Bugdorm, Taiwan) at room temperature (�25˚C), and checked twice per day for adult emer-

gence. Fifteen specimens per instar (1st instar larvae, 3rd instar larvae, pupae and adults) were

stored at -80˚C until DNA extraction and used to compare C. capitata microbiota among dif-

ferent instars.

Samples for host plant associated microbial community

Ceratitis capitata specimens were collected during 2015 from figs (Ficus carica—July), prickly

pears (Opuntia ficus indica—September), peaches (Prunus persica—July), cherimoya (Annona
cherimola—November) and orange fruits (Citrus sinensis—December), within a 10 km radius

from the sampling area indicated above. Fruits of these species were placed on adsorbing

paper inside 30 x 30 x 30 cm plastic cages (Bugdorm-1, Bugdorm, Taiwan) at room tempera-

ture (�25˚C). Cages containing fruits were checked twice per day for larval emergence. Last

(third) instar larvae were collected waiting for their exit from fruits and stored at -80˚C until
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DNA extraction. Seventy-five specimens (15 per host plant) were used to compare C. capitata
microbiota among different fruit species.

DNA extraction, 16S rRNA gene amplification and sequencing

Specimens were surface sterilized washing them twice in sodium hypochlorite (1%), and twice

in ddH2O [32]. Total DNA was extracted from whole single specimens using the MoBio

PowerSoil Kit (Mo Bio Laboratories, Inc., Carlsbrand, CA, USA) following the manufacturer’s

instructions. DNA was subsequently checked for quantity and quality with a Nanodrop 2000

(Thermo Fisher Scientific Inc., Waltham, MA, USA). The bacterial community was character-

ized targeting the 16S rRNA gene with primers 515f/806rB [31]. PCR reactions were per-

formed in a total volume of 25 μl, containing about 50ng of DNA, 0.5 μM of each primer, 1X

of KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Wilmington, MA, USA) and nuclease-

free water. Amplifications were performed in a Mastercycler Ep Gradient S (Eppendorf, Ham-

burg, Germany) set at 95˚C for 3 minutes, 98˚C for 30s, 55˚C for 30s and 72˚C for 30s,

repeated 35 times, and ended with 10 minutes of extension at 72˚C. Reactions were carried out

in triplicate, in order to reduce the stochastic variability during amplification [33]. A non-tem-

plate control in which nuclease-free water replaced target DNA was utilized in all PCR reac-

tions. Furthermore, amplifications were carried out on 3 nuclease-free water samples that were

subjected to the same DNA extraction procedure of the other samples, in order to further con-

trol for contamination. We didn’t observe any amplification on negative-control samples, and

no sequences were retrieved from sequencing. Libraries were checked on agarose gel for suc-

cessful amplification, and purified with Agencourt AMPure XP kit (Beckman and Coulter,

Brea, CA, USA) using manufacturer’s instruction. A second short-run PCR was performed in

order to ligate the Illumina i7 and i5 indexes following producer’s protocol, and amplicons

were purified again with Agencourt AMPure XP kit. Libraries were then quantified through

Qubit spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA), normalized

using nuclease-free water, pooled together and sequenced with the Illumina MiSeq sequencer

(Illumina, San Diego, CA, USA), using the MiSeq Reagent Kit v3 600-cycles chemistry follow-

ing manufacturer’s protocol.

Data analysis

Demultiplexed forward and reverse reads were merged using PEAR 0.9.1 algorithm using

default parameters [34]. Data handling was carried out using QIIME 1.9 [31], quality-filtering

reads, binning OTUs using open-reference OTU-picking through UCLUST algorithm, dis-

carding chimeric sequences discovered with USEARCH 6.1, and assigning taxonomy with

GreenGenes database using the BLAST method. Singletons, OTUs retrieved in less than 5 sam-

ples and those not associated to bacteria were all discarded from the downstream analyses.

Unfortunately, at this step we had to discard 4 samples (3 from A. cherimola and 1 from O.

ficus indica) because they contained a low number of sequences (< 10,000). Furthermore, dur-

ing the analysis of bacterial taxa, we focused only on OTUs representing >1% of reads, thus

eliminating clusters likely originating from contaminant and, consequently, increasing the

repeatability of the results [35].

The diversity of microbial communities in our system has been investigated using three

diversity indexes: Shannon’s index [36], Chao-1 index [37], and Faith’s phylogenetic diversity

(PD) [38]. The last one calculates diversity as measure of branch length of a phylogenetic tree

that includes observed taxa. Comparison of diversity indexes among groups (i.e. instar or host

plant) was performed using GLM procedure, supported by Tukey’s test for multiple compari-

sons. Distances between pairs of samples, in terms of community composition, were calculated
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using a Bray-Curtis dissimilarity index, and then visualized using NMDS procedure. Differ-

ences between sample groups were supported by PERMANOVA analysis, also performed in a

pair-wise fashion between samples using Bonferroni correction on P-values.

Data analysis was performed using R statistical software [39] with the packages vegan [40],

phyloseq [41] and picante [42]. Furthermore, DESeq2 [43] was used to highlight OTUs differ-

entially present among different instars of C. capitata, and when collected from different host

fruits.

Results

Microbiota variation among C. capitata instars

Clustering produced 3,169 OTUs that, as suggested by the multivariate PERMANOVA analy-

sis, characterized different microbial communities among the different C. capitata instars

(F3, 56 = 6.39, P<0.001, stress = 0.09, Fig 1A). A multiple comparison test confirmed that all

developmental stages of C. capitata have a distinct microbial community (Fig 2A). Further-

more, the diversity of the microbial community associated with the 3rd instar larvae and pupal

Fig 1. NMDS (Non-metric Multidimensional Scaling) analysis of microbial communities. (A) different life stages of C. capitata (stress 0.09); (B)

larvae of C. capitata feeding on different host plants (stress 0.16). Ellipses are calculated at the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0194131.g001

Fig 2. Multiple comparison procedure through PERMANOVA. (A) different life stages of C. capitata; (B) larvae of C. capitata
feeding on different host plants. Bonferroni-corrected P values are reported for each comparison.

https://doi.org/10.1371/journal.pone.0194131.g002
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stage was higher compared to the other instars, while the larvae at the first instar had both the

lowest Shannon’s diversity and PD indices (Shannon–P< 0.001; PD–P< 0.05; S1 Table).

Overall, the microbiota associated to C. capitata was mainly composed by Firmicutes (10.41

±2.35%) and Proteobacteria (87.12±2.28%). Within Firmicutes most of the bacterial sequences

found in C. capitata belong to the family Leuconostocaceae (9.59±2.37% of the total bacterial

sequences), while Proteobacteria were mostly represented by bacteria belonging to the classes

Alphaproteobacteria (16.15±2.09%), Betaproteobacteria (36.36±3.25%), Gammaproteobacteria

(29.46±2.51%) and Deltaproteobacteria (5.15±1.15%).

A comparison of bacterial taxa among the different C. capitata instars (Table 1), as resulted

from the differential presence analysis, reveals a pattern of different bacterial associations

along C. capitata’s life history. The microbiota of 1st instar larvae contains a relatively higher

abundance of Burkholderia compared to the other instars. Later on in the larval phase, the

microbial community has a higher representation of Sphingomonas, Pseudomonas and an

unidentified Methylobacteriaceae. Both Sphingomonas and the unidentified Methylobacteria-

ceae were almost absent in the other instars. After pupation, Leuconostoc and Weissella become

relatively more abundant, together with Acetobacteraceae (Acetobacter and Gluconobacter)
and an unidentified Xanthomonadaceae. Except for Leuconostoc, the other taxa were retrieved

for the other instars at very low abundances. Interestingly, pupae harbored a relatively lower

abundance of Acinetobacter. Finally, adults, harbored bacteria in the genus Burkholderia and

an unidentified genus of Deltaproteobacteria in relatively higher abundances.

Host plant associated microbiota

This analysis yielded a total of 1,118 OTUs. Results from the multivariate analysis on the whole

microbial community composition highlighted differences between host plants (F4, 66 = 5.83,

P<0.001, stress = 0.16, Fig 1B). The multiple comparison procedure confirmed what can be

visualized on NMDS plot. Indeed, the microbiota of larvae collected from A. cherimola, P. per-
sica and F. carica is very similar, while it is different in comparison to other host plants (C.

sinensis and O. ficus indica Fig 2B). The diversity analysis (Shannon’s index) highlighted a

Table 1. Bacterial taxa differentially associated with different instars of C. capitata.

Taxon F4, 66 P 1st instar larvae 3rd instar larvae Pupae Adults

Acetobacter 15.65 ��� n.d. 0.11±0.08% (a) 9.81±2.46% (b) 0.07±0.04% (a)

Acinetobacter 7.59 ��� 17.73±2.74% (b) 14.43±1.59% (b) 5.31±0.61% (a) 14.09±1.85% (b)

Burkholderia 10.51 ��� 57.52±5.16% (c) 18.65±6.57% (a) 25.82±3.37% (ab) 39.56±4.78% (bc)

Gluconobacter 24.16 ��� n.d. 0.70±0.47% (a) 11.61±2.19% (b) 0.04±0.01% (a)

Leuconostoc 7.2 ��� 9.03±5.77% (ab) 0.99±0.4% (a) 22.69±4.42% (b) 1.3±0.66% (a)

Pseudomonas 20.14 ��� 0.8±0.21% (a) 19.11±3.85% (b) 0.65±0.24% (a) 1.82±0.44% (a)

Sphingomonas 22.87 ��� 0.68±0.06% (a) 9.71±1.8% (b) 0.52±0.17% (a) 0.95±0.14% (a)

Un. Deltaproteobacteria 17.3 ��� 0.06±0.05% (a) 3.68±1.16% (a) 1.08±0.65% (a) 15.50±3.02% (b)

Un. Methylobacteriaceae 19.61 ��� 0.72±0.15% (a) 12.12±2.5% (b) 0.3±0.06% (a) 0.86±0.19% (a)

Un. Xanthomonadaceae 5.9 �� 0.04±0.02% (a) 0.56±0.14% (a) 1.8±0.6% (b) 0.24±0.1% (a)

Weissella 4.32 �� 0.52±0.46% (ab) n.d. 3.71±1.58% (b) 0.04±0.02% (a)

For each instar, it is reported the relative abundance (mean ± SE) of each taxon, with the result of the Tukey’s MCT (different letters on the same row, indicate

differences for P<0.05). n.d. = not detected

��� P<0.001;

�� P<0.01;

� P<0.05;

https://doi.org/10.1371/journal.pone.0194131.t001
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similar diversity of communities associated to A. cherimola, C. sinensis, F. carica and O. ficus
indica (S2 Table). In the same way, samples from O. f. indica showed the highest phylogenetic

diversity, while larvae collected on P. persica had both the lowest Shannon and PD indices (S2

Table).

The microbiota of C. capitata 3rd instar larvae was mainly represented by Firmicutes and

Proteobacteria. However, the abundance of these phyla varied among flies associated with dif-

ferent host plants. Firmicutes were more abundant on larvae collected from fruits of A. cheri-
mola (64.4±9.17%), P. persica (65.33±7.72%) and F. carica (42.98±7.75%) than O. f. indica
(32.06±8.92%) and C. sinensis (22.09±7.15%) (F4,66 = 5.15; P<0.01). On the other hand, Pro-

teobacteria were more abundant in C. sinensis (76.28±7.6%), F. carica (51.09±8.23%) and O.

ficus indica (57.87±7.83%) than A. cherimola (31.36±9.54%) and P. persica (32.46±7.89%) (F4,66

= 4.91; P<0.01). Bacteroidetes were more abundant in F. carica (3.11±1.49%) and O. ficus
indica (5.92±1.54%) (F4,66 = 4.88; P<0.01).

Focusing on differentially abundant taxa (Table 2), it is evident that the microbial commu-

nity associated to C. capitata changes when feeding on different plant species. When C. sinensis
was the host plant, most of the microbiota was composed by unidentified Enterobacteriaceae

(66.01±9.33%). On A. cherimola the microbial community was richer in Lactococcus, which

was rare in C. sinensis and absent in the other host plants. When feeding on P. persica, the

microbiota of larvae was more abundant in Leuconostoc and Acetobacter. The latter, was also

present in C. sinensis in low percentage, but was absent in larvae collected from the other

hosts. On the other hand, on F. carica we observed a higher abundance of Gluconobacter and

Acinetobacter. Finally, on O. ficus indica the changes in microbial associates involved the pres-

ence of Flavobacterium, Fructobacillus, Azospirillum, Pseudomonas, as well as unidentified

Comamonadaceae and Enterobacteriaceae. Other than Pseudomonas and unidentified Entero-

bacteriaceae, all taxa present in the other fruits studies were absent in larvae collected from O.

ficus indica.

Table 2. Bacterial taxa differentially associated with larvae of C. capitata feeding on different host plants.

Taxon F4, 66 P F. carica O. ficus indica P. persica A. cherimola C. sinensis
Flavobacterium 7.91 ��� 0.59±0.28% (a) 3.03±0.86% (b) 0.16±0.15% (a) 0.2±0.11% (a) 0.32±0.17% (a)

Fructobacillus 7.53 ��� n.d. 27.12±9.6% (b) n.d. 0.04±0.02% (a) 0.07±0.06% (a)

Leuconostoc 13.03 ��� 39.8±7.34% (bc) 1.71±0.51% (a) 65.03±7.7% (c) 46.25±10.57 (c) 13.75±4.51 (ab)

Lactococcus 2.84 � 0.07±0.06% (a) n.d. n.d. 14.74±8.84% (b) 2.49±2.4% (ab)

Acetobacter 4.36 �� n.d. 0.08±0.05% (a) 16.57±7.06% (b) 0.5±0.42% (a) 1.49±1.23% (a)

Gluconobacter 4.06 �� 17±6.71% (b) 2.7±2.01% (a) 2.79±1.67% (a) 0.38±0.24% (a) 0.62±0.33% (a)

Azospirillum 6.2 ��� n.d. 1±0.39% n.d. n.d. n.d.

Un. Comamonadaceae 12.33 ��� n.d. 1.1±0.3% (b) 0.03±0.02% (a) n.d. 0.04±0.03% (a)

Un. Oxalobacteraceae 13.09 ��� 0.1±0.04% (a) 5.18±1.34% (b) 0.25±0.12% (a) 0.14±0.07% (a) 0.16±0.07% (a)

Un. Enterobacteriaceae 13.2 ��� 17.76±6.84% (a) 9.64±6.6% (a) 2.23±1.93% (a) 12.1±8% (a) 66.01±9.33% (b)

Acinetobacter 2.98 � 4.07±0.83% (b) 3.68±1.02% (ab) 2.3±0.56% (ab) 3.37±0.75% (ab) 0.88±0.36% (a)

Pseudomonas 3.53 � 2.61±0.54% (ab) 3.28±0.88% (b) 1.54±0.39% (ab) 3.22±0.85% (b) 0.58±0.21% (a)

For each host plant, it is reported the abundance (mean ± SE) of each taxon, with the result of the Tukey’s MCT (different letters on the same row, indicate differences

for P<0.05). n.d. = not detected

��� P<0.001;

�� P<0.01;

� P<0.05;

https://doi.org/10.1371/journal.pone.0194131.t002
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Discussion

In this work, we characterized for the first time the bacterial microbiota harbored by C. capi-
tata at all insect instars, testing also the hypothesis that diet can have an influence on the struc-

ture of larval microbial community. Using a metabarcoding approach we found that each

instar of C. capitata has a different microbial community composition, and that different

microbial communities were associated to larvae feeding on different host plants. To our

knowledge, few studies have used high-throughput sequencing to explore C. capitata micro-

biota [29, 44]. Former studies on medfly mainly used culture-dependent techniques and

DGGE (Denaturing Gradient Gel Electrophoresis), however culture-dependent approaches

allow the identification of less than 0.1% of microbial diversity [45], while the DGGE provides

information about microbial diversity, but its ability to differentiate among taxa is somewhat

limited.

We observed a reorganization of gut microbial community at different instars of C. capi-
tata. Previous studies have reported on the reorganization of gut microbial community of

insects across different instars [29, 46–50]. Within the tephritids it has been observed to occur,

for example, in Bactrocera carambolae Drew & Hancock [51], Bactrocera dorsalis (Hendel)

[52] and Bactrocera latifrons (Hendel) [53]. We found also a higher microbial diversity associ-

ated to 3rd instar larvae and pupae, as previously shown to occur in B. dorsalis [52]. This finds

support on the physiology of holometabolous insects, since they undergo through a dramatic

anatomical remodeling during development, and often juveniles and adults’ habitats are very

different. This microbial reorganization is likely to be the result of the joint interaction by

insect host and bacterial symbionts [54]. Interestingly, previous studies [25–28] reported bac-

teria not retrieved in our analysis (e.g., Klebsiella spp., Pantoea spp., Pectobacterium spp. and

Citrobacter freundii). This discrepancy could be explained by different factors: (i) former stud-

ies on C. capitata microbiota were conducted in a different geographic area (Israel), thus the

formerly reported microbiota may have reflected adaptions to different environmental condi-

tions; (ii) the host plant species used in former studies differ from the ones we used. In our

study, bacteria belonging to the genus Burkholderia are dominant in young larvae and

adults. This bacterial genus has been previously found associated with C. capitata, but also

with Lutzomyia sandflies and in several Heteroptera [55–59], and it has been suggested a role

in nitrogen fixation when associated with Tetraponera ants [60]. At the end of the larval phase,

bacteria belonging to the genera Sphingomonas, Pseudomonas and Methylobacteraceae become

more abundant in C. capitata. It is known that Pseudomonas can act as an entomopathogen

[25], while the function of the other two lineages when associated with insects is currently

unknown.

In our study, we also observed the effect of diet on the resulting microbial community of

medfly larvae. Previous studies have accounted for the influence of host plant species on the

microbiota associated with polyphagous insect species. For example, the microbiota associated

with Acyrthosiphon pisum Harris [16], Phylloxera notabilis Pergande [14], Helicoverpa armi-
gera (Hübner) [18], Thaumetopoea pytiocampa Den. & Schiff. [61] and Melitaea cinxia (L.)

[17], has been found to vary when feeding on different host plant species. The shift of the bac-

terial community according to the host plant can be explained taking into account different

aspects. It is, for example, acknowledged that different plant species host a different microbial

community [62], so polyphagous insects can just pick a different community when they

change host. Furthermore, the diet itself can act on promoting or selecting specific microbial

communities, through the interaction with the host. On the other hand, we found that for lar-

vae feeding on A. cherimola, F. carica and P. persica, diet does not have any influence on the

microbial community, while it changes when compared to the other host plants (C. sinensis
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and O. ficus indica). In our analysis, Enterobacteriaceae seems to play a key role in exploiting C.

sinensis and O. ficus indica fruits. Previously, Augustinos et al. [63] and Behar et al. [25]

reported beneficial effects of Enterobacteriaceae on medfly, and Behar et al. [27] suggested a

role in nitrogen fixation within medfly guts. Enterobacteriaceae were found also to be associ-

ated to other tephritids [64, 65, 66]. It has also been postulated that selected pectinolytic and

nitrogen-fixing Enterobacteriaceae can be vertically transmitted from one generation to the

next in frugivorous insects [28]. Interestingly, when feeding on O. ficus indica and C. sinensis,
larval microbiota is enriched of microbial species which may provide nitrogen-fixation and

improve sugar metabolism and pectinolitic activity. Similarly, bacteria belonging to the genus

Acinetobacter were found in larvae collected from fruits of F. carica, together with OTUs iden-

tified as Gluconobacter, which could help insects in detoxifying phenolic glycosides [67] or

during nutritionally low periods [68]. Furthermore, Acetobacter, which is more abundant in

larvae thriving on P. persica, could have the same function, together with Leuconostoc which

role is still undisclosed. Also, Lactococcus could contribute insect nutrition on A. cherimola.

These results may support the hypothesis that in C. capitata, and perhaps in other polyphagous

species, the insect’s microbial community is the result of an adaptation of insects’ microbiota

to a specific diet. On the other hand, it has been reported that the microbial community of

some polyphagous species is not affected by diet [69]. Therefore, more work needs to be done

to clarify this aspect especially extending the analysis to the host plant microbiota, in order to

confirm whether insect’s microbial community adapts to a specific host plant, or if it is simply

a subset of plant microbiota.

In a wider view, our results represent an important step in understanding the microbiota

associated with the medfly, and its interaction with the host. More generally, it is important for

agricultural and forest pests, since shifts in microbial community can extend their dietary

range [8, 11, 70], and influence their pest status [4]. The knowledge of microbial associates of

pests is thought to be critical for future pest management approaches, which could consider

the targeted manipulation of the microorganisms associated to target insects [4, 71–73]. A tar-

geted manipulation of bacterial communities harbored within insect pests could be used to

enhance IPM programs, to counteract the spread of insect-borne pathogens and their vectors

and to protect beneficial insects [74, 75]. For example, it has been shown that Wolbachia can

induce cytoplasmic incompatibility in medfly, and it has been resulted successful in pest con-

trol under laboratory conditions [76]. Furthermore, in two different moth species, it has been

shown that the gut microbial community is essential to Bacillus thuringiensis to perform insec-

ticidal activity [77, 78].

In conclusion, our observations show that the microbial community associated to C.

capitata is subjected to substantial changes across all instars, that might suggest a role in

fulfilling specific needs during insects’ development. Furthermore, we observed that differ-

ent host plant species promote variation in microbiota’s diversity associated with medfly

larvae. A clear understanding of the mechanisms underlining changes in microbiota com-

position of polyphagous species according to their diet, are important aspects to understand

the biology of insect pests but, as well, could represent the basis of future pest management

programs.
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