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ABSTRACT The purpose of this study was to predict
the carcass characteristics of broilers using support vec-
tor regression (SVR) and artificial neural network
(ANN) model methods. Data were obtained from 176
yellow feather broilers aged 100-day-old (90 males and
86 females). The input variables were live body measure-
ments, including external measurements and B-ultra-
sound measurements. The predictors of the model were
the weight of abdominal fat and breast muscle in male
and female broilers, respectively. After descriptive sta-
tistics and correlation analysis, the datasets were ran-
domly divided into train set and test set according to
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the ratio of 7:3 to establish the model. The results of this
study demonstrated that it is feasible to use machine
learning methods to predict carcass characteristics of
broilers based on live body measurements. Compared
with the ANN method, the SVR method achieved better
prediction results, for predicting breast muscle (male:
R2 = 0.950; female: R2 = 0.955) and abdominal fat
(male: R2 = 0.802; female: R2 = 0.944) in the test set.
Consequently, the SVR method can be considered to
predict breast muscle and abdominal fat of broiler chick-
ens, except for abdominal fat in male broilers. However,
further revaluation of the SVR method is suggested.
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INTRODUCTION

With the rapid growth of population, broiler chicken
has become the main source of meat for human con-
sumption with its advantages of high feed conversion
rate and low production cost. Breast is the most valu-
able part of the broiler carcass. In recent years, the poul-
try industry’s preference for high-yield and high-breast
muscle has increased the production rate of broiler by
more than 300%, resulting in problems such as metabolic
disorders, skeletal diseases and abdominal fat accumula-
tion (Knowles et al., 2008). Excessive accumulation of
fat will lead to a decrease in feed efficiency, as compared
with the same amount of muscle, the accumulation of
the same amount of fat takes 3 to 5 times the feed costs
(Melot et al., 2003), which greatly increased the cost.
Therefore, the carcass characteristics with high breast
muscle and low abdominal fat can effectively increase
the output of the poultry industry. To achieve this goal,
it is very important to understand the carcass composi-
tion and quality during the breeding process. The tradi-
tional way to determine carcass composition is detailed
dissection (with slaughter), which provides accurate car-
cass composition data, but is often time-consuming and
costly. Therefore, relevant scholars have carried out a
series of studies on the prediction of carcass characteris-
tics by live body measurements, in order to simplify the
breeding work. For example, some researchers used
ultrasound scan to predict weight of breast muscle in
broilers (Koenig et al., 1997; Remignon et al., 2000;
Silva et al., 2006), some researchers predicted abdominal
fat through live body measurements and ultrasound
scan data (Melot et al., 2003; Souza et al., 2017). In
addition, the indirect detection methods and the live
body measurements are also widely used for predicting
the carcass characteristics of other animals, including
the Muscovy ducks (Kleczek et al., 2006), Japanese
Black steers (Maeno et al., 2014), guinea pigs
(Barba et al., 2018), Peking duck (Lin et al., 2018), and
sheep (Barcelos et al., 2020). Overall, B-ultrasound
measurements and live body measurements have been

http://orcid.org/0000-0002-0830-1030
http://orcid.org/0000-0002-0830-1030
http://orcid.org/0000-0002-0830-1030
http://orcid.org/0000-0002-0830-1030
http://orcid.org/0000-0002-0830-1030
http://orcid.org/0000-0001-5448-4782
http://orcid.org/0000-0001-5448-4782
http://orcid.org/0000-0001-5448-4782
http://orcid.org/0000-0001-5448-4782
http://orcid.org/0000-0001-5448-4782
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-9861-4873
http://orcid.org/0000-0002-1368-5120
http://orcid.org/0000-0002-1368-5120
http://orcid.org/0000-0002-1368-5120
http://orcid.org/0000-0002-1368-5120
http://orcid.org/0000-0002-1368-5120
http://orcid.org/0000-0003-0228-4564
http://orcid.org/0000-0003-0228-4564
http://orcid.org/0000-0003-0228-4564
http://orcid.org/0000-0003-0228-4564
http://orcid.org/0000-0003-0228-4564
http://orcid.org/0000-0003-0228-4564
https://doi.org/10.1016/j.psj.2022.102239
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:panhouse@zju.edu.cn


2 CHEN ET AL.
widely used in carcass characteristics prediction in
poultry.

These studies all established mathematical models to
predict the carcass composition of poultry by multiple
linear regression. However, for the multiple linear analy-
sis, the data need to meet the assumptions of linearity,
normality, and non-multicollinearity, and can also cause
biased estimates due to the high correlation among input
variables (Ali et al., 2015). With the continuous develop-
ment of machine learning in recent years, methods such
as Support Vector Machines (SVM) and Artificial Neu-
ral Networks (ANN) have been widely used in various
fields, which may improve the prediction accuracy of
poultry carcasses. ANN is a computing mechanism
which simulates biological neural networks with advan-
tage lies in that it can find the complex relationship
between input variables and output variables, solve non-
linear fitting problems and improve the fitting accuracy
of complex problems (Felipe et al., 2015). Nevertheless,
there are also problems such as sophisticated hyperpara-
meter optimization, easily falling into local optimal
value and overfitting (Tay and Cao, 2001). SVM was
first proposed by Vapnik in 1997 as a new method of
data mining based on structural risk minimization prin-
ciple (Vapnik et al., 1997), widely used in computer
learning, pattern recognition, prediction fitting, and
other fields. SVM can find nonlinear relationship
between input and output variables in a certain preci-
sion range, get global optimal solution and strong gener-
alization capability, which makes SVM widely used in
engineering, science, economy, military and many other
fields. However, machine learning has been not well
applied in predicting poultry carcass characteristics
using live body measurements. Hence the purposes of
this study were 1) to established Support Vector Regres-
sion (SVR) and Artificial Neural Network (ANN) math-
ematical models to predict abdominal fat and breast
muscle in broilers by live body measurements to guide
breeding works, 2) and compare the performance of
established SVR and ANN models.
MATERIALS AND METHODS

Animals

All procedures of this experiment were performed
under the guidance of the Care and Use of Animals of
the Zhejiang University (Hangzhou, China). The Com-
mittee on the Ethics of Animal Experiments of Zhejiang
University approved the protocol. A total of 200 yellow-
feather broilers (Sanhuang, male:100, female:100)were
housed in deep litter pens in Huzhou Nanxun Wens Ani-
mal Husbandry Co., Ltd. This strain, which has been
recorded in National Breed List of Livestock and Poultry
Genetic Resources by the Chinese Agricultural Ministry,
was chosen because of its popularity in China and
genetic stability (Yang et al., 2018). The room tempera-
ture was maintained at 31°C for the first 4 days, and
then reduced by 1°C every 2 d until it reached 21°C on d
25, which was maintained until the end of the
experiment. The mean RH was around 60% and was
kept constant within this value throughout the experi-
ment. Follow the immunization schedule for vaccina-
tions. All broilers had ad libitum access to food and
water. Their diets were formulated according to the
Agricultural industry standard of China (Ministry of
Agriculture, PRC, 2004a), initial phase feed (0−3 wk)
with 12.54 MJ/kg of metabolic energy (ME) and
21.51% crude protein (CP); growth phase feed (4−6
wk) with 12.96 MJ/kg of metabolic energy (ME) and
20.00% crude protein (CP), fattening phase feed (7−14
wk) with 13.17 MJ/kg of metabolic energy (ME) and
18.00% crude protein (CP).
Live Body Measurements and Carcass
Characteristics

The live body weight (X1, g) was measured after were
fasting for 12 h in broilers aged 100 d. Subsequently, live
body measurements were performed before slaughter
according to the Agricultural industry standard of
China (Ministry of Agriculture, PRC, 2004b) and
Kleczek et al. (2006), as follows:

1. Body slope length (X2, mm): Distance from shoul-
der joint to ossa sedentarium on the same side by a
tape measure;

2. Neck length (X3, mm): Distance from the first cervi-
cal vertebra to the end of the neck by a tape measure;

3. Fossil bone length (X4, mm): Distance from the
anterior border of the fossil bone to the posterior of
the fossil bone by a tape measure;

4. Breast circumference (X5, mm): Behind the wing,
through the anterior border of the fossil bone and
the first thoracic vertebra by a tape measure;

5. Shank circumference (X6, mm): Girth of the central
of shank by a tape measure;

6. Humerus length (X7, mm): Distance from the shoul-
der joint to the elbow joint by tape measure;

7. Drumstick length (X8, mm): Distance from knee
joint to ankle joint by a tape measure;

8. Breast depth (X9, mm): Distance from the first tho-
racic vertebra to the anterior of the fossil bone by a
caliper;

9. Breast width (X10, mm): Distance between the two
shoulder joints by a caliper;

10. Pelvis width (X11, mm): Distance between the two
hip joints by a caliper;

11. Shank length (X12, mm): Distance from the ankle to
the third and four toe by a caliper;

12. Breast muscle thickness (X13, mm): The measure-
ment position is one-third of the fossil bone length
and 1.5 cm from the right of border of the fossil
bone;

13. Skin fat thickness (X14, mm): Measured at the same
position as breast muscle thickness measurement,
including the skin and subcutaneous fat.

14. Mass index (%): Mass index = Live body weight
(kg) / Body slope length (cm) � 100%.
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15. Leg index (%): Leg index = Drumstick length
(cm) / Body slope length (cm) � 100%.

16. Brevity index (%): Brevity index = Breast circum-
ference (cm) / Body slope length (cm) � 100%.

When live body measurements are performed, each
animal was measured by 2 trained operators who assist
each other. In lying position, the selected broilers were
held on their backs and gently restrained by hand, the
other operator took measurements. In standing position,
an operator took the right leg of the broilers between the
thumb and index finger of his left hand, the left between
the ring and little fingers, and places the abdomen of the
selected broilers in the palm of his left hand and con-
trolled the wings with his right hand, the other operator
took measurements (Yang, 2002). In live body measure-
ments, except for fossil bone length, breast muscle thick-
ness and skin fat thickness, which were measured in
lying position, the other measurements were all in stand-
ing position.

The X2-8 live body measurements were measured by a
tape measure with a precision of 1 mm; X9-12 measure-
ments were measured by a caliper with a precision of 0.1
mm; Breast muscle thickness and skin fat thickness were
measured by a portable B-ultrasound apparatus (Mind-
ray DP-10VET, www. mindray. com) with the precision
of 0.1 mm. Furthermore, defeathering and oil applica-
tion have been processed at the measurement position
before breast muscle thickness and fat skin thickness
measurements to ensure adequate contact between the
probe and broiler skin. About 14−16 indexes were calcu-
lated from other live body measurements. These indexes
can provide initial information on the fat and muscle of
broilers, which is of great significance and application
value for massive broiler production. In the study,
descriptive statistics and correlation analysis were car-
ried out to test the correlation between these indexes
and carcass characteristics of broilers, in order to pro-
vide preliminary carcass characteristics information for
massive broiler production (difficult to make detailed
live body measurements). However, since these indexes
were calculated from other live body measurements, it is
not necessary to use them as input variables to establish
the broiler carcass characteristics prediction model, oth-
erwise multicollinearity will occur, resulting in unstable
model prediction.

The broilers were killed by severing the carotid arter-
ies and jugular veins of the neck with a sharp knife. Fol-
lowing slaughter, the broilers were bled for about 5 min,
and then scalded in hot water about 60℃ for 2 min to
facilitate plucking. The broilers were de-feathered manu-
ally. Next, the carcasses were eviscerated and abdominal
fat (Y1, g) was isolated and weighed accurate to 0.01 g.
Then the eviscerated carcasses were placed in separate
plastic bags and chilled for 24 h at +4℃ for detailed dis-
section. Breast muscles (Y2, g) were dissected from the
breast quarter by cutting along the fossil bone crest,
clavicle and coracoids, and along the line of the attach-
ment of these muscles to the ribs. The tissue components
were weighed accurate to 0.01 g. Finally, 176 yellow-
feather broilers (90 males and 86 females) were used in
the following analyses after removing broilers with miss-
ing records during rearing and slaughter.
Statistical Analysis

Descriptive statistics (mean, standard deviation, vari-
ance, minimum, and maximum) of live body measure-
ments and carcass characteristics of broilers were
performed using SPSS Statistics 25.0. ANOVA was then
performed to test the significance of the influence of gen-
der on live body measurements and carcass characteris-
tics. In order to unify the dimensions of different
variables and accelerate the training speed of the predic-
tion model, it is necessary to normalize each column of
variables. The normalization of variables is as follows:

xij ¼
Xij � Xj
� �

max Xj
� ��min Xj

� � ð1Þ

Xij is the ith observed value of the jth variable, Xj is the
set of the jth variable, Xj is the mean of the jth variable,
maxðXjÞ represents the maximum value of the jth vari-
able, minðXjÞ represents the minimum value of the jth
variable.
Then, Pearson correlation analysis was conducted on

the normalized variables to determine the coefficient of
correlations between live body measurements and car-
cass characteristics. The coefficient of correlation
between variable A and variable B is calculated as fol-
lows:

coeffAB ¼
Pn

i¼1 Ai � A
� �

Bi � B
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Ai � A

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Bi � B

� �2q ð2Þ

Ai is the ith observed value of the variable A, A is the
mean of the variable A, Bi is the ith observed value of
the variable B, B is the mean of the variable B.
Prediction Models

After data preprocessing, a total of 90 data lines for
male broilers and 86 data lines for female broilers were
used to predict weight of breast muscle and abdominal
fat in broilers. Live body measurements were used as
input variables, and output variables were weight of
breast muscle and abdominal fat in broilers after slaugh-
ter and detailed dissection. To enhance the generaliza-
tion ability of the SVR and ANN models, the datasets
were randomly divided into the train set and the test
set, with 70% and 30%, respectively. The SVM model
was first proposed by Vapnik in 1997 and designed based
on the structural minimum risk principle (Vapnik et al.,
1997), originally used to solve complex nonlinear classifi-
cation problems, which has been widely applied in the
nonlinear classification problems of small sample
because of the advantage of simple model structure, con-
venient hyperparameter optimization, global optimal
solution, and avoiding overfitting. The basic principle of
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SVM classification is to find an optimal hyperplane, seg-
ment the 2 classes of data, and ensure that the maxi-
mum spacing between the nearest data points to the
hyperplane (Rodrigues et al., 2015). The SVM was then
applied to the regression problem, namely support vec-
tor regression (SVR), and the basic principle is to find
an optimal hyperplane that makes the minimum spacing
between the furthest data points to the hyperplane.
Among the various types of SVR, the most commonly
used one is e-SVR, which is designed to find a function
that make the maximum error between the predicted
value and the observed value not more than e. For tradi-
tional SVR model, the training data points are all inside
the e-insensitive band (e-tube). However, when solving
nonlinear practical problems, if the data points are
strictly in the e-tube, it will cause problems such as
increased model complexity and reduced generalization
ability of model. Therefore, the slack variables ξ are
introduced, which makes some data points can be on the
e-tube margin or even slightly out of the e-tube margin
(analogously to the soft margin in SVM for classifica-
tion), without having to be strictly inside e-tube, see
Figure 1 (Alonso et al., 2013). Its objective function and
constraints are as follows:

min
1
2
kv k 2 þ C

Xn
i¼1

ξ i þ ξ̂ i
� �

ð3Þ

s:t: hw;f xið Þ i þ bð Þ � yi�eþ ξ i;

yi � hw;f xið Þ i þ bð Þ�eþ ξ̂ i

ξ i�0; ξ̂ i�0; i ¼ 1; 2;⋯n;

C, e are the hyperparameter, C is the regularization
parameter, which represents the tolerance of model
Figure 1. Geometrical interpretation of e-SVR in Hibert space.
e-SVR is designed to find a function that make the maximum error
between the predicted value and the actual value not more than e. But
allow the data points on the basis of deviation from e stray out ξ slightly
again, in order to enhance the e-SVR model generalization ability. The
gray part of the figure is e-tube, which represents the tolerance of the
model prediction error. f ðxÞ is the objective function. namely the ideal
prediction model; ξ is slack variable, is the distance between data points
that distributed outside the e-tube beyond the e-tube, that’s the soft
margin.
prediction error, used to trade off the model complexity
and prediction accuracy. The larger C, the smallerPn
i¼1

ðξ i þ ξ̂ iÞ, the greater the structural risk, easily to
overfit. Conversely, the opposite; e also indicates the tol-
erance of the model prediction error. Slack variables ξ i
and ξ̂ i represent more than e above the observed value
and more than e below the observed value, respectively.
The smaller the sum of slack variables is, the higher the
fitting accuracy of the regression will be.
However, when dealing with practical problems, the

relationship between input variables and output varia-
bles is often complex and nonlinear. Therefore, the input
space needs to be mapping to the Hilbert space through
the kernel function fðxiÞ, so as to transform the nonlin-
ear relationship to the linear relationship and reduce the
difficulty of model training. The types of kernel func-
tions include linear, polynomial, radial basis function
(RBF), and radial base kernels. The most widely used
kernel function is the radial basis function (RBF), which
is optimized by tuning the kernel parameter g. Accord-
ing to the above elaboration, before training the SVR
model, the three hyperparameters C ; e; g need to opti-
mize to get the best prediction model. In this study, we
adopted the e-SVR model invoking the RBF kernel to
predict the weight of breast muscle and abdominal fat in
female and male broilers, respectively. The grid search
method within 10-fold cross-validation framework was
used to optimize hyperparameters of e-SVR model
(increasing the generalization ability of the model and
avoiding overfitting problem). This paper evaluated
the predictive ability of the SVR model through
R2;MAE;RMSE.
ANN has attracted the attention of scholars in many

fields due to its automatic learning, automatic organiza-
tion, and excellent nonlinear approximation ability
(Dongre et al., 2012). ANN was originally proposed by
Rosenblatt in 1958 and called a perceptron (Rose-
nblatt, 1958), but it did not attract much attention
because it could not solve nonlinear problems. Until the
1980s, the feed forward multilayer perceptron proposed
by Rumelhart et al. (1986) overcame this shortcoming
well, making Artificial neural network rapidly develop
and applied in the various field of data mining. The
structure of the feed forward multilayer perceptron
(MLP) consists of an input layer, one or more hidden
layers and an output layer. The data is input by the
input layer and reaches the hidden layer after the
weighted summation and activation function. Next the
data in the hidden layer is also processed by weighted
summation and activation function to reach the next
layer, and finally reaches the output layer after multiple
layer calculations (Dongre et al., 2012). In this study,
the input and output variables of the ANN model were
the same as those in the SVR model for comparison. The
hidden layer of ANN model had only one layer to ensure
the generalization ability of the model, and the number
of hidden neurons was determined by trialing and error
method. The activation function between each layer was
selected among Log-Sigmoid, Tan-Sigmoid, and Purelin.
Finally, the weights and offsets in the weighted
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summation process were determined by the back propa-
gation learning algorithm in MLP in order to find the
nonlinear relationship between input variables and out-
put variables (Fern�andez et al., 2007). ANN model had
the same evaluation criteria as SVR model.
RESULTS AND DISCUSSION

Descriptive Statistics of Live Body
Measurements and Carcass Characteristics

Table 1 shows the means, standard deviations, coeffi-
cients of variation and ranges (minimum-maximum
value) for the live body measurements in male and
female broilers. It could be observed that the average
live body weight of male and female broilers were
2,108.68 g and 1,768.47 g, respectively, while the coeffi-
cients of variation were 11.80 and 12.05%.
Sweeney et al. (2022) studying on Ross708 broilers,
found that the average live body weight of broilers was
1,948.1 g and the coefficient of variation was 11.2%,
which was consistent with the data of this study. For all
live body measurements except for the live body weight,
it could be seen that the coefficients of variation of each
live body measurement ranged from 4.62 to 12.99% in
this study. Zhang et al. (2010) found that the coefficients
of variation for these measurements ranged from 4.38%
to 15.95%, which agreed with this study. In addition,
Table 1. Means, standard deviations (SD), coefficients of variation (C
measurements in broiler.

Male

Variable Mean SD CV (%) Min

Live body weight (X1, g) 2,108.68 248.92 11.80 1,530.00
Body slope length (X2, mm) 204.78 15.53 7.58 171.00
Neck length (X3, mm) 158.28 17.75 11.21 119.00
Fossil bone length (X4, mm) 116.57 9.45 8.11 94.00
Breast circumference (X5, mm) 284.61 13.14 4.62 251.00
Shank circumference (X6, mm) 39.07 2.34 5.98 34.00
Humerus length (X7, mm) 105.93 8.76 8.27 80.00
Drumstick length (X8, mm) 150.41 15.97 10.62 113.00
Breast depth (X9, mm) 108.98 6.86 6.30 93.80
Breast width (X10, mm) 76.56 7.48 9.77 58.80
Pelvis width (X11, mm) 82.68 5.35 6.47 68.60
Shank length (X12, mm) 102.26 6.26 6.12 83.90
Breast muscle thickness (X13, mm) 10.72 1.28 11.92 6.90
Skin fat thickness (X14, mm) 4.84 0.63 12.99 3.80
Mass index (%) 10.27 1.05 10.27 6.47
Leg index (%) 73.04 6.01 8.23 51.83
Brevity index (%) 139.13 10.21 7.34 107.35

Table 2. Means, standard deviation (SD), coefficient of variation (C
characteristics in broiler.

Male

Variable Mean SD CV (%) Min

Weight of abdominal fat (Y1) 32.48 17.43 53.67 4.54
Percentage of abdominal fat (%) 1.51 0.74 49.09 0.29
Weight of breast muscle (Y2) 178.32 28.53 16.00 118.86
Percentage of breast muscle (%) 8.47 1.07 12.63 5.95
Lin et al. (2018) found that the coefficients of variation
for these measurements ranged from 3.93 to 17.55% in
Peking ducks. Live body measurements except for breast
muscle thickness were significant difference in male
broilers and females (P < 0.01), suggesting that gender
was able to statistically significantly influence the live
body measurements in broilers.
Table 2 shows the means, standard deviations, coeffi-

cients of variation, and ranges (minimum-maximum val-
ues) for the carcass characteristics in male and female
broilers. It could be observed that the weights of breast
muscle in male and female broilers were 178.32 g and
163.27 g, the percentages of breast muscle were 8.47 and
9.26%, respectively, while the coefficients of variation
ranged from 11.82 to 16.00%. Silva et al. (2006) found
the range of breast muscle percentages in broilers were
14.3 to 24.6% in male broilers. For the fat traits, the
weights of abdominal fat in male and female broilers
were 32.48 g and 64.65 g, the percentages of breast mus-
cle were 1.51 and 3.57%, respectively, while the coeffi-
cients of variation ranged from 33.12 to 53.67%. Male
broilers had the highest coefficient of variation in weight
of abdominal fat, up to 53.67%. In broiler,
Melot et al. (2003) reported that the coefficient of varia-
tion for the weight of abdominal fat was 30.43%. For the
sexual dimorphism, the weight of breast muscle was sig-
nificantly higher in males than in females (P < 0.01),
while the weight and percentage of abdominal fat were
V) and ranges (Min = minimum; Max = maximum) for live body

Female

Max Mean SD CV (%) Min Max P value

2,783.00 1,768.47 213.08 12.05 1343.00 2325.00 <0.001
245.00 184.59 16.53 8.95 154.00 252.00 <0.001
206.00 135.85 16.35 12.04 105.00 191.00 <0.001
140.00 106.06 8.18 7.72 91.00 128.00 <0.001
320.00 264.08 13.56 5.14 235.00 299.00 <0.001
48.00 33.70 2.38 7.07 29.00 39.00 <0.001
129.00 95.17 6.07 6.38 83.00 118.00 <0.001
245.00 128.91 12.30 9.54 102.00 162.00 <0.001
125.80 98.14 6.70 6.82 70.20 111.90 <0.001
96.00 70.01 7.96 11.38 54.80 107.70 <0.001
97.30 77.81 7.38 9.48 65.10 121.30 <0.001
121.20 88.93 6.82 7.67 75.20 123.95 <0.001
14.40 10.40 1.16 11.18 7.50 13.30 0.082
6.80 4.37 0.54 12.26 3.20 5.50 <0.001
13.49 9.61 1.10 11.40 7.29 12.64 <0.001
84.97 70.11 6.58 9.39 43.65 84.86 0.002
164.91 143.94 12.19 8.47 110.32 170.59 0.005

V) and ranges (Min = minimum; Max = maximum) for carcass

Female

Max Mean SD CV (%) Min Max P value

76.08 64.65 26.61 41.15 14.40 132.39 <0.001
3.42 3.57 1.18 33.12 0.99 6.50 <0.001

249.62 163.27 24.99 15.31 99.78 231.44 <0.001
11.50 9.26 1.09 11.82 6.35 11.62 <0.001
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significantly higher in females than in males (P < 0.01).
It was consistent with the conclusion of Zuidhof et al.
(2014).
Correlation Coefficients Between Live Body
Measurements and Carcass Characteristics

Table 3 shows the correlation coefficients between car-
cass characteristics (the weight of breast muscle and
abdominal fat) and live body measurements. In males
and females, the variables that significantly correlated
to abdominal fat weight included live body weight (r
< = 0.50, r , = 0.77), mass index (r< = 0.56, r, = 0.70),
pelvis width (r < = 0.32, r , = 0.46), breast circumfer-
ence (r < =0.29, r , = 0.47), breast muscle thickness (r
< = 0.29, r , = 0.32; P < 0.01). Furthermore, the skin
fat thickness was also significantly correlated to abdomi-
nal fat in females (r , = 0.32; P < 0.01). According to
the above results, it could be concluded that the correla-
tion coefficients between the live body measurements
and abdominal fat weight in females are higher than
that in males. On the other hand, body slope length,
neck length, fossil bone length, humerus length, leg
index, brevity index, and shank length were not signifi-
cantly correlated with abdominal fat weight in both
male and female broilers. In broiler, Melot et al. (2003)
showed that live body weight was significantly corre-
lated with abdominal fat weight (r = 0.82). Moreover,
Latshaw and Bishop (2001) found that pelvis width was
significantly correlated (P < 0.01), which was consistent
with the conclusion of this study. Since the phenotypic
correlations were weighted the sums of both genetic and
environmental components, it is easy to explain that
genetic correlations can influence phenotypic correlation
coefficients (Liu et al., 2021). Live body weight and pel-
vis width were significantly positively correlated with
the weight of abdominal fat because live body weight
Table 3. Correlation coefficients (r) between carcass characteristics1 (

Male

Y1

Variable R P value r

Live body weight (X1) 0.50** <0.001 0.65**
Body slope length (X2) 0.08 0.459 0.32**
Neck length (X3) �0.19 0.078 0.21*
Fossil bone length (X4) �0.02 0.887 0.40**
Breast circumference (X5) 0.29** 0.006 0.47**
Shank circumference (X6) 0.25* 0.016 0.36**
Humerus length (X7) 0.02 0.844 0.34**
Drumstick length (X8) �0.22* 0.037 0.09
Breast depth (X9) 0.25* 0.018 0.26*
Breast width (X10) 0.26* 0.012 0.36**
Pelvis width (X11) 0.32** 0.002 0.52**
Shank length (X12) 0.12 0.248 0.30**
Breast muscle thickness (X13) 0.29** 0.006 0.56**
Skin fat thickness (X14) 0.18 0.079 0.44**
Mass index 0.56** <0.001 0.55**
Leg index �0.19 0.073 �0.048
Brevity index 0.164 0.123 0.012

1carcass characteristics: Y1 = weight of abdominal fat (g); Y2= weight of bre
**Significance of the correlation coefficient (r) at a = 0.01;
*a = 0.05.
and pelvis width had significant genetic correlations
with the weight of abdominal fat (P < 0.01;
Zerehdaran et al., 2004). And after recent years of breed-
ing for fast-growing broilers, modern broilers have been
able to eat more food than they require for muscle
growth and maintenance, so that the excessive energy
intake is converted into fat and the higher the body
weight, the more abdominal fat (Zerehdaran et al.,
2004). This indicated that live body weight and pelvis
width are excellent predictors of the weight of abdomi-
nal fat in broiler, and may help breed the broilers with
less abdominal fat. In addition, abdominal fat can be
regulated in combination with food restriction
during rearing (Arafa et al., 1983). However,
Erensoy et al. (2020) found that fossil bone length and
breast width had no significant correlation with abdomi-
nal fat weight in the study of broilers. In this study,
there was no significant correlation between fossil bone
length and abdominal fat weight, but there was signifi-
cant correlation between breast width and abdominal
fat weight (r < = 0.26, r , = 0.23; P < 0.05). In duck,
Lin et al. (2018) showed that only live body weight and
skin fat thickness were significantly correlated with
abdominal fat weight (P < 0.01), and there was no sig-
nificant correlation between live body weight and
abdominal fat weight in females. Nevertheless, live body
weight, breast muscle thickness, and breast circumfer-
ence had also significant correlation with the abdominal
fat weight in this study (P < 0.01).
The weight of breast muscle was positively correlated

with all live body measurements except for leg index and
brevity index. For males, except for drumstick length,
leg index ,and brevity index, other live body measure-
ments were significantly correlated to the weight of
breast muscle (P < 0.05). However, the correlation coef-
ficients of neck length, fossil bone length, and breast
depth did not reach a significant level in females. For
males and females, the variables that significantly
Y) and live body measurements (X) in broiler.

Female

Y2 Y1 Y2

P value r P value r P value

<0.001 0.77** <0.001 0.65** <0.001
0.003 0.17 0.116 0.35** 0.001
0.047 �0.16 0.155 0.17 0.126

<0.001 �0.02 0.829 0.21 0.056
<0.001 0.47** <0.001 0.56** <0.001
<0.001 0.13 0.247 0.43** <0.001
0.001 0.12 0.256 0.22* 0.045
0.427 0.05 0.675 0.35** 0.001
0.015 0.14 0.211 0.18 0.092

<0.001 0.23* 0.037 0.35** 0.001
<0.001 0.46** <0.001 0.45** <0.001
0.005 0.20 0.072 0.47** <0.001

<0.001 0.32** 0.003 0.38** <0.001
<0.001 0.33** 0.002 0.25* 0.019
<0.001 0.70** <0.001 0.41** <0.001
0.655 �0.097 0.374 0.033 0.762
0.908 0.122 0.263 �0.019 0.861

ast muscle (g).



Table 4. Comparison of the support vector regression (SVR) and
Artificial neural networks (ANN) developed to predict weight of
abdominal fat in terms of coefficient of determination (R2), mean
absolute error (MAE), root mean square error (RMSE).

Items SVR ANN

< , < ,

data lines (no.) train 63 61 63 61
test 27 25 27 25

R2 train 0.804 0.952 0.758 0.924
test 0.802 0.944 0.751 0.915

MAE train 7.77 4.74 6.89 5.61
test 4.08 4.65 7.59 7.75

RMSE train 9.07 6.13 9.46 7.79
test 5.42 6.18 9.07 9.46

Table 5. Comparison of the support vector regression (SVR) and
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correlated to breast muscle weight included live body
weight (r< = 0.65, r, = 0.65), breast muscle thickness
(r< = 0.56, r, = 0.38), mass index (r< = 0.55,
r, = 0.41), breast circumference (r< = 0.47, r, = 0.56),
pelvis width (r< = 0.52, r, = 0.45), and so on (P <
0.01). Raji et al. (2010), studying on broilers, found that
the weight of breast muscle was significantly correlated
with live body weight and breast circumference (P <
0.01), while breast depth did not reach a significant
level. It was consistent with the data in this study. And
some scholars all came to the conclusion that the weight
of breast muscle was significantly correlated with live
body weight and breast muscle thickness (P < 0.01)
(Remignon et al., 2000; Silva et al., 2006; Oviedo-
Rond�on et al., 2007). Kleczek et al. (2006) also got a sim-
ilar conclusion in study of Muscovy ducks. This was
because live body weight and breast muscle thickness
were significantly genetic positively correlated with the
weight of breast muscle (P < 0.01; Zerehdaran et al.,
2004). In addition, breast muscle accounts for more than
half of the torso muscles of poultry, and the growth of
breast muscle was proportional to weight gain in broilers
(Zuidhof, 2005), which could also explain these signifi-
cant correlations. It indicated that live body weight and
breast muscle thickness could be excellent predictors for
the weight of breast muscle during selective breeding. In
addition to a significant genetic correlation between
breast muscle thickness and the weight of breast muscle
(Scheuermann et al., 2003; Case et al., 2012), there was
also a significant genetic correlation between breast
muscle thickness and meat quality in broilers
(Gaya et al., 2011). This indicated that breast muscle
thickness could not only be used as an important indica-
tor to predict the weight of breast muscle, improve the
efficiency of breeding work, but also help selection breed-
ing to improve broiler meat quality.

From the correlation analysis of mass index, leg index,
brevity index, and carcass characteristics, it could be
seen that mass index was significantly correlated with
the weight of abdominal fat and breast muscle in broilers
(P < 0.01), respectively. It indicated that when the scale
of commercial broiler production is too large to carry
out detailed live body measurements of broilers, the pre-
liminary information of broiler fat and muscle can be
obtained through mass index so as to adjust the manage-
ment measures. This is similar to the preliminary infor-
mation about human body fat obtained by BMI (body
mass index).
Artificial neural networks (ANN) developed to predict weight of
breast muscle in terms of coefficient of determination (R2), mean
absolute error (MAE), root mean square error (RMSE).

Items SVR ANN

< , < ,

data set (no.) train 63 61 63 61
test 27 25 27 25

R2 train 0.960 0.968 0.936 0.918
test 0.950 0.955 0.904 0.908

MAE train 5.43 4.60 5.61 5.33
test 3.92 3.66 6.47 5.68

RMSE train 5.61 4.69 7.23 7.33
test 5.67 4.87 7.88 6.92
Predictive Ability

This study attempted to establish the SVR and ANN
models through live body measurements to predict the
weight of breast muscle and abdominal fat in broilers.
With the continuous development of poultry industry,
carcass characteristic with high breast muscle and low
abdominal fat proportions have become breeding tar-
gets, and the high heritability of breast muscle weight
and abdominal fat weight indicated that these two
carcass characteristics were important breeding traits
(Rance et al., 2002; Gaya et al., 2006). Therefore, it is of
great significance for poultry farmers and breeders to
predict the carcass characteristics in broilers with non-
destructive and cheap mathematical models, which can
provide slaughtering lot standardization, carcass charac-
teristics for the poultry farmer to make management
decisions; selection criteria for the breeder to assist
breeding work. In this study, coefficient of determination
(R2), mean absolute error (MAE), root mean square
error (RMSE) were used to evaluate the predictive abil-
ity of SVR model and ANN model. Tables 4 and 5 sum-
marized the predictive ability of SVR and ANN models
on the weight of abdominal fat and breast muscle,
respectively.
In terms of abdominal fat, it could be seen from

Table 4 that SVR model also had better R2 value and
lower MAE and RMSE, which was similar to the results
of breast muscle in broilers. However, for male broilers,
neither SVR model nor ANN model achieved good pre-
diction effect, which might be due to the low correlation
between live body measurements and abdominal fat
weight in males, and the large coefficient of variation of
abdominal fat weight in males affecting the predictive
ability of the mathematical model. For female broilers,
the R2, MAE, and RMSE of the abdominal fat predic-
tion with the SVR model were 0.944, 4.65, and 6.18 for
the test set; 0.952, 4.74, and 6.13 for train set, respec-
tively. It indicated that the SVR model is accurate, reli-
able, and feasible for the prediction of abdominal fat in



Figure 2. Scatter plot of actual and predicted carcass characteristics by SVR for male and female broilers. In the figure, the abscissa value and
ordinate value of the data point are the actual value and the predicted value respectively. If the data point falls on the line with slope 1, it means
that the predicted value and the actual value are equal.
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female broilers. It indicated that the prediction results
were reliable and the model had no overfitting problem.
To sum up, SVR model had better predictive ability
than ANN model for predicting carcass characteristics
in broilers, but the predictive ability of model is also
affected by the dataset quality, hyperparameter optimi-
zation, evaluation criteria, and other factors.

TaggedPIn terms of breast muscle, it could be seen from Table 5
that SVR model yielded higher R2 and lower MAE,
RMSE than ANN model. Taking male broilers as an
example, the R2, MAE, and RMSE of the breast muscle
prediction with the SVR model were 0.950, 3.92, and
5.67 for the test set; 0.960, 5.43, and 5.61 for train set,
respectively. It suggested that the prediction results of
the model are accurate and reliable, there was no over-
fitting problem, and it had application potential. Female
breast muscle predictions had similar results. The reason
why ANN model was inferior to SVR may be that the
dataset is small, and the division of the dataset to train
set and test set further reduce the amount of data, which
might bring limitations to the analysis of ANN model
(Ekiz et al., 2020). Moreover, ANN model had the prob-
lem of overfitting (R2 in train set: 0.936, R2 in test set:
0.904). This is because ANN model is prone to fall into
local minima in the process of model training, which
increases the error on a novel dataset and reduces the
model generalization capability (Kim, 2003; Javed et al.,
2007). Faridi et al. (2012) predicted the carcass charac-
teristics of Ross and Cobb broilers based on nutritional
information, and also found that SVR model had better
predictive and generalization ability than ANN model,
which was consistent with this study.
The scatter plots of observed and predicted values for

carcass characteristics by SVR model are shown in
Figure 2 for males and females, respectively. If all data
points lie on the straight line through the origin, the
acquired model makes accurate prediction results. As
seen in Figure 2, the results of this study suggested that
machine learning (SVR) models are effective in predict-
ing carcass characteristics based on live body measure-
ments. Using mathematical model to predict the weight
of breast muscle and abdominal fat is nondestructive



MACHINE LEARNINGMODEL FOR CARCASS IN BROILER 9
and low cost, so this method has the potential of popu-
larization.
CONCLUSIONS

The study aimed to predict the weight of breast mus-
cle and abdominal fat in broiler through live body meas-
urements using machine learning methods. For this
purpose, this study compared the performance of 2
widely used machine learning methods (artificial neural
networks and support vector machines) in predicting
broiler carcass characteristics through live body meas-
urements. Compared with the ANN method, the SVR
method achieved better prediction results, for predicting
breast muscle (male: R2 = 0.950; female: R2 = 0.955)
and abdominal fat (male: R2 = 0.802; female:
R2 = 0.944) in the test set. It indicated that it is feasible
to achieve accurately predict the weight of breast muscle
and abdominal fat in broilers weight using SVR model.
This method does not require detailed dissection, saves
time and costs, and greatly improves the efficiency of
breeding work and management decisions in the poultry
industry. However, the small size of data set is the limit-
ing factor of the study. Therefore, it is expected that in
future studies, deep learning methods can be adopted to
improve the prediction accuracy and generalization abil-
ity of the model by using large data sets.
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