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Large-scale metagenomic analysis of oral
microbiomes reveals markers for autism
spectrum disorders
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The link between the oral microbiome and neurodevelopmental disorders
remains a compelling hypothesis, still requiring confirmation in large-scale
datasets. Leveraging over 7000 whole-genome sequenced salivary samples
from 2025 US families with children diagnosed with autism spectrum dis-
orders (ASD), our cross-sectional study shows that the oral microbiome
composition can discriminate ASD subjects from neurotypical siblings (NTs,
AUC=0.66), with 108 differentiating species (q < 0.005). The relative abun-
dance of these species is highly correlated with cognitive impairment as
measured by Full-Scale Intelligence Quotient (IQ). ASD children with IQ < 70
also exhibit lower microbiome strain sharing with parents (p < 10−6) with
respect to NTs. A two-pronged functional enrichment analysis suggests the
contribution of enzymes from the serotonin, GABA, and dopamine degrada-
tion pathways to the distinct microbial community compositions observed
betweenASDandNT samples. Althoughmeasures of restrictive eatingdiet and
proxies of oral hygiene show relatively minor effects on the microbiome
composition, the observed associations with ASD and IQ may still represent
unaccounted-for underlying differences in lifestyle among groups. While
causal relationships could not be established, our study provides substantial
support to the investigation of oral microbiome biomarkers in ASD.

Autism spectrum disorders (ASD)1 are neurodevelopmental
impairments involving the cognitive, emotional, relational, and
behavioural spheres2–4. ASD children show repetitive behaviours
and sensory hyper-sensibility5,6. Estimates of ASD prevalence per
1000 children in the US range from 18.5 to 27.67. ASD are thought
to arise from the interaction between genetic and environmental
factors3,8–12, with small-effect and de novo variants contributing to

disease risk13–16. Although more than 180 ASD-implicated genes
have been identified from joint analysis of protein-truncating
variants, missense variants and copy number variants16, they
represent only a fraction of the estimated up to 1000 genes
possibly involved in ASD aetiology17,18. In addition to the genetic
makeup inherited from the parents and de novo variants, the
microbial community acquired at birth and shaped during
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childhood19 has been proposed as an element for a better
understanding of ASD pathophysiology20–22.

The human microbiome is considered an element able to influ-
ence peripheral and central nervous system development and func-
tioning. Although largely uncharacterized, a bidirectional
communication system integrating the gut, the gut microbiome, and
the brain has been proposed: the gut-brain axis23–33. There is mounting
evidence for the link between the gut microbiome and ASD20, and a
potential role for the gut-brain axis in the pathophysiology of ASD has
been suggested. Three recent meta-analyses identified robust differ-
ences in the gut microbiome composition of children diagnosed with
ASD34–36. In mice, transplantation of the human gut microbiota from
ASD subjects induced autistic-like behaviours37. Dietary restrictive-
ness, finally, has been proposed as the main factor inducing the gut
microbiome shift in ASD38. The human oral microbiome has also been
shown to be altered in children with ASD; specifically, an increase in
bacterial species from the genera Streptococcus and Haemophilus, and
a decrease in the abundance of the genera Prevotella and Actinomyces
have been described39. Another study focusing on the oral
microbiome40 reported a depletion of the species Campylobacter
concisus and Streptococcus vestibularis in ASD children. It was recently
shown that an orally-administered gut microbiome neuroactive
metabolite sequestrant alleviated anxiety symptoms in 30
adolescents41,42. Despite similar preliminary evidence, the putative role
of the oral microbiome in neurodevelopment and specifically in ASD,
and to which extent the oral microbiome is affected by dietary
restrictiveness or by other ASD-related behaviours, remains largely not
understood.

In this study,we explored the oralmicrobiomeof 2025US families
of the SPARK-WGS cohort (N = 7812 participants, including 2154 ASD
children, 1646 neurotypical siblings (NTs), 2012 mothers, and 2000
fathers).We performedmetagenomic analysis of the non-human reads
derived from whole genome sequencing data of saliva samples, which
allowed the investigation of the oral microbiome in ASD at an unpre-
cedented size and unprecedented depth (~2.2 times larger and 11 times
deeper in terms of microbial read depth than the largest published
salivary dataset based on the shotgun technology43). We characterized
the oral microbiome composition and function in ASD children and
NTs, then correlated metagenomic features to IQ, social communica-
tion, developmental coordination, and restrictive behaviours, includ-
ing restrictive eating. Our metagenomic approach, coupled with the
family cohort design, enabled high resolution of microbiome func-
tional potential as well as the analysis of themicrobiome strain-sharing
between family members.

Results
The SPARK-WGS cohort
The SPARK-WGS cohort (N = 7812 individuals from 2025 US families,
avg. family-size = 3.9), was established to study the oral microbiome in
individuals with ASD (Fig. 1). Participants aremembers of families with
an individual having a professional diagnosis of ASD, most of them
recruited through clinical sites associated with the SPARK
consortium44. Saliva samples were collected from all participants and
sequenced at an average depth of 856million reads per sample (42X)
generating a total of 821 billions non-human reads (avg. per
sample = 105 × 106, 95% CI [104 × 106, 107 × 106], Suppl. Data 1). The
cohort comprises fathers (n = 2000, avg. age 41 years [40, 41]),
mothers (n = 2012, avg. age 38 years [38, 39]), NTs (n = 1646, avg. age
8 years [7.8, 8.2]), and children diagnosed with ASD (n = 2154, avg. age
9 years [8.6, 9.1], Fig. 1). In total, 788 males and 658 females were NTs,
while 1743 males and 411 females were children with a diagnosis of
ASD. All children were biologically related to their parents as con-
firmed by the available genomic information (Methods). The male-to-
female ratio in the ASD group was the expected 4:1 ratio45,46, and thus
sex ismoderately correlatedwith ASDdiagnosis (Matthews correlation

coefficient (MCC) = 0.35). Age also showed a small but significant
correlation with ASD diagnosis (point-biserial ρ =0.08, p = 9.4 × 10−7,
n = 3800, Fig. 1). As sex and age are also associated with microbiome
composition, they were also included in all analyses as potential con-
founders. Family relatedness, genetic ancestry of the individuals, and
read-depth were also included when relevant.

The SPARK-WGS cohort is a high resolution oral microbiome
dataset
Non-human sequencing reads of the participants in the SPARK-WGS
study (N = 7812) were profiled with MetaPhlAn 347. We detected in total
1320bacterial species, 11 fungal, and 2 archaeal species (avg. species per
sample = 161, 95% CI [104, 218], Supplementary Fig. 1). We investigated
whether the SPARK-WGS cohort was similar to other salivary micro-
biome datasets. Beta-diversity analysis including 856 samples from
curatedMetagenomicData (cMD) 348 revealed that the SPARK-WGS
samples overlap with the salivary samples in cMD 3 but not with other
oral cavity derived samples (Supplementary Fig. 2a–c). We wondered
whether the increase in thenumber of species found in SPARK-WGSwas
due to multiple episodes of contamination. Potential contaminants
were evaluated according to the list of 119 species determined by
ref. 49, further collapsed to 59 that were present in the MetaPhlAn 3
database.We foundhypothetical evidenceof six contaminant species in
total, four were found in < 10 samples and two were found in 37 and
38 samples, respectively. Allwere foundat an abundance <0.1%with the
exception of Ralstonia pickettii, found at an abundance between 1% and
6% in seven samples (Methods, Supplementary Fig. 2d). Potential con-
taminantswere thus atworst rare andwemaintained a specific focus on
them in the analysis by making sure such species were not included in
any discriminating microbial signature.

The ASD and neurotypical oral microbiomes differ at the
species level
Since a heatmap showing the 30 most abundant species in the cohort
did not reveal obvious clusters driven by diagnosis, ethnicity, or sex
(Methods), we next investigated the factors associated with the var-
iation observed in the microbiome by two statistical decomposition
methods. Family ID (a proxy for relatedness, co-housing, and common
habits), followed by age, alpha-diversity, and sequencing depth, were
found to be the variables that explain most of the microbiome inter-
personal variation according to variance decomposition analysis and
multivariate permanova (Suppl. Data 2, Supplementary Fig. 3a–c,
Methods). ASD diagnosis was found significant by the permanova
analysis (permanova p =0.001, R2 = 2%, Supplementary Fig. 3a, b,
Suppl. Data 2). In addition, a ten-times repeatedpermanova analysis on
ASD diagnosis only sampling one child per family was also significant
by both Aitchison and Bray-Curtis dissimilarities (p = 0.001, n = 2024,
999 iterations, R2 ranges 1.6-1.8% and 1-1.2%, respectively, Supple-
mentary Fig. 3d, e), and pairwise beta diversities between ASD children
were also on averagehigher thanbetweenneurotypical siblings (Mann-
Whitney p < 10−7 in both, Supplementary Fig. 3f, g). Alpha-diversity of
ASD oral microbiomes did not show significant differences compared
to controls in crude nor in adjusted analysis (Mann-Whitney and Wald
p >0.05). These analyses revealed a modest, albeit significant, differ-
ence in beta-diversity between ASD and NT children.

We next applied two standard complementary methodologies to
assess the differences in themicrobiome composition of ASD children
vs NTs. We first used a Random Forest (RF) algorithm, following a
procedure concordant with the DOME guidelines on bioinformatics
machine learning experiments50. We generated hundred datasets
containing microbiome data from a random selection of 500 ASD
children and 500 NTs from different families, having a female:male
ratio 1:1 in each group, and ensuring that each set was also balanced by
age and sequencing depth (Methods). Importantly, this approach
allowed us to consider structural zeros in the natural behaviour of the

Article https://doi.org/10.1038/s41467-024-53934-7

Nature Communications |         (2024) 15:9743 2

www.nature.com/naturecommunications


algorithm. The average area under the curve (AUC), an unbiased
measure of accuracy, out of a hundred ten-fold, ten-times iterated,
cross-validations, was 0.66 (Fig. 2a). We evaluated RF feature impor-
tances by averaging the rate at which each species was used in the final
tree-graph in the training set only51.

We then assessed differences in the species-level taxonomic
composition of the microbiome between ASD-diagnosed children and
the NTs using linear mixed models blocked by family ID and adjusted
for sex, age, genetic ancestry, and sequencing depth. We found a total
of 108 species associated with ASD or NTs at a stringent criterion for
significance (q <0.005, Suppl. Data 3). Notably, the two models were
highly concordant, based on the correlation of ASD diagnosis q values
with the RF feature importance of individual species in the classifier
(ρ =0.62, Fig. 2b). Fifty-two out of 108 identified species were more
abundant in the saliva of ASD children (ASD beta > 0.0, q <0.005). The
five strongest associations were the species Actinomyces hon-
gkongensis, Actinomyces johnsonii, Cutibacterium acnes, the Eikenella
species NML 130454, and Rothia dentocariosa (betas 0.76 [0.6, 0.93],
0.76 [0.59, 0.93], 0.71 [0.53, 0.88], 0.70 [0.54, 0.86], 0.64 [0.53, 0.76]),
corresponding to median increases of the relative abundances of 18.5,

2.6, 3.7, 2.8, and 2.2 times (Fig. 2c, Suppl. Data 3, 4). Fifty-six species
were associated with neurotypicality (ASD beta < 0.0, q <0.005),
including Eubacterium sulci, Oribacterium parvum, Prevotella pallens,
Prevotella shaii, and Prevotella jejunii (beta = −1.24 [−1.46, −1.03], −1.14
[−1.33, −0.95], −1.05 [−1.24, −0.87], −1.01 [−1.24, −0.78], −0.97 [−1.2,
−0.75]), corresponding to an increase of themedians in the NTs group
of 5.5, 7.3, 4.6, > 20, and 15.4 times. Repeating the analysis at the genus
level, twenty-nine genera were associated (q <0.005) with ASD diag-
nosis, includingCutibacterium and Eikenella (associatedwithNTs), and
Oribacterium and Prevotella (associated with ASD, median fold
change = 3.7, 1.6, 2, and 1.8, Supplementary Fig. 4a, Suppl. Data 5, 6).
The Prevotella genus in particular accounted for twelve species-level
associations with NTs in contrast to none with ASD.

Medications have a limited influence on the ASD oral
microbiome
We then hypothesized that environmental factors shaping the oral
microbiome might be the cause of the observed ASD-related species.
First, we investigated the difference between ASD children who were
reported to have been treated with medications (n = 802) and those

Fig. 1 | The analysis of the oral microbiome in the SPARK-WGS study. The
SPARK-WGS cohort was established for the study of the genetic basis of ASD
through deep whole genome sequencing, collecting salivary DNA from families
with ASD subjects across diverse locations across the US, thus allowing analysis of
human andmicrobial sequences (with an initial coverage of 42X in total and 105M
microbial reads on average per sample). curatedMetagenomicData 3 was used to
compare the SPARK-WGS cohort with other oral microbiome datasets. Participants
included fathers, mothers, NTs and ASD-diagnosed children. The analysed cohort
included 7,812 subjects from 2,025 families, the largest portion of which are
quartets (n = 1541) or triads (n = 353). Dietary information was included via ARFID
score and Picky Factor for diet restrictiveness. Medication history was included in

the analysis. Diagnostic scores (social communication questionnaires (SCQ)),
developmental coordination disorder questionnaire (DCDQ), repetitive behaviours
scale (revised) (RBS-R), and full-scale Intelligence quotient (IQ) (estimated via a
machine learning algorithm, Methods) were also collected. The human genomic
informationwas used to compute ASD Polygenic Risk Score (PRS), genetic ancestry
principal components, and to estimate the microbial load as an indicator of oral
hygiene. Metagenomic sequences were used for taxonomic and strain-level pro-
filing via MetaPhlAn 3 and StrainPhlAn 3, and metabolic repertoire profiling with
HUMAnN 3.0 followed by imputation of GBM (gut-brain modules) to assess the
microbiome neuroactive potential.
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whowere not (n = 958).We identified a total 34 species associatedwith
use of medications at q <0.1, but no species was associated at
q <0.005. Among the species associated with medications at q < 0.1,
four were among the top-30 associated with ASD, including R. dento-
cariosa (associated with ASD), Prevotella histicola, and Megasphaera
micronuciformis (associated with NTs) which were all positively asso-
ciated with medication use (Fig. 2d).

The ASD oral microbiome is characterized by higher load of
aerobic species
Since medications was not the main driver of the observed associa-
tions, next wemanually annotated the set of 108 species associated to
ASD or NTs as aerobic, facultative aerobic, or anaerobic according to
BacDive in DSMZ. Anaerobic species were mostly associated with NTs
(only six aerotolerant associated species out of 56), while the ASD
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children microbiome was found to be enriched in aerobic or aero-
tolerant species (25 out of 52, Fisher exact test p <0.0001). The
enrichment of aero-tolerant species in ASD oral microbiome, possibly
due to increased mouth-breathing52, is consistent with the increase in
the species R. dentocariosa, S. gordonii,C. durum, andC. acnes (Fig. 2d).
These findings suggest a potential contribution of altered mouth
breathing in ASD to the observed ASD associations.

Salivary microbial load has a limited influence on the ASD oral
microbiome
Since higher microbial load has been linked to poor oral hygiene and
compromised oral health53,54, we estimated the microbial load in each
subject (Methods) to investigate the potential impact of differences in
oral hygiene between ASD andNTs on the observed associations. Such
an indirectmeasureof oral hygiene allows us to draft somepreliminary
conclusions on the relationship between oral hygiene, microbial load,
and oral microbiome in autism. A total of 123 species were associated
with microbial load (as a surrogate for oral hygiene) while 110 species
were associated with ASD after adjusting by the oral hygiene proxy.
However, of the 52 species associated (q <0.005) with both variables,
twelve species were associated with ASD and high microbial load and
eight with NTs and low microbial load (Fig. 2d, e, Suppl. Data 7),
indicating a relatively limited influence of the inferred oral hygiene in
the observed differences between ASD children and controls. A. hon-
gkongensis, the Eikenella species NLM130154, the Streptococcus oral
species 056, Actinomyces georgiae, and the skin commensal Propioni-
bacterium propionicum, all found among the top associations with
ASD, were also associated at q <0.005 with higher microbial load
(Fig. 2e). C. acnes, another skin commensal, was instead not associated
with microbial load (poor hygiene). To ensure that the presence of C.
acneswas not due to multiple episodes of contamination, we assessed
the prevalence of C. acnes in 17 oral datasets from cMD 3, confirming
its presence at a non-negligible prevalence (Supplementary Fig. 4b).
The increased presence of C. acnes (aerotolerant) in ASD might be
more likely motivated by mouth breathing than by oral hygiene. To
ensure that the oral C. acnes is not a different species with respect to
the typically found skin commensal, we performed a phylogenetic
analysis of 508C. acnes genomes including twenty reference genomes,
415 skin-derived assemblies, 24 airways assemblies, and 32 genomes
from the SPARK-WGS cohort (Methods). No isolated cluster of any oral
cavity or airwise-derived C. acnes was observed, suggesting that the
same species is identified in the mouth, in the airways, and in the skin
(Supplementary Fig. 4c). Conversely, commensal species such as R.
dentocariosa and R. aerea were negatively associated (q <0.005) with
the estimated microbial load and positively with ASD, further sug-
gesting thatoral hygiene is not the sole reasondriving the associations.
In spite of the observed overlaps, covarying for the microbial load did
not substantially modify the results of the ASD or NTs associated
species in terms of q value and effect size (the ASD betas and q values
of the two models showing a correlation of 0.99, Suppl. Data 8). Col-
lectively, this suggests phenomena beyond oral hygiene at the basis of
the identified associations between ASD and the oral microbiome.

Genetic predisposition toASDdoes not correlatewith any of the
observed species
To investigate the role of the oral microbiome in the aetiology of ASD,
we explored the association between microbiome composition and
genetic predisposition to ASD, estimated by the inherited predisposi-
tion to a condition of a given individual due to common polymorph-
isms measured by the Polygenic Risk Score (PRS)55. No species were
found associated with ASD-PRS, either adjusting or not adjusting for
ASD diagnosis (data not shown). Since the PRS was computed from an
ASD reference GWAS based on European ancestry subjects, we ran a
model adjusted only for sex, age, and sequencing depth and including
only caucasian individuals as defined by the ancestry principal com-
ponent analysis (n = 2873). This analysis showed an association at
q <0.1 between PRS and five species (Haemophilus para-
phrohaemolyticus, Anaerococcus vaginalis, Staphylococcus cohnii,
Rothia sp, Corynebacterium testudinoris, Suppl. Data 8) but none of
them reached statistical significance. These results suggest a limited
contribution, if any, of the genetic risk component for ASD on the
observed differences in microbiome compositions between children
with ASD and NTs.

Cognitive functions are highly correlated with microbiome
features
To explore phenotypic aspects capable of explaining the observed
differences, we exploited ASD screening measures such as the Social
Communication Questionnaire (SCQ) scale56, the Developmental
Coordination Disorder Questionnaires (DCDQ)57, and the Repetitive
Behaviours Scale (Revised) (RBS-R)58, which were available for the
majority of ASD subjects. We also considered ASD cognitive impair-
ment as a putative correlate of the microbiome composition. Given
that intelligence quotients rated by licensed clinical psychologists
were available only for a subset of subjects in our cohort, we took
advantage of the full-scale intelligence quotients (IQ) estimated from
parent-reported data by an algorithm developed to estimate with high
accuracy cognitive levels in large cohorts of ASD children59. The pre-
dicted IQ determined for 1795 ASD subjects was highly correlated with
the clinically-rated IQ In the subset of 116 ASD children (ρ =0.77,
p = 8.6 × 10−19, Supplementary Fig. 5a). The predicted IQ was corre-
lated with the three above scales in the expected directions, i.e. posi-
tively correlated with the degree of motion coordination (DCDQ,
ρ = 0.34, p = 1.3 × 10−31 as in60), negatively correlated with the social
communication deficit (SCQ, ρ = −0.32, p = 4.9 × 10−32), and negatively
correlated with the degree of repetitiveness (RBS-R, ρ = −0.12,
p = 3 × 10−5). Consistently with previous findings61, the SCQ was posi-
tively correlated with the RBS-R (ρ =0.44, p = 7.7 × 10−57) and nega-
tively correlated with the DCDQ (ρ = −0.33, p = 4.9 × 10−28,
Supplementary Fig. 5a–d, Suppl. Data 9). We then used linear models
to assess the association ofmicrobial specieswith each scalewithin the
ASD group. Repetitive behaviours (RBS-R, n = 1728) did not show sta-
tistically significant associations with oral species (Suppl. Data 10);
social communication questionnaire (SCQ, n = 1772) and develop-
mental coordination disorder (DCDQ, n = 1491) showed 393 and 49

Fig. 2 | Metagenomic analyses identify species-level differences in the oral
microbiome of ASD children vs NTs. a 100 Receiver operating characteristic
curves (ROCs) each froma 10-fold, 10 times evaluatedRandomForest (RF) classifier
discriminating ASD children from NTs using species-level relative abundances
(ASD = 2,154, NTs = 1646). Each set was obtained by random sampling at most one
child per family and balanced for ASD diagnosis, sex, age, and sequencing depth.
b Scatterplot of the per-species RF feature importance (computed only from
training folds to avoid overfitting) vs minus the log-10 of the ASD-related q value
from a linear mixed model linking ASD diagnosis with centered log-ratio trans-
formed MetaPhlAn 3 species abundances adjusted for sex, age, genetic ancestry,
sequencingdepth, andblockedby family ID.Orange linemarks a lowess regression,
and light-blue shaded area its 95% confidence interval. ρ refers to Spearman’s

correlations. c ASD diagnosis-related betas from the aforementioned model con-
sidering the top-15 ASD-associated (with beta > 0) and the top-15 NTs-associated
(beta < 0) at q <0.005. Horizontal lines mark the 95% confidence intervals. Relative
abundances (right) are presented in log-10 scale and coloured by enrichment in
diagnostic groups. d Vertical colour bars indicate whether the species is positively,
negatively (at q <0.1), or not associated with use of medications, whether the
species is aerotolerant, and whether the species is associated at q <0.005 with the
overall degree of microbial load. e Results for a model including microbial load
estimation instead of microbial read depth. Yellow diamonds mark a positive
association with microbial load, green diamonds mark a negative association with
microbial load. Top-20 species per group are shown.
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associations, respectively (q <0.005, Suppl. Data 11, 12, Fig. 3a). How-
ever, when adjusting the above linear models for IQ, none of the
identified associations for DCDQ and SCQ survived to FDR correction
(no associations found at q <0.005, Supplementary Fig. 6a–c). Fur-
thermore, IQ showed 137 associations (54 positive and 83 negative),
which were only minimally affected by adjusting for DCDQ or SCQ
(Supplementary Fig. 6a, d). The above findings indicate that the oral
microbiome signals in the study primarily reflect differences in intel-
lectual functioning as measured by IQ, which likely mediates the
observed signals for SCQ and DCDQ. We hypothesized that the
microbial species - IQ associationmight be driven by poor oral hygiene
and highmicrobial load in the ASD cohort. As expected, IQ displayed a
significant negative correlation with the proportion ofmicrobial reads
(as cognitive impairment may lead to reduced oral hygiene habits,
ρ = −0.24, p = 2.4 × 10−24, Supplementary Fig. 6e). After adjusting the
association with IQ by the estimated microbial load, a total of 131 sig-
nificant associations with IQ (q <0.005) were found. While 44/131 sig-
nificant associations were linked to both, only 14 species were
positively associated with microbial load and negatively with IQ, sug-
gesting IQ and oral hygiene as at least partially independent drivers of
oral microbiome composition. Notably, the betas for the IQ species
association were highly correlated with the ASD betas (ρ = −0.51,
p = 2.7 × 10−88, Suppl. Data 13, Supplementary Fig. 7a), the predicted IQ
effect sizes were highly correlated with the clinically-rated IQ model
effect sizes (ρ =0.44,p = 2 × 10−64), and themodel onclinically-rated IQ
showed 38 out of 39 significant associations (q <0.2) overlapping with
the full-dataset model on ASD diagnosis (Supplementary Fig. 5d).
Among the four parameters considered, IQ was therefore the factor
showing the highest correlation with the observed associations
between ASD diagnosis and oral microbiome features.

Dietary behaviours show little impact on the observed micro-
biome differences
Dietary restrictiveness is common in ASD and has been recently pro-
posed as amodulator of the gutmicrobiome38. To test to which extent
our findings on the oral microbiome should be ascribed to differences
in dietary habits, we took advantage of data collected using the SPARK
Research Match platform on SPARK families that investigated eating
behaviours62, by conducting an ad-hoc analysis on a subset in which
both imputed IQ and avoidant/restrictive food intake disorders
(ARFID) data were available. In total, we considered 291 ASD children
with available data for ARFID based on the Nine-Items ARFID Screen
(NIAS)63, focusing on picky eating (Picky Factor from the NIAS) and on
the “ARFID score” (derived from a model including the three NIAS
factors and survey questionnaires on measures of eating behaviours
and GI symptoms)62. We compared the microbiome differential
abundance results obtained from ASD children with avoidant/restric-
tive food intakedisorders (ARFID) data and their siblings (total n = 532)
to those obtained from the full cohort (n = 3800), using a less stringent
threshold for false discovery rate (q <0.2).We found a high correlation
(ρ = 0.51, p = 9.2 × 10−88) between the twomodels, with 44 species with
q <0.2 in common, indicating that this subset is a fair representation of
the entire cohort (Fig. 3a, Suppl. Data 14). We ran three separate case-
only models, assessing the correlation between oral microbiome
composition and ARFID Score, Picky Factor and imputed IQ. When
comparing these models with those of the differential abundance
model on the subset, the ARFID Score betas showed a low correlation
with ASD (ρ =0.11, p = 1.1 × 10−4), and the Picky Factor score showed a
slightly higher correlation (ρ =0.22, p = 10−16), but neither ARFID nor
the Picky Factor scores showed significant associations at q <0.2
(Suppl. Data 15, 16). Interestingly, IQ showed the highest number of
statistical associations, either includingor not includingPicky Factor in
the samemodel (n = 94 and 84, respectively, Suppl. Data 17, 18), as well
as the highest correlationwith the differential abundancemodel run in
the subset (ρ = −0.33, p = 1.8 × 10−34, Fig. 3b), suggesting amajor role in

the observed ASD-related microbiome differences with respect to
dietary habits. Considering the top-15 species either positively or
negatively associated with ASD in the original cohort, 18 were still
significantly associated (q <0.2) in the differential abundance model
run in the subset, but none was associated with ARFID score and Picky
Factor, while 24 remained significantly associated with IQ (Fig. 3c,
Supplementary Fig. 7b). To determine the importance of Picky Factor
and IQ in explaining compositional samples’ dispersion (measured by
Aitchison pairwise distances) in the oral microbiome profiles, we next
conducted a multivariate beta-diversity analysis (with permutation
tests in constrained ordination) with the available experimental vari-
ables. Picky Factor was associated with the overallmicrobiome sample
dispersion when IQ was not included in the model (R2 = 0.6%,
p =0.028, Fig. 3d). IQ became predominant when included in the
model (IQ R2 = 6%, p = 0.001), marginalizing the importance of Picky
Factor (which was not significant when IQwas included in the stepwise
model selection). Although the importance of IQ appeared pre-
dominant also in a relatively small dataset, future studies with greater
power would be needed to confirm and further explore the specific
role of picky eating in shaping the oral microbiome.

Reduced oral microbiome transmission in ASD and lower strain
sharing rate in cases with severe-to-mild cognitive impairment
Wehypothesised that there could be a difference betweenASD andNTs
children in the degree of microbiome strain sharing with their family
members, given that person-to-person microbiome transmission has
been found to be affected by social interactions64. A proxy for micro-
biome strain transmission has been recently obtained assessing genetic
similarity of microbial strains64,65 as the presence of the same strain in
two different individuals is very likely to be due to a strain sharing
event64,66. Using strain-level metagenomic profiling (Methods) and
considering 1525 families of four individuals (quartets) with two chil-
dren discordant on ASD diagnosis, we computed strain sharing rates by
dividing the number of shared strains between two individuals by the
number of species detected in both (Suppl. Data 19, 20). Children with
ASD displayed significantly lower strain sharing rates with both parents
compared to NTs (post-hoc Dunn q = 3.9 × 10−21 and 2 × 10−20, with the
father andwith themother:median 11% and 14% inASD, respectively, vs.
12% and 15% in NTs), albeit with a low standardized mean difference
(SMD, 0.07 and 0.06, respectively, Suppl. Data 21, Fig. 4a).

We then looked at the correlation between strain sharing rates
and clinical data available for ASD children. The imputed IQ was sig-
nificantly correlated with strain sharing between ASD children and
their parents (n = 1525, ρ =0.22, p = 3.2 ×10−16, ρ = 0.18, p = 2.1 ×10−11,
with father and with mother, Supplementary Fig. 8a). Among the ASD-
related scales, SCQ was negatively correlated with the ASD children
sharing rates with the parents (p < 0.05, r =0.05 in both mothers and
fathers), suggesting reduced social interactions as a potential con-
tributor to the strain transmission. However, the correlation wasmuch
weaker compared to the correlation with IQ, indicating that IQ is likely
the primary factor involved in the observed decrease in microbiome
strain sharing rate (Supplementary Fig. 8b). Notably, imputed IQ was
correlated with the strain sharing rate average in the set of ASD chil-
dren with available dietary information, while ARFID score and Picky
Factor were not (n = 223, parent-to-child average strain-sharing IQ
ρ = 0.2, p =0.02, Supplementary Fig. 8c). We additionally investigated
the influence of cognitive impairment on strain sharing rates by
dividing theASDchildren into commonlyused IQ categories for severe
or moderate (≤70) and mild or borderline ( > 70 and ≤ 85) cognitive
impairment, or a normal IQ-range ( > 85)67. In total, 413 ASD partici-
pants had an IQ≤ 70, 328 individuals had an IQ > 70 and ≤ 85, and 784
had an IQ > 85. First, the IQ of the ASD children did not seem to
determine any difference in the average strain-sharing rate with their
siblings (anovap = 0.65, Fig. 4b). ASD childrenwith severe ormoderate
cognitive impairment (n = 328) showed the lowest strain sharing rate
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with both parents (median 9% and 12%, vs 12% and 15%of the NTs, post-
hoc Dunn q = 2.4 × 10−11 and 10−6, SMD=0.36 and 0.25), followed by
ASD children with mild or borderline cognitive impairment as defined
by IQ ranges (Fig. 4c, d, Suppl. Data 22, 23). ASD children in a normal IQ
range ( > 85) showed higher strain sharing with both parents than the
cognitively impaired ones (post-hoc Dunn q < 10−15 and 1.2 × 10−7 in
sharing with the father and the mother, respectively, SMD 0.45 and

0.3), indicating cognitive impairment as a putative driver for the
observed lower microbiome transmission. To then evaluate whether
the oral hygiene proxy is responsible for this trend (i.e. if a higher
degree of oral hygiene is positively correlated with microbial engraft-
ment), we built linear models to assess the relationship between the
average rate of transmission with the IQ-class, adjusting for the esti-
mated microbial load. Cognitive impairment was the best predictor of
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the log-transformed strain-sharing rate (betas = 0.28 and 0.21,
p < 1.6 × 10−11 and 5 × 10−8 with the fathers and the mothers, respec-
tively). The estimated microbial load was also a significant predictor
(betas = 0.01 and 0.01, p < 1.8 × 10−4 and 4.2 × 10−9), indicating both
microbial load and cognitive impairment as factors contributing to the

decreasedmicrobial strain sharing rate. Finally, we exploited the three
classes of IQ (severe or moderate cognitive impairment [≤ 75], mild or
borderline [> 75 & ≤ 85], and normal IQ range [>85]) to conduct dif-
ferential abundance analysis among the different classes.We observed
a substantial correlationbetween species’ coefficients fromdifferential

Fig. 3 | Analysis of dietaryhabits related scores and IQ in a subgroupof 291ASD
children. a correlation plot of the betas from the model on the full cohort
(ASD = 2154, controls = 1646) vs the betas from an identical model considering the
subset of 291 ASD children with available dietary habits data and 241 NTs.
b correlation plots of the betas from the differential abundancemodel considering
the above subset and the betas from case-only models assessing the relationship
between oral microbiome composition and ARFID score, Picky Factor, and full-
scale IQ, within the 291 children with available dietary habits data. ρ refers to
Spearman’s correlations. cThe top-15 ASDassociated and the top-15NTs associated
species from the full cohort differential abundance model are shown for the

different models run within the subset. The fifth model refers to the association
between IQ and oral microbiome composition adjusted for Picky Factor. Colours
for the significant (q <0.2) associations are reported in the legend. Grey refers to
q >0.2. d Variable importance assessed via permutation test in constraints ordi-
nation (Ordistep) on Aitchison pairwise distances among 291 ASD individuals
reveals importance of Picky Factor and predominance of IQ over Picky Factor in
determining oral microbiome dispersion. Variables are the same as Ext.DataFig.
bWith the exclusionof family ID andASDdiagnosis. (right) Picky Factor is excluded
(non-significant) by the stepwise model selection when IQ is included.

Fig. 4 | Strain sharing analysis reveals differences between ASD children and
NTs that are linked to IQ. aperson-to-person strain sharing (left: with father, right:
with mother) coloured by diagnosis (pink = ASD, blue =NTs, n = 1,525 and 1,525).
b between sibling strain sharing rates for 111 species evaluated at the strain level
dividedby IQ category (≤70, >70& ≤85, >85) (eachdot represents a sample average
rate of strain sharing, n = 1525). c father-child strain sharing. ASD children (n = 1525)

are divided by IQ category (≤70, >70 & ≤85, >85). NTs are reported in blue. Red line
represents the median of the ≤70 IQ group. d mother-child strain sharing. ASD
children (n = 1525) are divided by IQ category (≤70, >70 & ≤85, >85). NTs are
reported in blue. Red line represents the median of the ≤70 IQ group. Numbers
refer to Post-hocDunn-test q values;ns (non-significant) refers toq >0.05. ‘d’ stands
for Cohen’s d (standardized mean difference).
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abundance analysis in ASD vs NT and the differential abundance ana-
lyses contrasting severely or moderately vs mild or borderline
impaired ASD children and vs normal IQ range ASD children (ρ = 0.47
and 0.51, respectively, p < 1 × 10−20 in both contrasts, for their correla-
tion with the ASD vs NT coefficients, Supplementary Fig. 8d).

Functional potential differences in the genetic repertoire of ASD
and NTs oral microbiomes
We compared the functional potential of the oral microbiome of ASD
children and NTs inferred from the microbiome genetic repertoire
with HUMAnN 3.047. We performed differential abundance analysis of
MetaCyc pathways, adjusting by the same covariates used in the spe-
cies abundancemodel, plus alpha diversity to account for thepotential
effect of species richness on the pathway contribution. At q < 10−7,
mixed linear models on CLR-transformed pathway counts of read per
kilobases identified 66MetaCyc pathways associated with ASD (n = 41)
or NTs (n = 25, Suppl. Data 24, 25). Aside, the strongest associations
were also replicated with IQ but not with ARFID and Picky Factor
(Fig. 5a, Suppl. Data 26–28). Many of the strongest associations with
NTs were pathways related to the metabolism of glutamate
(L-glutamate degradation VIII to propanoate, L-glutamate and
L-glutamine biosynthesis, D-galacturonate degradation I, D-galactarate
degradation I, Fig. 5a). On the opposite side, tryptophan and serotonin
degradation, GABA degradation, and the pathway aromatic biogenic
amine degradation, were all associated with the metabolic repertoire
of ASD children (Fig. 5a). We examined the reference pathway graphs
and identified three key-enzymes (EC 1.4.3.4, serotonin oxidase, 1.1.1.1,
5-hydroxyindole acetaldehyde reductase, and 1.2.1.3, 5-hydroxyindole
acetaldehyde dehydrogenase) which showed higher mean coverage in
ASD compared to NTs, and thus represent putative biomarkers for a
potential selective advantage of the species associated with ASD in the
salivary microbiome. In particular, the three-steps enzymatic chain
leading from serotonin to 5-hydroxytryptophol consistently showed
higher reads counts in ASD individuals compared to NTs (Fig. 5b).

Dopamine and GABA degradation potential in ASD oral
microbiomes
We complemented these results with a separate differential abun-
dance analysis based on the database of the gut-brain modules
(GBM)68, a manually curated database of microbial genes potentially
encoding neuroactive functions including non-gut and non-human
ones68. Out of 56modules, 19were associated (q < 0.005)withASD and
9were associatedwithNTs (Suppl.Data 29, 30). The two functions that
emerged mostly in ASD were dopamine degradation and GABA
degradation (betas 0.55 and 0.5, respectively, Fig. 6a). The identifica-
tion of dopamine degradation could be reconducted to the same
enzymes previously identified for the serotonin degradation, specifi-
cally via dopamine oxidase and 3,4-dihydroxyphenylacetaldeyde
dehydrogenase (EC 1.4.3.4 and 1.2.1.3, Fig. 6b). GABA degradation was
identified also in the previous analysis as 4-aminobutanoate degrada-
tion V pathway (Fig. 5a), and, by exploring this pathway, we identified
three enzymes (EC 2.6.1.19, 1.4.1.2, and 2.8.3.8) which are enriched in
species associated with ASD, and are involved in the synthesis of
ammonium via 4-aminobutyrate transaminase action followed by
glutamatedehydrogenization, aswell as in the synthesis of butyrate via
ButCoA acetyl transferases (Fig. 6c). Notably, the product of this
reaction is butyrate, which is also the product of the reaction repre-
senting the strongest association with NTs. Overall, these findings
constitute potential directions for the investigation of the ASD oral
microbiome at the enzymatic level.

Oral microbiome functional potential correlates with cognitive
impairment
To help interpret the association between neuroactive pathways and
ASD we assessed the association between ASD screening scales (SCQ,

DCDQ, RBS-R) and IQ with the functional potential modules and
compared the results with the differential abundance analysis. Con-
sidering the pathways enriched either in ASD or NTs at q < 10−7 in the
full cohort, analogous trends were observed for SCQ and DCDQ, but
with lower statistical significance (SCQ, opposite direction, no sig-
nificant pathways; DCDQ, same direction, one significant pathway,
Supplementary Fig. 9a, Suppl. Data 31–34). When replicating the same
analysis using the GBM modules, IQ showed a high concordance with
the differential abundance analysis between ASD children and NTs
(ρ = −0.79, p = 8.9 × 10−11, Supplementary Fig. 9b), and similar results
for other ASD diagnostic instruments, with no significant pattern for
the RBS-R scale for repetitive behaviours (Supplementary Fig. 9c,
Suppl. Data 35–38).

Discussion
We analysed a total of 7812 oral microbiomes from 2025 US families in
the SPARK-WGS cohort sequenced at very high depth (avg. 105million
microbial reads per sample) to identify potential relationships
between the salivary microbiome and ASD. After showing the relative
abundances of multiple species differed between ASD children and
NTs, we explored behavioural aspects capable of explaining the
observed differences, including dietary habits and cognitive functions.
Neither avoidant/restrictive food intake nor the use of medications or
the estimated degree of oral hygiene showed an impact of the same
scale of the one displayed by the imputed full-scale IQ in the ASD
subjects. Repetitive behaviours also had a small influence on the oral
microbial composition, whilst additional factors such as social com-
munication and developmental coordination revealed significant
associations, alsomainly driven by IQ. The investigation of the person-
to-person strain sharing of the oral microbiome using strain-level
profiling and differential abundance analysis among different classes
of cognitively impaired ASD children confirmed the influence of cog-
nitive impairment in shaping theoralmicrobiome inASD. ASDchildren
exhibited lower degrees of microbial strain sharing with their parents
compared to NTs, and this effect was found especially in subjects with
severe to moderate cognitive impairment (IQ ≤ 70). Our analysis
revealed significant differences in metabolic pathways related to ser-
otonin, GABA, and dopamine degradation. This was particularly due to
enzymes converting serotonin to 5-hydroxytryptophol and dopamine
to (3-4-dihydroxyphenyl)acetate. Conversely, NT samples were enri-
ched in glutamate degradation and direct butyrate biosynthesis
pathways. Notably, as part of the GABA-degradation pathway we
observed an enrichment in ButCoA acetyl transferases, whose product
is butyrate. This suggests a potential distinction inbutyrate production
routes between ASD and NT individuals, albeit this warrants further
investigations. The observed associations appear to be mainly linked
to cognitive deficits (as measured by the imputed IQ values), although
further studiesmaybe needed in order to disentangle the contribution
of different factors, including more accurate measures of
dietary habits and oral hygiene, as possible mediators of the observed
signal.

Key neurotransmitters such as gammaamino butyric acid (GABA),
serotonin, glutamate, dopamine, and the SCFAs propionate, acetate,
and butyrate are metabolised by the gut microbiome andmight play a
role in ASD69. Serotonin and its precursor tryptophanhave been linked
to behavioural impairments in ASD70–73, possible causal mechanisms
have been suggested74–76. We also observed an enrichment of
L-tryptophan degradation via tryptamine that induces the synthesis of
serotonin by the enterochromaffin cells and helps regulate transit time
in the gut77. The role of central and peripheral serotonin and its
metabolites in the social and cognitive functions in ASD has been also
the object on numerous investigations78, and the role of serotonin as a
key mediator of the gut-brain-microbiome axis in ASD has been
proposed79. Most notably, it is well known that elevated blood levels of
serotonin are found in >25% of ASD subjects80, and further studies will
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Fig. 5 | Differential abundance of salivary microbiome-derived MetaCyc path-
ways between ASD children (N = 2139) and controls (N = 1646). a the top-15 ASD
associated and the top-15 control associated (q < 10−7) MetaCyc pathways from a
linear mixed model of ASD diagnosis adjusted for sex, age, genetic ancestry,
sequencing depth, and alpha-diversity, andblockedby family ID. The beta from the
same pathways is reported for an identical model on 291 ASD children with avail-
able diet information and 241 NTs, and linear models assessing the relationship

between MetaCyc pathway and ARFID score, Picky Factor, and full-scale IQ on 291
ASDchildren.b (left) ASD-associated species contributing toECnumbers that are in
the MetaCyc serotonin degradation pathway are reported, with the mean differ-
ence in enzyme coverage between ASD andNTs, and the number of ASD samples in
which the contribution is observed. (right) the serotonin degradation MetaCyc
pathway is reported. The three enzymes identified in microbial reads are
highlighted.
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prove able to verify the hypotheses here suggested, in particular,
whether the molecular exchange between blood and saliva facilitated
by the high vascularization of the salivary glands may result in a
selective advantage for oral microbes carrying the key-reactions from
serotonin to 5-hydroxytryptophol in their generic carriage. In addition
to the serotonergic system, the balance between the glutamatergic
(excitatory) and the GABA-ergic (inhibitory) systems has also been
shown to be altered in ASD81–84. Here, we observed an enrichment in
glutamate and butyrate synthesis in NTs, while the GABA degradation
potential to butyrate was enriched inASD. Severalmagnetic resonance
spectroscopy studies have revealed decreasedGABA levels in the brain
of ASD children85,86, and lower GABA/Cre levels in the anterior cingu-
late cortex of ASD children were associated with lower IQ and greater
impairments in social cognition87. Higher levels of glutamate as well as
lower concentration of GABA were found in a metabolomic investi-
gation of the urinary neurotransmitters in ASD, which were suggested
tobedriven by the gutmicrobiota88. Recently, theoralmicrobiomehas
raised considerable interest due to its link with host characteristics43,64

and recent findings have suggested that oral microbes can influence
neurological processes and shape cognition andbehaviour, suggesting
the hypothesis of an oral microbiome-brain axis89. It has recently been
shown that a mouse model of ASD with reduced dopamine signalling
displays an altered oral microbiome with a significant decrease in
Fusobacterium abundance, similarly to what we observed in our
study90. Our study shows in a large cohort that, in ASD, impaired
cognitive functions are associatedwith anoralmicrobiomeharbouring
altered taxonomic and neuroactive pathway composition. Notably, the
largest study published so far on theASDoralmicrobiome totalled 350
subjects39,40,91–94, while the largest meta-analysis considering the more-
studiedgutmicrobiome comprised 1740 subjects in total35.Whilemost
existing studies were performed with 16S rRNA gene sequencing, our
metagenomic approach coupledwith the family design enabled higher
resolution and analysis of microbiome strain sharing patterns.

Still, this cross-sectional study has important limitations. First, we
were not able to verify the true biological activity underlying the
inferred evidence. Second, we could not control dietary patterns or
retrieve food frequency data at high resolution, whichmight represent
a key confounder. Recently, a gutmetagenomics study inASD children
(N = 247) proposed thatmicrobiome differences may reflect restricted
dietary preferences in ASD, which results with reduced microbial
taxonomic diversity in the stool38. Indeed, picky eating has been
associated with alteration in the gut microbiome of ASD children95,
however no data are available so far on its effect on the oral micro-
biome. In our investigation, we did not observe any significant asso-
ciation between picky eating and anymicrobial species. In contrast, we
found significant associations between specific microbiome compo-
nents and IQ. Additionally, we considered two key putative con-
founding aspects, namely the use of medication and oral hygiene
(proxied by total microbial load), which turned out to have only a
limited contribution to the observed results. Since themajority of ASD
medications, including serotonin reuptake inhibitors and anti-
psychotics, are used to address common repetitive behaviours, anxi-
ety and irritability symptoms, and are not restricted to cognitively
impaired subjects, it is therefore conceivable that medications plays a
minor role in the observed IQ-related alterations. We cannot fully
exclude the presence of additional potentially confounding factors,
possibly indirectly related to cognitive abilities, whichmight impact on
the oral microbiome composition. Among them, factors linked to the
salivary sampling (timeof collection, timeof last oral hygiene, and time
of last meal) were not available, although instructions were given to
not eat, drink, smoke or chew gum for 30min before collecting the
saliva sample. In our study, the sampling procedure was nevertheless
highly homogenous across subjects (parents, ASD and NTs), with
<0.5% of individuals requiring assisted sampling. Although we cannot
rule out some of the identified species (i.e. Streptococcus sanguinis,
Fusobacterium periodonticum) may be correlated to oral hygiene

Fig. 6 | Differential abundance of microbiome-derived gut-brain (GB) modules
between ASD children (N = 2139) and controls (N = 1646). a (left) 19 associated
(q <0.005) GB modules from a linear mixed model of ASD diagnosis in 3,785 sali-
vary microbiome samples, adjusted for sex, age, genetic ancestry, sequencing
depth, and alpha-diversity, and blocked by family ID. b reactions related to dopa-
mine degradation in the MetaCyc biogenic amine degradation pathway pathway.

c (top) reactions related to GABA degradation to ammonium and butyrate in the
MetaCyc GABA degradation pathway; (bottom) ASD-associated species contribut-
ing to EC numbers that are in the MetaCyc GABA degradation pathway are repor-
ted, with the mean difference in enzyme coverage between ASD and NTs, and the
number of ASD samples in which the contribution is observed.
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factors, their increase was not specific to the ASD group, and are
unlikely to be driving the overall neuroactive potential related differ-
ences. Nevertheless, future studies will be needed to assess the gen-
eralizability of our findings to a more diverse population, unravel the
role of specificmedications, food frequency andoral hygiene practices
on the oral microbiome, and explore the potential influence of gas-
trointestinal dysfunctions on the oral microbiome functional poten-
tial in ASD.

Our findings suggest cognitive impairment as the main factor
underlying the differences observed between ASD and NT oral
microbiomes, which may represent a mediator of effects on the
microbiomedue to groupdifferences in lifestyle factors. The identified
associations point to microbial pathways related to neurotransmitter
metabolism, suggesting a potential link between cognitive function,
lifestyle factors, the oral microbiome, and neurotransmitter-related
pathways, though the nature of these relationships requires further
investigation. Given the low permeability of the blood brain barrier, it
is unlikely that salivary neurotransmitters entering into the blood-
stream could reach the CNS and exert a direct effect at the central
level. An alternative scenario worth considering is that certain
neurotransmitter-degrading bacteria may translocate to the gut, or
neurotransmitters in the oral cavity potentially reach and impact
enteric neurons in the gut, where bidirectional communication with
the central nervous systemmay lead to alterations in brain function96.
However, the hypothesis of a selective pressure exerted by neuro-
transmitter levels on the salivary microbiome may also represent a
compelling avenue for further exploration of ASD biomarkers.
Empirical studies, especially focusing on the metabolomic profiles of
the oral microbiome and their systemic effects, will be crucial for
validating this hypothesis.

Methods
Subject details
The study is a cross-sectional analysis of a family cohort based on the
SPARK collection coordinated by the Simons Foundation Autism
Research Initiative (SFARI). The procedure collection for the SPARK-
WGS cohort complied with all ethical regulations and with the
Declaration of Helsinki (2013). Subjects being part of the SPARK
initiative (Western IRB (https://www.wcgirb.com/), Protocol tracking
number: WIRB20151664) are US children reported to have a profes-
sional diagnosis of ASD, and their family members. Once an ASD-
diagnosed individual or their legally authorized representative starts
the enrolment procedure, all the members of the family are invited to
enrol. Parents or legal guardians are required to provide all the
necessary information relative to their ASD dependent(s) and sib-
ling(s), and independent adults report on themselves. The enrollment
happens online and consists of informed consent to the study and to
DNA collection/analysis, and submission of brief medical and psy-
chiatric history and behavioural questionnaires on the ASD-diagnosed
individual and other members of the family. All participants provided
written informed consent to take part in the study. Written informed
consent was obtained from all legal guardians or parents for all parti-
cipants aged 18 and younger and all older participants whohave a legal
guardian. Assent was also obtained from dependent participants aged
10 and older. For a description of methods, see ref. 44.

Data sequencing, quality-preprocessing, taxonomic and func-
tional profiling
Sample size was not pre-determined by statistical methods. A total of
7861 subjects providing saliva samples were enroled in the SPARK-
WGS initiative between 2016 and 2021 and sequenced at the New York
Genome Center between 2020 and 2021 (SPARK integrated WGS1-3;
ID: SFARI_SPARK_iWGS_v1.1). Salivawas collected athomeoron-site for
site-affiliated participants, with the OGD-500 kit (DNA Genotek,
Canada) which is based on induced drooling and avoids swabbing the

mucosal surfaces, and sent to the New York Genome Center. Partici-
pants were instructed to not eat, drink, smoke or chew gum for 30min
before collecting the saliva sample. Sampling strategy was illustrated
to the participant by written and video instruction. Genetic material
was extracted using a Chemomagic MSM1/360 DNA extraction
instrument and eluted into 110ul of TE buffer at PreventionGenetics
(Marshfield, WI, USA). The biological sex and parental relationships of
all samples were confirmed by a panel of microsatellite markers.
Samples that failed these checks were not processed further. Libraries
were prepared with the Illumina DNA PCR-Free Library Prep kit fol-
lowingmanufacturer’s guidelines. Sequencingwasperformedusing an
Illumina NovaSeq 6000 platform using S2/S4 flow cells and following
manufacturer protocols. An average of 856 million reads per sample
(at 150nt reads) was obtained (mean coverage 42X). Biological sex and
parental relationships were confirmed again using PLINK software97.
Any samples that failed these checks were not processed further. The
final number of participants retained was further reduced to
7812 subjects from 2025 families due to metadata availability con-
straints. Samples were preprocessed using a modified version of the
pipeline at https://github.com/SegataLab/preprocessing. Briefly, sam-
ples were mapped with BWA version 0.7.1598 against hg38 Human
genome to remove human contamination. Non-mapping reads were
extracted with samtools version 1.1099,100 and were then quality-
screened with Trim Galore (version 0.6.4, parameters: --stringency 5
--length 75 --quality 20 --max_n 2 --trim-n)101 to remove short ( < 75 bp)
and low quality (Phred quality score <20) reads as well as reads with
more than two ambiguous nucleotides. The remaining high-quality
reads were sorted into one forward, reverse and unpaired read file for
each metagenome. Metagenomic sequences of the 7812 participants
were profiled using MetaPhlAn 347 (ver. 3.0.13; default parameters)
which estimates the taxonomic composition. HUMAnN 3.047 (ver. 3.0:
default parameters) which estimates MetaCyc pathways and UniRef90
gene families’ abundances from metagenomic reads, was run on 3785
metagenomic samples. HUMAnN 3 gene families were grouped into
KEGG Orthologs102 using the HUMAnN 3.0 utility script humann_re-
norm_tables, and gut-brain module (GBM, v1.0) 64 relative abun-
dances, covering neuroactive potential pathways, were calculatedwith
omixer-rpmR (v0.3.3)103.

SPARK-WGS as a salivary microbiome dataset
We retrieved 856 oral cavity microbiome profiles available in
curatedMetagenomicData48. We computed pairwise distances between
all samples and the SPARK-WGScohort showed the lowestdissimilarity
to the HMP_201219, BritoIL_2016104, and LassalleF_2017105 (avg. Bray-
Curtis dissimilarity 0.61, 0.61, and 0.63, respectively) datasets, which
are the three datasets available from saliva. Tongue dorsum, throat
swabs, tonsils, and buccal mucosal samples (arguably closer to saliva
samples with respect to teeth) from the HMP_2012 and the tongue
dorsum datasets Castro-NallarE_2015106 and FerrettiP_2018107 were the
next most similar to the SPARK-WGS cohort (avg. Bray-Curtis dissim-
ilarity from our samples = 0.67, 0.69, 0.74, 0.75, 0.75, and 0.8,
respectively). Plaque and keratinized gingival samples from the
HMP_2012, GhensiP_2018108, ShiB_2015109, ChuDM_2017110 datasets
showed the highest distances from SPARK-WGS (avg. Bray-Curtis dis-
similarity = 0.81, 0.82, 0.83, 0.87, 0.93, 0.86). The sole exception was
the dataset OlmMR_2017111 (tongue-dorsum) (avg. dissimilarity = 0.96,
Supplementary Fig. 1d). These results are consistent with previous
observations112. We used the same 856 samples to assess the pre-
valence of C. acnes in oral microbiome datasets. Metagenomic
assembly of C. acnes was conducted on 1286 samples of the SPARK-
WGS cohort as previously described113; 34 high and medium-quality
genomes were integrated with other 474 high quality C. acnes gen-
omes; phylogeny ofC. acneswas built using PhyloPhlAn 3114 by aligning
the C. acnes proteomes against the 400 universal marker genes. Tree
was plotted using GraPhlAn115. Other potential contaminants were
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evaluated according to the list of 119 species determined by ref. 49,
further collapsed to 59 that were present in theMetaPhlAn 3 database.
Four potential contaminant species (Achromobacter xylosoxidans,
Alcaligenes faecalis, Kocuria rosea, Variovorax paradoxus) were found
at a non-null abundance in 13, five, five, and eight samples respectively.
Two species (Ralstonia pickettii andCutibacteriumavidum) were found
in 37 and 38 samples, respectively. All the potential contaminants
identified were found at an abundance <0.1% with the exception of
Ralstonia pickettii, which showed abundances between 1 and 2% in five
samples, between 2 and 5% in one sample, and at 5.7% in one sample
(this sample potentially affected by a contamination episode). Based
on this analysis, we excluded the possibility of contamination affecting
considerably the subsequent analyses.

Principal components analysis of human genetics
The genetic ethnicity of the individuals in SFARI-WGS cohort and their
relatedness (ancestry PCAs) was quantified by the extraction of the
principal components from the genetic relatedness matrix (GRM),
computed with Plink 1.9 (option --make-grm-rel and --pca)97. The
extracted features were used in the variance component estimation to
account for relatedness between individuals. Moreover, we derived
genetic components from the GRM matrix for each ethnic cluster
found in 1000 Genomes phase 3116 dataset. Using the Genetic relat-
edness matrix of SPARK-WGS we projected each individual onto the
major components of the ethnicity clusters derived from the 1000
Genome. Then, we applied cluster analysis (k-mean) on the principal
components and assigned each individual to a cluster, resulting with
the followingdistribution: 15%American, 3%African, 2% east Asian, 77%
European, 3% south Asian. GRM computation was performed with
Plink 1.9117, projection and cluster analysis with R (3.4.4) packages
prcomp, kmeans and factoextra.

Compositionality issue
The issue of data compositionality was properly addressed by the
centered log-ratio (CLR) transformation of the features used118. We
used the scikit-bio python library (ver. 0.5.6). Zeroes in the MetaPhlAn
profiles were imputed with a multiplicative replacement strategy.
Zeroes in the MetaCyc and in the GBM profiles were imputed by
pseudo-count of one.

Variable contribution analysis
Variable importance was assessed on CLR-transformed MetaPhlan
3 species profiles in 7812metagenomes. We used the ordistep function
from the R package vegan (ver. 2.5.7)119. Ordistep was run starting
from the result from the capscale function120. We run a variance
decomposition analysis121 fitting the model: “species ~ 1|proband or
control + 1|male or female + 1|family-id + age (months) + Shannon
entropy + log(sequencing depth) + ancestry principal component
(aPC) n. 1 + aPC n. 2 + aPC n. 3”43.

Alpha and beta diversity assessments
Alpha diversity (Shannon entropy) of MetaPhlAn 3 species was eval-
uated by Kruskall Wallis test over the diversity distributions of the 4
individual types in our cohort (father, mother, sibling, proband) and
between the two main diagnostic groups. We then fit a linear mixed
model (statsmodels python library, ver. 0.11.1) with Shannon-diversity
as response anddiagnosis, age, gender, sequencingdepth aspredictors,
blocked by family ID. Significance was assessed by Wald test. Beta
diversity was used to contrast siblings and probands, and significance
was assessed via permanova (scikit-bio library in python (ver. 0.5.6)
using 999 permutations). On Bray-Curtis and Aitchison distances
independently, we sampled one child per family (n = 2024), and repe-
ated the procedure ten times. The pseudo F was then used to compute
R2 via the formula: “1 - (1 + ((F x (p − 1)) / (n - p)))−1”, where n is the number
of data points, F is the pseudo-F, and p is the number of parameters.

Machine learning approaches
We used MetAML software (with the scikit-learn Random Forest
algorithm)122, and we trained and tested MetaPhlAn 3 species relative
abundances ASD-from-controls prediction capabilities (2154 ASD
children being the positive class, and 1646 NTs being the negative
class). The rest of the non-default parameters of the algorithm were:
1000 estimators (trees), a minimum of 10 samples per leaf, 10% of the
whole feature space as input to each tree, entropy as the information
gain criterion. To rule-out the effect of sex, age, depth, and family ID
from the predictive power of the microbiome, 250 ASDmale children,
250 ASD female children, 250 neurotypical male children, and 250
neurotypical female children were sampled randomly so that each
individual was the only representative of his/her family. Before saving
the dataset, anova was used to verify that differences in age and
sequencing depth of the four groups were not significant (anova
p >0.01). Thewholegeneration processwas repeated a hundred times.
For eachof the a hundred sets, the described algorithmwas then run in
10-fold, 10-times iterated cross-validation. The presented AUC are
therefore an average over 10,000 tests. Species ranking was returned
by a single ten-fold, ten-times iterated cross validationbyMetAML, and
is computed by averaging the features importances across the training
folds to avoid overfitting.

Differential abundance analysis
Linear mixed models (python statsmodels library, function mixedlm,
ver. 0.11.1) were run on each centered log-ratio (CLR) transformed
MetaPhlAn 3 species, HUMAnN 3.0-derivedMetaCyc pathway and gut-
brain (GB) modules independently. Models were adjusted for sex, age
in months, first 3 principal components of the genetic ancestry, read-
depth, and blocked by (random intercept model) family ID. Models on
species were run on 2154 ASD children and 1646 NTs. Models on
pathways and GB modules were run on 2139 ASD children and 1646
NTs, and included alpha-diversity. Differential abundance was eval-
uated as thebeta of thediagnosiswith respect to the centered log-ratio
transformed microbiome feature and by the Wald-q of the diagnosis
corrected by false discovery rate over the whole set of features
(1333 species, 724 pathways, 62 GB modules). Significance threshold
used was set a priori to 0.005, used in species and in GB modules.
Pathways are particularly collinear and tend to show extremely low p-
values, so we ad-hoc choose to use for pathway q < 10−7. The method
used to adjust the p-values was the Benjamini-Yekutieli (function
fdrcorrection, from statsmodel.stats.multitest python library, ver.
0.11.1). Aerobicity and aero-tolerance were evaluated for the 108 dif-
ferentially abundant species using DSMZ. The standardized ratio
between the number of microbial reads and the total number of reads
in each sample was used as a proxy for the oral cavity microbial load.

Polygenic risk score for ASD and association with microbiome
features
We performed quality control with Plink1.9117 on batch 1, batch 2 and
batches 3 human genotype calls, independently filtering out rare var-
iants (MAF < 5%, --maf 0.05), variants with missing call in > 5% of the
samples (--geno 0.05) and violating Hardy-Weinberg disequilibrium
(--hwe 1e-6), and all samples with a missing genotype rate > 5% (–mind
0.05). Variants falling into regions with high recombination rate, in
particular located in the Major Histocompatibility Complex
(MHC)123,124, were removed from the PRS computation; we obtained a
cohort composed of 7,824 samples and 5,981,273 SNPs. Variant asso-
ciation weights were derived from the most recent GWAS meta-
analysis study on ASD125. Variants in strong linkage disequilibriumwere
removed from the summary stats using 1000genomes as LD reference
for clumping and default parameters for R2 and association p-value
threshold. ASD Polygenic Risk Score (PRS) for each SPARK-WGS sam-
ple was computed using PRSice-2126. The p-value was optimized for
ASD classification with the PRSice-2 algorithm; the best performing
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PRS included variants from the GWAS with a p <0.1341, with a
NegelkerkeR2 = 0.6% (p = 8 × 10−9). The best PRSwas used to fit a linear
model associating the ASD risk score of the 3,800 children with CLR-
transformed microbial species relative abundances adjusted for sex,
age, ASD diagnosis, read depth, and the first three principal compo-
nents of the genetic ancestry. We fitted a similar model excluding all
non-caucasian samples (n = 2873), selected on the basis of the clus-
tering on the ancestry PCAs into ethnic groups, and thus the ancestry
components have been removed from this model.

Linear modelling of ASD-related instruments, full-scale IQ,
NIAS items
Social Communication Questionnaire (SCQ), Repetitive Behaviors
Scale (Revised) (RBS-R), Developmental Coordination Disorder Ques-
tionnaire (DCDQ), and Full Scale IQwere retrieved for 1750, 1724, 1468,
and 1785 ASD children. Full Scale IQ was estimated via a machine
learning algorithmdeveloped to estimate cognitive levels fromparent-
reporteddata in largeASD cohorts59, whichhas shownanAUCof0.876
when estimating severe cognitive impairment (IQ < 80), and validated
over a set of 116 ASD children for which clinically-rated, full-scale IQ
was determined by licensed clinical psychologists at SFARI via stan-
dardizedmethods59. Scores were associatedwithMetaPhlAn 3 species,
HUMAnN 3 pathways, and GB modules using linear models adjusted
for the same variables as in the differential abundance analysis. Asso-
ciations with SCQ and DCDQ were also run adjusting by IQ. False dis-
covery rates significance thresholds were set as before. Clinically-rated
full-scale IQ was tested in a similar model including also the age at
which the questionnaire was administered as covariate, and setting as
significance threshold q <0.2. We analyzed the Nine-Items ARFID
Screen (NIAS)63 focusing on picky eating (Picky Factor from the NIAS)
and on the “ARFID score” (derived from a model including the three
NIAS factors and survey questionnaires on measures of eating beha-
viuors and GI symptoms). We retrieved the two scores for 291 ASD
children. The 291 children were compared with the set of their 241 NTs
by a mixed model identical to the differential abundance one. Linear
models were then run on the ARFID score, on the Picky Factor, and on
the full scale IQ considering only the same 291 ASD children this time.
For the models based on the reduced sets of individuals, false dis-
covery rate was set at 0.2 for species and GB modules, and at 0.05 for
pathways. In all models the test used to assess the significance of a
variable was the Wald test which equals a t-test of the beta coefficient
over its standard error. To evaluate similarities across models, we
pairwise correlated models’ beta coefficients and measured correla-
tion using Spearman’s ρ and p.

Oral microbiome person-to-person strain sharing assessment
and association with IQ
Strain-level analysis was performed from MetaPhlAn 3 output with
StrainPhlAn ver. 3.0.1047. A total of 193 salivary species were present at
sufficient coverage. StrainPhlAn was run with default parameters and
–db mpa_v30_CHOCOPhlAn_201901 --phylophlan_mode fast, using
mafft version 7.475127 to produce multiple-sequence alignments and
RAxML version 8.1.15128. Species with <100 leafs in their strain-
phylogeny were excluded, totalling 111 species. As described in
ref. 64, pairwise genetic distances (GDs) normalised by total branch
length fromStrainPhlAn trees were used to compute person-to-person
strain-sharing events using a custom version of the strain_-
transmission.py script (https://github.com/SegataLab/strain_
transmission). Strain-sharing between two samples is based on
strains of the same species present in the two samples being phylo-
genetically placed at a distance smaller than the 3rd percentile of the
total genetic distance (GD) in the strain tree. Single nucleotide variant
(SNV)-basedmethodologieswere excluded for the reason that they are
(a) less robust at low coverages to the noise introduced by the call of

the consensus sequence, (b) dependent on the baseline variability of
the specificmarker (in contrast with phylogeneticmethods, which can
weight differentially a few invariant positions). In addition, phyloge-
netic methods are able to capture information relative to evolutionary
models such as the synonymous vs nonsynonymous mutations. We
evaluated person-to-person rates of sharing of microbiome strains as
the total number of sharing events between two individuals divided by
the number of common species between the two individuals among
111 species considered in this analysis. We annotated the ASD children
according to their predicted IQ (3 classes: ≤70 (severe cognitive
impairment),>70 and ≤85 (moderate cognitive impairment), >85
(neurotypical cognitive development))67. We then compared the
between-individual strain-sharing rates of individuals from different
classes of cognitive impairment with the NTs groups, with themother,
and with the father. Statistical differences were evaluated by Kruskal-
Wallis test (scipy python library, ver. 1.4.1), post-hoc Dunn-test (Scikit-
posthocs python library, ver. 0.6.7), and standardisedmean difference
(Pingouin python library, ver. 0.3.7)129.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Microbial raw sequencing reads for the healthy individuals in
the SPARK-WGS cohort are available at European Nucleotide
Archive at Bioproject PRJEB45799. MetaPhlAn 3 profiles, functional
potential HUMAnN 3 profiles, and participant metadata for the 3,775
children in the cohort are available in the latest release of
the curatedMetagenomicData R package (https://waldronlab.io/
curatedMetagenomicData/) under the identifier ‘ManghiP_2024’.
MetaPhlAn 3 profiles are available through Zenodo (https://zenodo.
org/records/13986907). Approved researchers can obtain the SPARK
population dataset described in this study (SFARI_SPARK_iWGS_v1.1)
by applying at https://base.sfari.org.
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