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Abstract

Because DNA packaging in nucleosomes modulates its accessibility to transcription factors (TFs), unraveling the causal
determinants of nucleosome positioning is of great importance to understanding gene regulation. Although there is
evidence that intrinsic sequence specificity contributes to nucleosome positioning, the extent to which other factors
contribute to nucleosome positioning is currently highly debated. Here we obtained both in vivo and in vitro reference
maps of positions that are either consistently covered or free of nucleosomes across multiple experimental data-sets in
Saccharomyces cerevisiae. We then systematically quantified the contribution of TF binding to nucleosome positiong using
a rigorous statistical mechanics model in which TFs compete with nucleosomes for binding DNA. Our results reconcile
previous seemingly conflicting results on the determinants of nucleosome positioning and provide a quantitative
explanation for the difference between in vivo and in vitro positioning. On a genome-wide scale, nucleosome positioning is
dominated by the phasing of nucleosome arrays over gene bodies, and their positioning is mainly determined by the
intrinsic sequence preferences of nucleosomes. In contrast, larger nucleosome free regions in promoters, which likely have a
much more significant impact on gene expression, are determined mainly by TF binding. Interestingly, of the 158 yeast TFs
included in our modeling, we find that only 10–20 significantly contribute to inducing nucleosome-free regions, and these
TFs are highly enriched for having direct interations with chromatin remodelers. Together our results imply that nucleosome
free regions in yeast promoters results from the binding of a specific class of TFs that recruit chromatin remodelers.
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Introduction

The genomes of all eukaryotic organisms are packaged into

nucleosomes, which are the fundamental units of chromatin, each

composed of approximately 147 base pairs (bp) of DNA wrapped

around a histone octamer. Recent developments in technologies

for measuring chromatin marks by chromatin immunoprecipi-

tation (ChIP) on microarrays (ChIP-Chip) or by sequencing

(ChIP-seq) have enabled the construction of genome-wide maps of

nucleosome positions and modifications at high resolution across

various conditions. These experimental data have revealed that

nucleosomes are not uniformly distributed across the genome but

rather that transcription start and termination sites are relatively

depleted of nucleosomes [1,2]. Furthermore, nucleosome posi-

tioning has been shown to vary across physiological conditions [3].

It has long been accepted that nucleosomes have intrinsic

sequence preferences which influence nucleosome positioning, e.g.

[4–6]. At the same time, it has also long been known that barriers

in the DNA can cause nucleosomes to be ‘statistically positioned’

relative to such barriers, introducing a periodic pattern of

nucleosome occupancy on both sides of the barrier [7]. Given

the fact that nucleosomes may cover more than 80% of the

genome [1], it is therefore also conceivable that a relatively small

number of barriers on the DNA, in combination with statistical

positioning relative to these barriers, determines most of the

observed nucleosome positioning. For example, recent work

suggests that nucleosome occupancy patterns around TSSs could

at least partly be explained by such statistical positioning [8].

Probably the most obvious class of candidate molecules that

could introduce condition-specific barriers on the DNA are

sequence-specific transcription factors (TFs). Indeed, for some

specific promoters in S. cerevisiae it has been established that

binding of TFs is a major determinant of nucleosome positioning

in the promoter region, e.g. [9–11]. Moreover, the resulting

nucleosome positioning has major effects on gene regulation from

these promoters. In addition, for a few TFs it has been established

that their binding induces local nucleosome exclusion genome-

wide [1,12–14].

Although it is thus clear that both intrinsic sequence preferences

of nucleosomes and competitive binding of other DNA binding

factors play a role in nucleosome positioning, the relative

importance of these factors have come under intense debate in

recent years. For example, it has been proposed that the

positioning of nucleosomes, in particular in S. cerevisiae, is mainly

determined by intrinsic sequence preference of the nucleosomes,

i.e. [15]. In this view, nucleosomes are mainly positioned by a
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‘code’ in the DNA sequence and the accessibility of the DNA to

TFs is downstream of this sequence-guided nucleosome position-

ing. However, these conclusions were challenged by several studies

which suggested nucleosome sequence specificity can only explain

a modest fraction of nucleosome positioning, and that statistical

positioning likely also plays an important role [1,2,16,17]. More

recently, several groups have undertaken further experimental

investigations into this question, in particular by experimentally

comparing nucleosome positioning in vivo and in vitro [18,19].

Although there is general agreement that these experimental

studies confirmed that both intrinsic sequence preferences and the

competitive binding of TFs play a role in nucleosome positioning,

different authors came to strikingly different, and often seemingly

contradictory conclusions regarding which of these factors play a

dominant role [20–24]. It is thus clear that, rather than lacking

sufficient experimental data, the current challenge in furthering

our understanding of the determinants of nucleosome positioning

lies in the quantitative interpretation of this data.

Here we show that, by analyzing existing experimental data in

combination with rigorous computational modeling, important

novel insights can be gained that reconcile previous seemingly

contradictory observations, and that suggest a new picture of the

mechanisms regulating nucleosome positions. In particular, we use

a biophysical model to quantitatively assess the role of TFs in

determining nucleosome positioning in S. cerevisiae, to assess which

aspects of nucleosome positioning TFs contribute to most, and to

identify whether there are subsets of TFs that play a predominant

roles in this process. S. cerevisiae is a particularly attractive system

for such an analysis because extensive nucleosome positioning

data are available, and because it is essentially the only organism

in which sequence-specificities are available for the very large

majority of TFs.

Rather than assuming that intrinsic sequence preferences

determine nucleosome positioning and that TF binding occurs

preferentially at those regions not covered by nucleosomes, or vice

versa, assuming that TF binding sets boundaries in the DNA

against which nucleosomes are statistically positioned, in our

model the TF binding and nucleosome positioning patterns are

determined by a dynamic competition of all TFs and nucleosomes

for binding to the DNA. Our model incorporates both the

sequence preferences of the nucleosomes and of all TFs in a

thermodynamic setting, and rigorously calculates the resulting

equilibrium occupancies genome-wide as a function of the con-

centrations of all TFs and the nucleosomes.

Using this model in combination with experimental data we find

that TF binding makes a substantial contribution to nucleosome

positioning but only at a specific subset of genomic positions. In

particular, the linker regions between nucleosomes can be clearly

divided into two classes based on their size: the large majority of

linkers is small (&15 bp) and occurs within large nucleosome

arrays in gene bodies, whereas a minority of linkers is large

(w80 bp) and occurs predominantly in promoters. Our results

show that the phasing of the small linkers within nucleosome

arrays, and thereby the majority of nucleosome positioning

genome-wide, is mainly determined by sequence preferences of

nucleosomes. In contrast, the larger nucleosome free regions in

promoters, which are likely most relevant for effects on gene

expression, are mainly determined by competitive binding of TFs.

By applying our model to data on nucleosome positioning in vitro

we also confirm that the ability of TFs to explain nucleosome

positioning in promoters is restricted to in vivo data. Thus, our

model provides a quantitative and mechanistic explanation for

the observed discrepancies between in vivo and in vitro nucleosome

positioning. Most strikingly, our results also show that, rather than

all TFs contributing roughly equally to the competition with

nucleosomes, the effect of TFs on nucleosome positioning is

restricted to a relatively small set of about 10{20 TFs. Although

one might expect that these TFs are simply the highest expressed

TFs with the largest number of TFBSs genome-wide in the

conditions in which the experiments were performed, we find this

not to be the case. Instead, we find that these TFs are highly

enriched for having known protein-protein interactions with

chromatin remodeling complexes, histones, and chromatin mod-

ification enzymes. Thus, the mechanistic picture suggested by our

results is that there is a specific class of TFs who, upon binding to

the DNA, recruit chromatin modifiers that then mediate local

expulsion of nucleosomes.

Results

A biophysical model of TF and nucleosome binding to
genomic DNA

To rigorously investigate the competition between TFs and

nucleosomes for binding to DNA, and the role of TFs in

nucleosome positioning, we take a statistical mechanics approach

in which we explicitly consider all possible non-overlapping

binding configurations to the genome for nucleosomes and a

large set of TFs, assigning a probability to each configuration

using standard Boltzmann-Gibbs statistics. The basic approach,

which uses dynamic programming to efficiently sum over all

possible binding configurations, has been used in computational

methods for analysis of transcription regulation for over a decade,

e.g. [17,25–28], and has been used more recently to specifically

investigate the effect of competitive binding of nucleosomes and

TFs [29,30]. Here we use this approach to comprehensively

investigate the role of TFs in determining nucleosome positioning.

We employ an unprecendented complete set of 158 TF binding

models, we investigate the dependence on the concentrations of

these TFs, and we also introduce tunable sequence-specificities for

all TFs and nucleosomes.

Author Summary

The DNA of all eukaryotic organisms is packaged into
nucleosomes, which cover roughly 80% of the genome. As
nucleosome positioning profoundly affects DNA accessi-
bility to other DNA binding proteins such as transcription
factors (TFs), it plays an important role in transcription
regulation. However, to what extent nucleosome position-
ing is guided by intrinsic DNA sequence preferences of
nucleosomes, and to what extent other DNA binding
factors play a role, is currently highly debated. Here we use
a rigorous biophysical model to systematically study the
relative contributions of intrinsic sequence preferences
and competitive binding of TFs to nucleosome positioning
in yeast. We find that, on the one hand, the phasing of the
many small spacers within dense nucleosome arrays that
cover gene bodies are mainly determined by intrinsic
sequence preferences. On the other hand, larger nucleo-
some free regions (NFRs) in promoters are explained
predominantly by TF binding. Strikingly, we find that only
10–20 TFs make a significant contribution to explaining
NFRs, and these TFs are highly enriched for directly
interacting with chromatin modifiers. Thus, the picture
that emerges is that binding by a specific class of TFs
recruits chromatin modifiers which mediate local nucleo-
some expulsion.

TF Binding Explains Nucleosome Free Regions
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The model is explained in detail in the Materials and Methods.

Briefly, each TF t is assumed to bind DNA segments of a fixed

length lt and, for any length-lt DNA segment s, a binding energy

E(sDt) is determined. The energies E(sDt) are calculated from a

weight matrix representation of the TF’s binding sites [31] and

involve a tunable scale parameter ct which controls the sequence-

specificity of the TF. To obtain energy matrices for the large

majority of sequence-specific TFs in S. cerevisiae we used a

collection of 158 WMs that we curated previously [32] and that

are based on a combination of ChIP-chip and in vitro binding

data. Notably, while the WMs allow us to determine how the

binding energy (measured in units kBT ) varies across positions in

the genome for each TF, the WMs do not allow us to determine

the sequence-independent contribution to binding energy, i.e. the

overall ‘stickines’ of each TF for DNA. To compare binding

energies across TFs we set the sequence-independent contribution

to the binding energy such that all TFs have equal overall affinity

for the DNA (see Materials and Methods).

Of the computational work done on nucleosome positioning,

probably most effort has been invested in developing models for

nucleosome sequence-specificity based on data from both in vivo

and in vitro nucleosome binding, e.g. [15,18]. Exploiting analytical

results from statistical mechanics, Locke et al. [24] rigorously

inferred the energies of nucleosome binding from high-throughput

data and used these to evaluate several models of different

complexity for the sequence specificities of nucleosomes. The

results from this study suggested that the sequence specificity of

nucleosomes can be captured by fairly simple models. As we

discuss below, our own analysis suggests that the performance of

different models of nucleosome sequence specificity depends on

the precise data-set and performance evaluation method used, but

that all models make highly correlated predictions (Figure 1A). Of

the models analyzed, the model of [18] gave robustly high

performance across data-sets and we use this model in our study.

In particular, we assume that nucleosomes bind to DNA segments

of 147 nucleotides and determine an energy of binding E(sDnucl)
for any length 147 segment s using a generalization of the model of

[18], involving a scale parameter cnucl that controls the sequence

specificity of the nucleosomes, analogous to the scale parameters ct

for the TFs (see Materials and Methods). The parameter cnucl

allows us to investigate the effect of enhancing or decreasing the

nucleosome sequence specificity. For example, when setting

cnucl~0:4, the variation in nucleosome binding energies across

different sequences is reduced to 40% of the energy variations

predicted by the model of [18].

As mentioned above, the model assumes that any DNA segment

can only be bound by a single TF or a nucleosome at a time.

Although it is likely that there are exceptions to this simplification,

it is generally accepted that TFs and nucleosomes compete for

binding to DNA. In absence of specific information as to which

TFs compete with nucleosomes and which can co-bind with

nucleosomes, we make the simplifying assumption that all TFs

compete with nucleosomes, as has been done previously by others

[29,30]. Like previous approaches, e.g. [8,15,22,29], our model

also assumes that the average occupancy profiles across a

population of cells are well approximated by their thermodynamic

equilibrium averages. Notably, given that there are many ATP-

driven processes that cause nucleosome turnover and displacement

by chromatin remodelers, it is not a priori clear that this

equilibrium assumption holds. Ours and previous computational

approaches thus essentially assume that these ATP-driven

processes act mainly to affect kinetics, i.e. to allow nucleosomes

Figure 1. Reproducibility of in vitro and in vivo nucleosome data across different experiments and performance of nucleosome
sequence-specificity models. A: Pearson correlation coefficients of the per-base nucleosome coverage between various experimental data-sets
measuring nucleosome occupancy either in vivo [1,3,18,38,56] or in vitro [18,19,58], and predictions from a number of models of nucleosome
sequence-specificity [18,24]. B: Reproducibility of annotated nucleosome positions across the in vivo data-sets. For each annotated nucleosome in
the reference map of [41], we calculated the standard deviation in the annotated positions of the corresponding nucleosomes across the 6 data-sets
used to construct the map. The blue curve shows the distribution of standard deviations across nucleosomes. The grey dotted curve shows the
analogous distribution that is obtained using randomized data (see Materials and Methods). The high reproducibility of nucleosome positions across
different data-sets justifies the use of binary data, i.e. positions of ‘‘linkers’’ and ‘‘nucleosomes’’, instead of Pearson correlation for evaluation of the
performance of computational models for predicting nucleosome positions.
doi:10.1371/journal.pcbi.1003181.g001

TF Binding Explains Nucleosome Free Regions
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to resample their positions, without systematically biasing their

positioning. Some recent evidence appears to support this

assumption [33].

The model considers all possible non-overlapping configura-

tions C of TFs and nucleosomes bound along the genome. For

each configuration C, a total energy E(CDc,c) is calculated. This

energy depends on the concentrations of nucleosomes cnucl and all

TFs ct, which we collectively denote as c, and also on all energy

scale factors c that determine sequence-specificity (Materials and

Methods). The probability P(CDc,c) to find a cell in configuration

C is then given by the standard Boltzmann-Gibbs formalism as

P(CDc,c)~
e{bE(CDc,c)

Z
, ð1Þ

where b~1=(kT) is the inverse temperature, Z is the partition

sum, and we have explicitly indicated that these probabilities

depend on the concentrations c and scale factors c. As explained

in Materials and Methods, both the partition sum and the fractions

of the time each TF t is bound at each genomic position can

be calculated efficiently using standard dynamic programming

techniques.

In summary, given a set of input concentrations c for all TFs

and nucleosomes, the model efficiently calculates the equilibrium

binding frequencies of all TFs and nucleosomes across the entire

genome. Note that, because all TFs and nucleosomes are in

competition for binding to the DNA, the occupancy of any factor

to a sequence segment of the genome in principle depends, not

only on the concentration of this factor and its affinity to the

sequence segment, but on the concentrations of all other factors

and their affinities to all other locations in the genome. Thus, the

TF and nucleosome occupancy profiles across the genome can be

changed by varying the concentrations c and scale factors c. In

particular, these parameters can be optimized to maximize the

agreement with experimentally determined nucleosome occupan-

cy profiles.

Comparing model predictions with experimental
nucleosome position profiles

Many experimental studies have been carried out to map

nucleosome positions in eukaryotic species, e.g. [34–37], and in

Saccharomyces cerevisiae in particular, e.g. [1–3,18,19,38,39], so that

several data-sets of nucleosome positions in S. cerevisiae are

available. In order to determine how to meaningfully compare

computational predictions with these experimental data, we

first performed a comparative analysis of several experimental

data sets. Patterns of nucleosome positioning that are typically

highlighted in publications, such as the nucleosome-depleted

regions upstream of the transcription start sites (TSSs) and well-

positioned nucleosomes immediately downstream of TSS, involve

genome-wide averages of nucleosome occupancy across a class of

positions. Such average patterns are robust to fluctuations and are

shared by all data-sets.

Previous works have assessed the performance of models of

nucleosome sequence specificity by determining both the predicted

and experimentally observed nucleosome occupancies across

individual regions of the genome, and by calculating the Pearson

correlation of these nucleosome occupancy profiles. To assess the

validity of such an approach, we calculated Pearson correlations

between observed occupancy profiles of several experimental data-

sets (both in vivo and in vitro) as well as several models of

nucleosome sequence specificity (Figure 1A). This shows that,

unfortunately, the occupancy profiles correlate only weakly across

different experimental data-sets, with Pearson correlation coeffi-

cients typically ranging from r~0:2 to r~0:45 for in vivo data-sets,

and only marginally higher for in vitro data-sets. This large

variability across data-sets may to some extent be due to biases of

the technological platforms. For example, it is well known that the

nucleotide composition and propensity to form secondary

structures of the reads can systematically bias the read counts in

ChIP-seq by more than 10-fold [20,40]. Variations in details of the

ChIP protocol are likely also responsible for some of the variation

across data-sets, and previous studies have indicated that MNase

digestion bias may also systematically affect nucleosome position-

ing data [23,24]. Since all experiments were performed in YPD,

true biological variation is likely only a minor source of variation in

these data.

In contrast to the experimental data, the occupancy profiles

predicted by the different computational models are all highly

correlated. Moreover, the correlations across models for a given

data-set vary much less than the correlations for a given method

vary across data-sets. For example, all models consistently perform

better on in vitro than on in vivo data. Among the in vivo data-sets,

all methods perform by far best on the in vivo data of Kaplan

et al.[18] (which is also far more correlated with in vitro data than

any other in vivo data-set) and far worst on the in vivo data of

Shivaswamy et al. [3]. Thus, comparison of different models with

existing data supports the conclusions of [24] that different models

of nucleosome-specificity perform similarly in explaining nucleo-

some positioning. Since the model of Kaplan et al. [18] exhibits

highest performance for the majority of in vivo and in vitro data-sets,

we chose to use this model in our analysis. However, the weak

correlation of nucleosome occupancy profiles across data-sets

shows that assessing the performance of computational predictions

by directly comparing predicted and observed nucleosome occu-

pancies is highly problematic. A meaningful comparison of com-

putational models requires that one first extracts those features of

the nucleosome positioning that are reproducible across experi-

mental data-sets.

In contrast to the absolute value of the ChIP signal, we observed

that the positions of local maxima and minima in nucleosome

occupancy are much better reproduced across data-sets. This

reproducibility of the ‘peaks and troughs’ in the nucleosome

occupancy profile has been observed previously [41], and has been

used to create a reference set of ‘nucleosome’ and ‘linker’

segments. In this procedure, local maxima and minima are

used to annotate nucleosomes and linkers in each data-set. These

annotations are then intersected, with reference nucleosomes

placed at the consensus positions of regions annotated as

nucleosomes in all data-sets, and reference linkers the regions free

of nucleosomes in all annotations. That the positions of annotated

nucleosomes are highly reproducible across data-sets, especially

compared to raw coverage and compared to nucleosome maps

based on randomized data, is illustrated in Figure 1B. The

annotated positions of individual nucleosomes across different

data-sets typically vary by less than 10 base pairs from the

reference position (blue curve in Figure 1B) and the vast majority

of annotated nucleosome positions vary by less than 20 bp from

the reference position. In contrast, on randomized data positions

of annotated nucleosomes typically vary by roughly 40 bp from the

reference position (dotted curve in Figure 1B).

In summary, although ideally we would like to test whether

computational models can predict relative nucleosome occupan-

cies across the genome, it is not possible to meaningfully perform

such an assessment given the variability observed in the

experimental data. We thus evaluate the performance of different

models by assessing their ability to predict nucleosome and linkers

TF Binding Explains Nucleosome Free Regions
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that occur consistently across different data-sets. We use the

reference set annotated by [41] consisting of roughly 60’000
annotated linker regions and 21’000 annotated nucleosomes, that

together cover about 50% of the genome, to assess the performance

of the model in predicting in vivo nucleosome positioning. In

addition, we have applied a similar annotation procedure (Materials

and Methods) to produce a reference set of nucleosomes and linkers

from 3 in vitro data-sets, which we use to assess the performance of

the model in predicting nucleosome positioning in vitro.

To assess the model’s performance we compare the predicted

nucleosome coverage at annotated linker and nucleosome

segments. That is, instead of comparing the predicted and

observed absolute occupancies, we assess the model’s ability to

predict local maxima and minima in nucleosome occupancy, that

occur consistently across data-sets. As described in Materials and

Methods, based on the predicted nucleosome coverage, we classify

each segment as either nucleosome or linker, and then calculate

the mutual information I between the predicted and experimentally

measured classification. Finally, we normalize this mutual

information by the entropy H of the experimental classification

to obtain the fraction F~I=H of information that is captured by

the model’s predictions, i.e. F runs from 0 (random predictions) to

1 (perfect predictions). An F value of 0:2 means that the model

captures 20% of all the information needed to specificy which of

the genomic segments correspond to nucleosomes and which to

linkers. We will refer F as the ‘quality score’. As mutual infor-

mation is the fundamental measure of dependence between two

distributions [42,43], we consider the quality score F the most

rigorous quantification of model performance. However, as we

show below, highly similar results are obtained with other

performance measures that are popular in machine learning, such

as area under the ROC curve (AUC).

Optimal fits to nucleosome positioning require weak
nucleosome sequence specificity

We first tested what quality score can be obtained by the

intrinsic sequence specificity of the nucleosomes, i.e. leaving all

TFs out of the model, and how the quality of the fit depends on the

sequence specificity of the nucleosomes. Figure 2A shows the

quality scores F that are obtained for different scale factors cnucl

on nucleosome sequence specificity (with 0 representing no

sequence preference whatsoever and 1 representing the specificity

used in Kaplan et al. [18]). The optimal fit is obtained for

cnucl&0:47, which corresponds to significantly lower nucleosome

sequence specificity than those used in Kaplan et al. [18]. That is,

for the model of [18], the standard deviation of nucleosome

binding energies is approximately 1:64kBT across the genome

(0:97kcal=mole), whereas we observe optimal fits for roughly 2-

fold lower variations in binding energies (roughly 0:77kBT ).

Moreover, the quality score depends weakly on cnucl and becomes

small only for extremely small sequence specificities.

These results may seem contradictory, given that the sequence-

specificity model of Kaplan et al. was developed specifically with

the aim of explaining nucleosome positioning. However, Kaplan

et al. optimized the overall Pearson correlation between predicted

and observed nucleosome coverage, which depends strongly on

the variation in absolute nucleosome occupancies. In contrast, the

quality score F depends mainly on the locations of local maxima

and minima in the occupancy, and much less on the absolute

amount of variation in nucleosome occupancy. To investigate this

further, we compared the distribution of nucleosome occupancies

for the model with different values of cnucl with the distribution of

nucleosome occupancies for the model of Kaplan et al. and the

experimentally observed distribution of nucleosome occupancies

for the data of Lee et al. [1] (Materials and Methods, and note that

very similar distributions are obtained from other experimental

data-sets; Figure S1 in Text S1).

As shown in Figure 2B, the model of Kaplan et al. [18] predicts

an overall nucleosome coverage that is dramatically lower than

our fits, i.e. with a median nucleosome coverage of about 0:3. Such

a coverage distribution is strongly at odds with the experimental

data which shows that, rather than 30%, about 80% of the genome

is covered by nucleosomes, e.g. [1,3,44,45]. It is likely that the

unrealistically low nucleosome occupancy of Kaplan et al. [18] is

Figure 2. Performance of models that include only nucleosome sequence specificity. A: Fraction of information regarding experimentally
annotated linker and nucleosome positions explained by the nucleosome-only model (quality score, vertical bars) as a function of relative
nucleosome specificity. The relative nucleosome specificity is controlled by the scale factor cnucl, where cnucl~1:0 corresponds to the sequence
specificity of the model of Kaplan et al. [18], for which the binding energy of the nucleosomes has a standard-deviation of 1:64kBT~0:97kcal=mole
across the genome. The error-bars indicate standard-errors across 5 separate test sets. B: Experimentally observed cumulative distribution of
nucleosome coverages (fraction of time a given genomic position is covered by a nucleosome) from [1] (red dotted line) and cumulative distributions
of predicted nucleosome coverage of the models of [18] (dark green line) and our model using nucleosome specificity scale parameters of cnucl~0:02
(black line), cnucl~0:4 (blue line), and cnucl~1:0 (light green line).
doi:10.1371/journal.pcbi.1003181.g002

TF Binding Explains Nucleosome Free Regions
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an artefact of optimizing the Pearson correlation in nucleosome

coverage, since this objective function favors high variance in

predicted nucleosome coverage, and does not penalize the

mismatch in the average nucleosome coverage.

For our model, the coverage distribution indeed strongly

depends on the nucleosome specificity. Strikingly, by far the best

fit between the observed and predicted coverage distribution

occurs precisely at the specificity that maximizes our quality score

(i.e. at cnucl~0:4). This demonstrates that, in contrast to the

predictions of Kaplan et al. [18], our fits produce realistic

nucleosome coverage profiles, in spite of not specifically optimizing

these coverage profiles. In fact, at the optimal nucleosome

specificity, the predicted and experimentally observed nucleosome

coverage distribution is virtually identical for the 70% of base pairs

in the genome with highest nucleosome coverage (blue and red

curves in Figure 2B). The main deviation between model and

experimental data is that the model fails to predict regions with

low nucleosome coverage that are observed experimentally.

Indeed, as we will see below, whereas the model correctly predicts

almost all nucleosomes, the model fails to correctly predict a

substantial fraction of linker regions as nucleosome free.

In summary, optimizing the quality score F produces much

more realistic fits to the nucleosome coverage distribution than

previous models, and shows that the best fits are obtained with

only weak nucleosome sequence-specificity.

Transcription factor binding plays a major role in
explaining nucleosome free regions at promoters

We next investigated to what extent competition with TFs

improves the predicted nucleosome positioning. We first consid-

ered models in which, besides the nucleosomes, there is only a

single TF. For each of these models we fitted the 4 parameters (i.e.

the concentrations and sequence specificity of both nucleosomes

and the TF) using simulated annealing, and calculated the quality

score F obtained with this model using 80=20 cross-validation

(Materials and Methods). We ranked TFs by the z-statistic they

obtained in cross-validation (Materials and Methods), and then

investigated what quality scores F can be obtained using the top 5,

10, 20 and top 30 TFs, refitting all concentrations and sequence

specificity parameters. We find that adding the TFs clearly

increases the quality of the predictions on the test-sets, although

the improvement is relatively small, i.e. from F&0:17 to F&0:2,

Figure 3A. Given this modest increase in F and the large number

of parameters involved when including many TFs in parallel, one

may wonder whether these results are affected by overfitting.

However, as shown in Figure S2 in Text S1, the observed F scores

on train and test sets are essentially identical. In addition, adding

the TFs to the model further improves the match between the

observed and predicted nucleosome occupancy distribution

(Figure S1 in Text S1).

As already observed in [41], the length distribution of linkers is

bimodal. The large majority of linkers is short, around on average

15 bps in length, corresponding to short linkers within arrays of

nucleosomes. There is a second class, corresponding to roughly

25% of all annotated linkers, that are much longer, i.e. each more

than 80 bps long. We will refer to these longer linkers as

‘nucleosome free regions’ (NFRs). We next asked whether TFs

contribute more to explaining the positioning of the short linkers

or the longer NFRs. Moreover, as TFs are expected to bind

predominantly to promoter regions, we also investigated whether

the contribution of the TFs to explaining nucleosome positioning is

most significant in promoters (defined as running from 500 bp

upstream to 500 bp downstream of TSS). We find that, generally,

inclusion of the TFs leads to a substantially larger increase in

performance for promoter regions, and TFs contribute much more

to explaining NFRs than explaining small linkers (Figure S3 in

Text S1). In particular, considering NFRs and nucleosomes in

promoter regions, inclusion of TFs almost doubles the quality

score F , i.e. from 0:23 to 0:38, Figure 3A, red bars. As an aside, we

note that these observations do not depend on assessing the

model’s performance by the quality score F . As shown in Figure

S4 in Text S1, we find essentially the same results when assessing

the model’s performance using ROC curves, and the area under

the curve (AUC) is almost perfectly correlated (r~0:99) with the

quality score F . It is also noteworthy that, both when predicting all

linkers genome-wide or NFRs in promoters, even though up to

Figure 3. Incorporating competition with TFs improves predicted nucleosome positioning, particularly in promoter regions. A:
Ability to predict nucleosome positioning as a function of the number of TFs used in the model. The bars show the fraction of all information
regarding nucleosome positioning explained (quality score F ) by each model. Results are shown for, from left to right, the model including only
nucleosomes (no TFs), only the best TF, the top 5 TFs, top 10 TFs, etcetera. The rightmost pair of bars correspond to a model including all TFs but
without any sequence specificity for the nucleosomes cnucl~0. Blue bars correspond to quality scores for predicting all nucleosomes and linkers
genome-wide and red bars correspond to quality scores for predicting nucleosomes and nucleosome free regions (long linkers) within promoters.
The error bars show standard-error across 5 independent test-sets. B: Fractions of correctly predicted nucleosomes (grey bars) and linkers (green bars)
for, from left to right, the model with nucleosome sequence specificity and no TFs, the model with all TFs, and the model with all TFs but no
nucleosome sequence specificity. The left half of the figure shows results for predicting all linkers and nucleosome genome-wide, and the right half
for predicting NFRs and nucleosomes in promoters.
doi:10.1371/journal.pcbi.1003181.g003
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158 TFs can be incorporated, the model essentially reaches its

optimal performance after adding the first 10{20 TFs. We

investigate this in more detail below.

It thus appears that TFs contribute not so much to explaining

positioned nucleosomes, but rather explain the location of longer

NFRs, especially in promoters. Further supporting this observation,

the rightmost pair of bars in Figure 3A shows the performance of the

model including all TFs but with nucleosome sequence specificity

removed, i.e. cnucl~0. We see that removing nucleosome sequence

specificity only modestly affects the ability of the model to predict

NFRs in promoters. In contrast, the performance on predicting all

linkers genome-wide drops significantly when nucleosome sequence

specificity is removed, even falling clearly below the performance of

the model without TFs. This is further confirmed by closer

examination of the errors that the fitted models make (Figure 3B).

For all models, the large majority of nucleosomes is correctly

predicted and the fraction of correctly predicted nucleosomes is

most strongly affected by removing the sequence specificity of the

nucleosomes, i.e. from 95% correct for the model with only

nucleosome sequence specificity to 88% for the model with all TFs

and no nucleosome specificity. The fraction of correctly predicted

linkers is much smaller, e.g slightly below 50% for the model without

TFs. Adding the TFs to the model consistently increases the fraction

of correctly predicted linkers, and this increase does not require

nucleosome sequence specificity. When considering all linkers

genome-wide, the increase in correctly predicted linkers is relatively

modest, i.e. from 50% to 56%. However, for NFRs in promoters the

fraction of correctly predicted NFRs increases from 50% to around

70%. In summary, correctly predicting the phasing of nucleosome

arrays over gene bodies crucially depends on nucleosome sequence

specificity and is only weakly affected by including TFs, whereas

correctly predicting NFRs is strongly dependent on inclusion of the

TFs and is almost independent of nucleosome sequence specificity.

Characterization and additional validation of the fitted
model

To characterize the biophysical properties of the fitted model

we first determined the overall statistics of nucleosome and TF

occupancies (Figure 4A). Nucleosomes cover more than 80% of

the genome, and most of the remaining regions of the genome are

uncovered, with all TFs combined covering less than 1% of the

genome. The top 10 TFs with the highest genomic coverage

occupy between 0:15% and 0:02% of the genome, corresponding

to roughly 1500 and 200 binding sites genome-wide.

For the nucleosomes and the top 10 TFs with highest genomic

coverage in the fitted model we also determined the mean and

standard-deviation of the binding energies at their binding sites,

and the entropy of the distribution of binding probabilities per site

(Materials and Methods). The latter quantity is low whenever the

TF’s coverage results from strong sites with high frequencies of

binding, and is high when the TF’s coverage comes from a large

set of weak sites with lower binding frequencies. The results

(Figure 4) show, first of all, that the binding sites of nucleosomes

have both the lowest binding energy and the lowest variation in

binding energies, i.e. they are the least sequence specific.

Interestingly, the top 10 TFs clearly fall into 2 classes: a set of

TFs (ABF1, REB1, ORC1, and RSC30) that are highly sequence

specific and have strong binding sites, and a class of much less

sequence specific TFs (PHO2, NHP6A, etcetera) that bind at a

much larger number of weaker sites.

As has been observed previously, e.g. [1,2], averaged nucleo-

some coverage profiles show a characteristic pattern relative to the

starts of genes with a nucleosome depleted region immediately

upstream of TSS, followed by a well-positioned nucleosome

immediately downstream of TSS and a periodic pattern of

nucleosome coverage downstream into the gene body. Although

the nucleosome sequence specificity by itself, i.e. without including

TFs, reproduces some of this pattern at the 59 end of genes

(Figure 5A), the observed nucleosome depleted region and the

oscillatory pattern into the gene body is much weaker than

observed experimentally. As an additional test of the validity of our

model, we checked whether inclusion of the TFs improves this

average coverage profile relative to gene starts and ends.

We find that adding TFs to the model significantly improves the

match between the theoretically predicted and experimentally

observed nucleosome coverage pattern at the 59 ends of genes

(Figure 5A). It is noteworthy that the nucleosome-depleted region

Figure 4. Biophysical properties of the fitted model. A: Average fraction of the genome covered by nucleosomes, free DNA, and the top 10
TFs with highest coverage. B: Average and standard-deviation of the binding energies (in units kBT ) at binding sites for nucleosomes and the top 10
TFs with highest coverage (vertical axis), against the average entropy per binding site of the distribution of binding probabilities for the
corresponding TFs (horizontal axis).
doi:10.1371/journal.pcbi.1003181.g004
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immediately upstream of TSS coincides with a peak in the overall

predicted binding of TFs (Figure S5C in Text S1), further

illustrating the role of TFs in establishing nucleosome depletion in

these regions. A local peak in TF binding is also predicted

immediately downstream of the 39 ends of genes (Figure S5D in

Text S1). Although at the 39 ends of genes, the inclusion of the TFs

also improves the match between the theoretical predictions and

the experimentally observed nucleosome coverage, the experi-

mental data and predictions clearly disagree (Figure 5B). First, the

width of the experimentally observed NFR is twice as big as the

width of the predicted NFR. Second, the oscillations exhibited by

the experimentally-determined distribution are not as pronounced

as predicted by the model. This lack of a match can likely be

attributed to the role of RNA polymerase. Our model considers

only 158 TFs and, in particular, does not consider the effects of

binding of general transcription factors and RNA polymerase.

Experimental data on the positioning of the largest subunit of Pol

II - Rpo21, and the general transcription factor Sua7 shows that

these factors localize at 39 ends of genes [46], suggesting that they

may contribute to the nucleosome free region observed at the

39 ends of genes (Figure S6 in Text S1). This is further supported

by the analysis in [47], which shows that rapid removal of

Polymerase from 39 end regions increases local nucleosome

occupancy.

As another validation of the model, we investigated whether the

predicted TF binding matches experimental observations. For

example, we compared the intergenic regions predicted to be

targeted by the TFs Abf1, Reb1, and Sum1, with the observed

target intergenic regions according ot the ChIP-chip data of [48].

This shows that, in spite of the fact that the model was only

optimized to fit nucleosome positioning, the fitted model also

accurately predicts which regions are targeted by these TFs (Figure

S7 in Text S1).

It is important to stress that, although we assess the model’s

performance by these global statistics, it predicts the precise

locations of individual nucleosomes, NFRs, and TF binding sites.

The full genome-wide nucleosome and TF coverage predictions

obtained with the model including the TFs are made available

through our SwissRegulon server www.swissregulon.unibas.ch/

ozonov, allowing users to investigate in detail which NFRs at

which promoters are explained by the binding of particular TFs.

To illustrate the detailed comparison of the model’s predictions

and observed nucleosome occupancies Figure 6 shows the

measured nucleosome coverage, the predictions of the model with

and without TFs, and the predicted coverage of TFs, in two

genomic regions. As the figure shows, whereas the locations of

small peaks and troughs in occupancy across arrays of nucleo-

somes are reasonably well captured by nucleosome sequence

specificity alone, competition with TF binding is needed to explain

the occurrence of larger nucleosome free regions, which occur

predominantly in promoters. Importantly, it is likely precisely this

latter class of regions that are crucial for the effects of nucleosome

positioning on gene expression.

However, this detailed comparison also reveals that, whereas

the locations of TF binding typically matches the centers of

observed NFRs, the predicted shape of these NFRs differs

considerably between the model and the experimental observa-

tions. In particular, NFRs tend to be much narrower in the

model’s predictions than in the experimental data. This suggests

that, although TF binding determines the genomic location where

nucleosome depletion is observed, the observed nucleosome

exclusion is more substantial than predicted from the steric

hindrance between TFs and nucleosomes. This suggests that TF

binding may recruit aditional factors involved in nucleosome

exclusion. We return to this observation below.

Only a small subset of TFs, enriched for interacting with
chromatin modifiers, crucially affects nucleosome
positioning

Our model incorporates the role of TFs through a simple

competition for binding DNA and one might thus naively expect

that all TFs that are expressed in YPD would contribute similarly

to explaining nucleosome positioning, maybe in proportion to the

number of their binding sites in the genome. However, we

observed above (Figure 3A) that when consecutively adding more

TFs to the model, the performance already assymptotes after

10{20 TFs. This could be due to redundancies in the

contributions of the TFs, i.e. if sites for different TFs cluster in

particular genomic regions, then binding by only a subset of the

TFs will suffice to explain the occurrence of NFRs in these regions,

and adding more TFs to the model would not further improve

Figure 5. Predicted and observed nucleosome profiles around 59 and 39 ends of genes. A: Averaged nucleosome coverage near
transcription starts. Each curve shows the average nucleosome coverage at different positions relative to transcription start averaged over all genes.
Red dashed lines correspond to experimentally measured nucleosome coverage (data from [1], right vertical axis). The solid lines correspond to the
predicted nucleosome coverage by the model including only nucleosomes (light green) and the model including all TFs (blue), left vertical axis. B:
Averaged nucleosome coverage near transcription ends. Curves are as described for panel A.
doi:10.1371/journal.pcbi.1003181.g005
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performance. Alternatively, it may be that there is a specific class

of TFs that contribute much more to nucleosome positioning than

other TFs.

To investigate this, we used 80=20 cross-validation on 5
independent training and test sets to assess, for each of the 158
TFs, whether a model containing only nucleosomes and the single

TF statistically significantly outperforms the model with only

nucleosome specificity, quantifying the significance by a z-statistic

(Materials and Methods). Figure 7A shows the distribution of z-

statistics obtained for the 158 TFs (blue dots), together with the

distribution of z-statistics expected by chance (brown dotted

curve). As the figure shows, only 15{20 of the TFs significantly

improve the predictions, indicating that there is indeed a specific

class of TFs that dominate in explaining NFRs. Indeed, the large

majority of all other TFs obtain quality scores on the test sets that

are either the same or worse than the model without any TFs

(Figure S8 in Text S1).

As another validation, we checked whether the ability of this

subset of TFs to explain nucleosome positioning is a specific

property of the sequence specificities of yeast’s TFs. That is, it is in

principle conceivable that among any set of WMs with similar

information content and sequence composition, a few will be able

to help explain nucleosome positioning. To test this we construct-

ed a set of synthetic WMs by randomly shuffling the columns of

the original WMs, and fitted models with these 158 TFs in exact

analogy to our fits with the original WMs. As shown in Figure 7A

(green dots), none of the shuffled WMs perform better than

expected by chance, confirming that the ability to explain

nucleosome positioning is unique to the specific set of 15{20
yeast WMs that we identified.

As a final test, we also evaluated whether the real WMs can

explain the nucleosome positioning that is observed in vitro

(Materials and Methods). On the one hand, since no TFs are

present in the conditions at which the in vitro experiments are

performed, the TFs should in principle not contribute to

nucleosome positioning. On the other hand, as the raw in vivo

and in vitro occupancies are significantly correlated (Figure 1A),

one might expect that the TF WMs can still positively contribute

to explaining in vitro nucleosome positioning. It is thus striking that

none of the real yeast WMs performs better than expected by

chance in explaining in vitro nucleosome positioning (Figure 7A,

red dots), i.e. including TFs does not help explaining in vitro

nucleosome positioning. This shows that the actions of a specific

set of 15{20 TFs are crucial for explaining the differences

between in vivo and in vitro nucleosome occupancies.

Figure 7B lists the top 20 TFs and shows their quality scores on

the test sets (results for all TFs are shown in Table S1). The fact

that only around 20 TFs contribute significantly to nucleosome

positioning raises the question of what distinguishes these TFs

from the others and we investigated a number of hypotheses. One

might hypothesize that the top TFs are simply those that are

highest expressed in YPD, or those which occupy most sites

genome-wide. However, expression data indicates that these TFs

are not particularly highly expressed in YPD compared to other

TFs (Figure S9 in Text S1, data from [49]). Consistent with

this, the genome-wide number of binding sites, as observed in

genome-wide ChIP-chip experiments (Figure S10 in Text S1),

is not generally higher for these TFs. Thus, the role of these TFs

in nucleosome positioning is not simply the result of increased

binding or expression in YPD. Notably, for a considerable

number of TFs our model predicts essentially no binding sites,

and not all of these TFs are low expressed in YPD. It is

conceivable that the low number of predicted sites for these TFs

indicates that these TFs do not compete with nucleosomes but can

bind to DNA which is wrapped around a nucleosome. We also

investigated whether the top 20 TFs have particularly high or low

information content and found that this is not the case (Figure S11

in Text S1).

Figure 6. Illustration of the measured nucleosome occupancy and model predictions within individual genomic regions. Each panel
shows a section of the yeast genome within our genome browser (swissregulon.unibas.ch/ozonov), with the tracks corresponding to, from top to
bottom, chromosomal location, annotated genes, the measured nucleosome coverage based on the data from [1], the predicted nucleosome
coverage using the model without TFs, the predicted nucleosome coverage using the model including TFs, and the total predicted TF coverage, i.e.
summing over all TFs. Within the genome browser the coverage of individual TFs can also be displayed.
doi:10.1371/journal.pcbi.1003181.g006
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However, when we manually inspected the functional annota-

tion of the top 20 TFs, we noticed that roughly half of these TFs

are known to be involved in chromatin remodeling (Table S1).

Since, among our 158 TFs only 27 have been previously im-

plicated in chromatin remodeling or nucleosome positioning, this

amounts to a highly significant enrichment among our top 20 TFs

(p-value 0:0016, see Materials and Methods). This suggested that

the top 20 TFs may be characterized by interacting directly with

chromatin modification machinery. To investigate this more

systematically we investigated the occurrence of known direct

protein-protein interactions between TFs and

1. Histones

2. Enzymes that modify histones

3. Proteins that are subunits of chromatin remodeling complexes

(see Materials and Methods). As detailed in Table 1, we find

that our top 20 TFs are highly significantly enriched for direct

protein-protein interactions with all 3 categories, showing the

strongest enrichment for interacting directly with proteins in

chromatin remodeling complexes. These results strongly suggest

that our top 20 TFs are characterized by their ability to locally

recruit chromatin modifiers.

The fact that only those TFs that interact directly with

chromatin modifiers contribute significantly to explaining NFRs

has interesting implications for the mechanisms of nucleosome

positioning. It suggests that the creation of NFRs depends on the

actions of chromatin modifiers whose activities lead to local

expulsion of nucleosomes from the DNA. That is, the mechanistic

picture that emerges is that, initially, the competition between TFs

and nucleosomes for binding DNA, as implemented in our model,

determines where TFs will end up binding DNA. Subsequently, in

those places where TFs from the specific class that can recruit

chromatin modifiers are bound, the recruitment of these modifiers

will lead to local expulsion of the nucleosomes, leaving a larger

region depleted of nucleosomes. This mechanistic picture also

explains our previous observation that the predicted NFRs tend to

be much narrower than those observed in the data.

Figure 7. Only approximately 20 TFs contribute significantly to nucleosome positioning. A: For each TF an average quality score F across
5 test-sets was determined using the model containing nucleosomes and the corresponding TF. TFs were then ordered by the z-statistic
z~(F{FnoTFs)=se , with FnoTFs the quality score of the model without any TFs, and se the standard-error across the 5 test-sets (see Materials and
Methods). The panel shows the reverse cumulative distribution of z-statistics observed across the 158 TFs (blue dots) together with the expected
standard-normal distribution expected for random predictions (brown dotted curve). Note that about 20 TFs have z-statistics larger than expected by
chance. The green dots show the reverse-cumulatives of z-statistics for the fits obtained with WMs in which the columns of each WM have been
randomly shuffled. The red dots show the reverse-cumulatives of z-statistics obtained when fitting the original WMs to the in vitro map of
nucleosome positions. Note that both the green and red dots closely follow the distribution expected by chance. B: The top 20 TFs that contribute
most to in vivo nucleosome positioning sorted by their z-statistic. The bars show the average quality score F and standard-error se for each TF.
doi:10.1371/journal.pcbi.1003181.g007

Table 1. Statistical analysis of protein-protein interactions
between TFs and chromatin remodeling complexes, histone
modification enzymes, and histones.

Class Total links
Links among
top 20 TFs p-value Enrichment

Chromatin
remodeler
complexes

287 77 9:2 � 10{11 3.26

Histone
modification
enzymes

369 74 4:1 � 10{5 1.58

Histones 103 34 7:3 � 10{8 2.6

All three classes 718 176 4:1 � 10{18 1.94

For all yeast TFs we counted the number of ‘links’, i.e. known direct protein-
protein interactions, with proteins from the functional categories shown in the
first column. The second column shows the total number of links with all TFs,
and the third column the number of links with the top 20 TFs that most
significantly explain nucleosome positioning. The fourth column shows the p-
value for the enrichment of links among the top 20 TFs using a hypergeometric
test, and the 5 column shows the fold enrichment.
doi:10.1371/journal.pcbi.1003181.t001
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Discussion

It is generally accepted that the packaging of DNA by

nucleosomes in eukaryotes can modulate the accessibility of TFs

to their cognate sites and thereby have major effects on gene

regulation. In recent years there have been significant experimen-

tal efforts to determine nucleosome positioning patterns genome-

wide, and to analyzing how these nucleosome-positioning patterns

are established. As we discussed in the introduction, there has

been a considerable debate as to whether nucleosome positioning

in Saccharomyces cerevisiae is predominantly controlled by intrinsic

sequence specificity of the nucleosomes, or that statistical posi-

tioning around barriers introduced by other DNA binding factors

is more important for nucleosome positioning, and different

researchers have presented seemingly contradictory results in this

regard. We feel that these apparent contradictions may be

reconciled by the results presented here.

The large majority of annotated nucleosomes and linkers

genome-wide concern the phasing of short linkers within dense

arrays of nucleosomes, mainly inside genes. We find that the

positioning of these nucleosomes and short linkers crucially

depends on the sequence specificity of the nucleosomes, and that

TFs contribute relatively little to their positioning. Therefore,

predicting all linkers and nucleosomes on a genome-wide scale, the

sequence specificity of the nucleosomes provides the main

contribution to explaining their positions. In contrast, we find

that nucleosome specificity contributes little to explaining larger

nucleosome free regions, especially those within promoter regions.

As our modeling shows, NFRs in promoters are predominantly

explained by the DNA binding of a specific class of 10{20
transcription factors. Thus, while genome-wide locations of

nucleosomes and short linkers are predominantly determined by

nucleosome sequence-specificity, the large nucleosome free regions

in promoters that likely contribute much more significantly to gene

regulation, are determined mainly through the competitive

binding of TFs. Importantly, the fact that competition with TFs

can not help explain the in vitro nucleosome positioning shows that

the contributions of the TFs is restricted to in vivo positioning.

Thus, the competitive binding of TFs provides a quantitative and

mechanistic explanation for the differences between in vivo and

in vitro nucleosome occupancies.

That nucleosome free regions in promoters result from a

competition between TF and nucleosome binding is supported by

a number of recent studies of individual promoters, e.g. [9–11,50].

In these studies the interplay of TF and nucleosome binding

determines positions of NFRs and the resulting accessibility pattern

has major consequences for gene expression. Our results suggest

that this mechanism is not restricted to a few promoters, but is the

typical situation genome-wide. Thus, whereas nucleosome sequence

specificity does have a major impact on genome-wide nucleosome

positioning, precisely those aspects of nucleosome positioning that

have most impact on gene regulation are rather determined by the

competition between nucleosomes and TF binding.

Another major result from our study is that less than 20 of the

158 TFs that we analyzed appear to have a significant effect on

nucleosome positioning. As we have shown, these TFs are not

characterized by particularly high expression or large numbers of

binding sites in YPD, nor do they possess particular sequence

specificities or DNA binding domains. Instead, our analysis

suggests that these TFs engage in specific protein-protein

interactions with chromatin remodelers, thereby effecting nucle-

osome eviction much more dramatically than other TFs.

Although the final predictions of our statistical mechanical

model are quite competent, i.e. in promoters 96% of all

nucleosomes and 70% of all NFRs are correctly identified, they

are still far from perfect. This raises the question as to what

additional elements are missing from the model. The main error

the model makes is failing to identify roughly one third of

nucleosome free regions as nucleosome free. This suggests that the

model misses additional factors that promote displacement of

nucleosomes. As most sequence-specific TFs in yeast are already

represented in the model, and our results suggest that only a small

fraction of these TFs significantly affect nucleosome positioning, it

seems unlikely that the missing sequence-specific TFs play a major

role in the overall quality of the results. In contrast, as shown in

Figure S6 in Text S1, general TFs including the RNA polymerase

itself may play an important role in nucleosome positioning. In this

context it has also been suggested [19] that the well-positioned

nucleosome immediately downstream of TSS may result from a

direct interaction between general transcription factors and the

RNA polymerase with this nucleosome. Thus, including the

recruitment and binding of general TFs and RNA polymerase will

likely further improve the model.

In addition, TF binding can recruit chromatin modifying

enzymes that displace nucleosomes and alter histone tails. The fact

that experimentally observed NFRs are typically wider than the

theoretically predicted ones suggest that the TF binding recruits

chromatin modifiers which lead to a larger region of nucleosome

exclusion than given by the TF binding itself. Thus, feed-back

from TF binding to nucleosome modification and ejection as

mediated by chromatin remodelers is a major feature that could

improve the model’s predictions. In summary, the picture that

emerges from our study is that the binding of a specific class of

10{20 TFs determines local recruitment of chromatin remode-

lers, which then mediate local expulsion of nucleosomes. The

latter may further positively feed-back on TF binding and thereby

expand and stabilize the nucleosome-free regions.

Although this work has focused on yeast, the competition

between nucleosomes and TFs for binding DNA may even be

more crucial for transcription regulation in higher eukaryotes.

For example, in multi-cellular eukaryotes many gene regulatory

elements occur in distal enhancers, i.e. local clusters of TF binding

sites a few hundred base pairs in length, to which a combination of

TFs binds to effect transcription at a promoter that can be

hundreds of kilobases away. Recent mapping of enhancers based

on chromatin marks has suggested that these enhancers are

bound and activated in a highly tissue- and condition-specific

manner [51,52]. An attractive simplified model for such tissue-

specific binding is that nucleosomes by default cause DNA to be

inaccessible and that TF binding is too weak to access individual

TF binding sites. Only in areas where a cluster with many binding

sites for precisely that subset of TFs that is highly expressed in the

condition will these TFs jointly outcompete the nucleosomes and

create a region of DNA accessibility and TF binding, i.e. similar to

the qualitative model presented in [53]. We believe that the

statistical mechanics model that we have used here, might also be

useful to quantitatively investigate such models of enhancer

function.

Materials and Methods

A statistical mechanical model of competitive binding of
proteins to the DNA

Based on a combination of ChIP-chip data, in vitro binding data,

and computational analysis [12,54,55], we previously curated [32]

a collection of 158 position specific weight matrices (WMs)

representing the sequence-specificities of 158 S. cerevisiae TFs. We

let wt(i,a) denote the WM probability that position i in a binding
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site for TF t contains nucleotide a. Consequently, the probability

that a binding site for TF t has sequence s is given by

P(sDt)~ P
lt

i~1
wt(i,si), ð2Þ

where lt is the length of the WM for TF t and si is the nucleotide at

position i in sequence segment s. For our statistical mechanical

model we wish to determine energies E(sDt) for the binding of

sequence segment s to TF t. We make the standard assumption

that the binding energy is a sum of individual contributions from

different nucleotides in the site, i.e.

E(sDt)~Ec
t z

Xlt

i~1

Et(i,si), ð3Þ

where Ec
t is a sequence-independent contribution to the binding

energy. Under this assumption, the sequence-specific energy

components Et(i,a) can be shown [27,31] to be related to the

WM components through

Et(i,a)~{ct log½wt(i,a)�, ð4Þ

where ct is a scale parameter, and the binding energy is expressed

in units of kBT .

There has been a significant amount of effort into modeling the

sequence specificity of nucleosomes using data from both in vivo

and in vitro experiments, e.g. [1,15,18,24]. As shown in Figure 1A,

different models of nucleosome sequence-specificity give predicted

occupancies that are very highly correlated, and the model of [18]

exhibits the most robustly high performance. We thus took the

model of [18] as the basis for calculating binding energies

E(sDnucl) of the nucleosome to each possible 147 bp stretch s.

Specifically, the raw probability P(sDnucl) of a 147 bp long

sequence segment s under Kaplan et al’s model can be obtained

using the ‘‘nucleosome_prediction.pl’’ script, that is provided by

the authors on their website, with default parameters and using the

option ‘‘raw_binding’’. Using this we define a binding energy

under the Kaplan model as

Ekaplan(s)~{ log½P(sDnucl)�zc, ð5Þ

In order to allow us to tune the sequence specificity of the

nucleosomes, we introduce a similar scale parameter cnucl to

obtain

E(sDnucl)~cnuclEkaplan(s): ð6Þ

Note that, at cnucl~1, the sequence-specificity of this model will be

equal to that of Kaplan et al’s model, whereas at cnucl~0

nucleosomes will have no sequence preferences whatsoever. For

notational simplicity, in the following we will consider the

nucleosome as just another member of the set T of all DNA

binding factors t.

Let C denote a (non-overlapping) configuration of TFs and

nucleosomes bound to the genome and let St denote all segments

in the genome where a binding site for factor t occurs. Using the

standard Gibbs-Boltzmann approach, the probability of finding

the cell in configuration C is given by

P(CDc,c)~
1

Z
P
t
P

s[St
cte

{bE(sDt), ð7Þ

where ct is the concentration of TF t, b~1=(kBT) is the inverse

temperature, and Z is the partition function

Z~
X

C

P
t
P

s[St
cte

{bE(sDt): ð8Þ

Note that the probability depends on the scale factors c through

the dependence of the binding energies E(sDt) on the scale factors.

Note that, since we will be fitting the scale factors ct, we can

define

~cct~bct ð9Þ

and fit the ~cct. For notational simplicity, we will drop the tilde and

refer to these rescaled gammas as simply ct. Note that this is

equivalent to measuring the energy in units of kBT .

Using only information about known binding sites, i.e. the WM

entries wi
a, we cannot determine the sequence-independent

contribution Ec
t for each TF, which essentially controls how

generally ‘sticky’ the TF is to DNA. To allow the comparison of

binding energies of different TFs on a common scale we set Ec
t

such that, in the limit of low TF concentrations, each TF has equal

binding to the yeast genome. Specifically, we set Ec
t such that the

average Se{E(sDt)T~1, when averaging over all sequence segments

s in the genome.

Using this reparametrization the probability of a configuration

becomes simply

P(CDc,c)~
1

Z
P
t
P

s[St
cte

{ctEc
t zct

P
i

log½wt(i,si )�: ð10Þ

Figure 8 shows a cartoon illustrating various configurations C and

the factors contributing to their probabilities.

The partition function can be calculated efficiently using

recursion relations variously known as transfer matrices or

dynamic programming, and this has been routinely used in the

field to sum over non-overlapping configurations of hypothesized

binding sites, e.g. [25–27,29,30]. Let Zn denote the partition sum

for all configurations up to position n in a given chromosome. We

then have

Zn~Zn{1z
X

t

Zn{lt cte
{ctEc

t zct

Plt
i~1

log½wt(i,sn{ltzi )�: ð11Þ

Similarly, we can calculate the ‘backward’ partition sums Bn from

position n to the end of the chromosome. Finally, the probability

that a binding site for factor t covers positions (nz1) through

Figure 8. Illustration of example configurations of proteins
bound to DNA. The top line indicates contributions from the
individual binding sites to the overall probability of the configuration.
Note that for illustration purposes, the sizes of TFs and nucleosomes are
not shown to scale, e.g. the sizes of nucleosome footprints are much
larger in reality.
doi:10.1371/journal.pcbi.1003181.g008
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(nzlt) is given by

P(t,nDc,c)~
Zncte

{ctEc
t zct

Plt
i~1

log½wt(i,snzi )�Bnzltz1

ZL

, ð12Þ

where L is the chromosome length. The occupancy of factor t to

position n is then given by O(t,nDc,c)~
Pn

i~n{ltz1 P(t,nDc,c).

Thus, given a set of scale factors c and concentrations c, we can

efficiently calculate the occupancies of all 158 TFs and the

nucleosomes across the entire yeast genome.

Experimentally determined positions of nucleosomes
and linkers

To compare the ‘raw’ occupancies as predicted by various

models of nucleosome specificity and measured across several in

vivo and in vitro experiments, we first downloaded the per base

occupancy predictions provided by [18] and [24] and used these

predicted occupancies directly. We also obtained raw data from

the experiments [1,3,18,38,56]. To obtain per-base nucleosome

occupancies we calculated, for the ChIP-seq data, the number of

reads overlapping each position and log-transformed these read

counts. For the ChIP-chip data we log-transformed the chip signal.

We observed that there is a very small number of positions for

which sometimes aberrantly high or low signals are reported. To

avoid having these outliers skew the observed correlations we

removed the 0:5% of genomic positions with highest signal and

0:5% with lowest signal. We then directly calculated Pearson

correlation coefficients between all data-sets and all predictions.

For the in vivo data, we make use of the reference map of

nucleosomes and linkers for S. cerevisiae growing in YPD that was

constructed by combining 6 different experimental data-sets in

[41]. We only retained nucleosomes that were observed in all 6
datasets and have occupancy bigger then 80% (according to the

authors’ annotation). This set contained 21’252 nucleosomes

covering 26% of the S. cerevisiae genome, and covers approximately

90% of all annotated nucleosomes in [41]. Linkers were defined as

regions lying in between segments that were annotated as

nucleosomes in any of the 6 data-sets. This set contained 60’448
linkers covering 26% of the S. cerevisiae genome. As observed in

[41] the distribution of linker lengths is bimodal and we separately

considered ‘short linkers’ (less than 80 bps long) and ‘nucleosome

free regions’ (longer than 80 bps) in our analysis. There were

45’981 short linkers and 14’467 nucleosome free regions, covering

9% and 17% of the genome, respectively. We also separately

considered the quality of the predicted nucleosome positions in

promoter regions, defined as running from 500 bps upstream to

500 bps downstream of the TSS for each gene. The TSS

definitions, as well as the definitions of the 39 ends of genes, were

taken from [57].

To assess the reproducibility of annotated nucleosome positions

across the 6 experimental data-sets we calculated, for every

nucleosome in the reference annotation, the standard-deviation in

the positions of the associated annotated nucleosomes in each of

the 6 data-sets. To compare the reproducibility of the annotated

nucleosomes with what may be expected by chance, given the

annotation procedure, we created randomized data-sets in which

each sequencing read is mapped to a randomly chosen location in

the genome. We then applied the same annotation procedure to

this randomized data and calculated standard-deviations of the

positions of annotated nucleosomes in the same way.

We constructed a reference map of in vitro nucleosome

positioning using 3 independent data-sets from [18,19,58] using

a procedure analogous to the one used in [41]. To annotate

nucleosomes for every data-set we first run the GeneTrack

software [59] using parameters e~294 (width of the exclusion

zone corresponding to configurations with non-overlapping nu-

cleosomes), s~20 (width of the smoothing gaussian kernel),

u~d~73 (half-width of the peak) and F~1 (cut-off for peak

height). The values of parameters e and u and d are dictated by

the 147 bp width of the nucleosome footprint. Since the width

s~20 of the smoothing kernel is much smaller than the nu-

cleosome width, the final nucleosome annotation is insensitive to

the precise width of this kernel. Similarly, raising the cut-off F by

2-fold or 4-fold would only slightly reduce the number of called

nucleosomes (i.e. 1% and 5% respectively) and not substantially

affect the results presented in the paper. We use the annotated

nucleosomes as input to GeneTrack (with the same settings), i.e. as

if each annotated nucleosome were a read, to produce annotated

reference nucleosomes. We retained the roughly 75% of annotated

reference nucleosomes that occur in all 3 data-sets, leaving 18’867
reference nucleosome genome-wide. Reference linkers were

defined as regions not covered by nucleosomes in any of the

annotations. There were 30’824 such linkers genome-wide.

Assessing the match between predicted nucleosome
coverage and experimental nucleosome positioning

To compare the experimentally annotated linker and nucleo-

some regions with the predicted nucleosome coverage we

proceeded as follows. For a given set of parameters, i.e.

concentrations c and scale parameters c, we first calculate the

median of the predicted nucleosome occupancy across each

annotated linker and nucleosome region. Given a critical median

occupancy level Ocrit, we then classified each region as either

‘nucleosome’ n when its median occupancy was larger than Ocrit

and ‘linker’ l when its median occupancy was less than or equal to

Ocrit. We then determined the fraction of regions both predicted

and annotated as nucleosome Pnn(Ocrit), the fraction of regions

predicted as nucleosome and annotated as linker Pnl(Ocrit), the

fraction of regions predicted as linker and annotated as

nucleosome Pln(Ocrit), and the fraction both predicted and

annotated as linkers Pll(Ocrit). Using these we determined the

mutual information between the predictions and the annotations

based on the experimental data:

I(Ocrit,c,c)~
X

i,j[fn,lg
Pij(Ocrit)log

Pij(Ocrit)

Pi(Ocrit)P
e
j

" #
, ð13Þ

where Pi(Ocrit) is the fraction of all regions predicted as i, Pe
j is the

fraction of regions annotated as j, and we have explicitly indicated

that this mutual information depends on the concentrations c and

scale factors c used in the predictions. We then define the mutual

information I(c,c) as the maximal mutual information that can be

obtained varying the critical occupancy Ocrit, i.e.

I(c,c)~ max
Ocrit

I(Ocrit,c,c)½ �: ð14Þ

Finally, to normalize the mutual information on a more intuitive

scale, we divide by the maximal possible mutual information, i.e.

the entropy of the experimentally observed distribution:

H~{Pe
n log½Pe

n�{Pe
l log½Pe

l �, ð15Þ

to obtain
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F (c,c)~
I(c,c)

H
: ð16Þ

Thus, F (c,c) is the fraction of the information regarding

nucleosome and linker positioning that is captured by the

predictions, which we refer to as the quality score. We calculate

the mutual informations I and quality score F in an entirely

analogous manner when considering a particular subset of

experimentally annotated nucleosomes and linkers, i.e. excluding

short linkers and/or focusing only on promoter regions.

To obtain predicted nucleosome coverage distributions we

simply calculate the predicted occupancy at each position in the

genome as described above. To obtain nucleosome coverage

distributions from different experimental data-sets we proceeded

as follows. As has been observed previously [20], especially for

ChIP-seq data-sets, the variance in read coverage along the

genome is too large to be consistent with the known overall

nucleosome coverage of roughly 80%. Consequently, a naive

normalization in which one assumes read-coverage to be directly

proportional to nucleosome occupancy would lead to unrealisti-

cally low overall nucleosome coverage. To address this, we

normalize the data by rescaling log read-coverage, similar to the

normalization procedure we developed previously for next-

generation sequencing data [60].

Specifically, for ChIP-chip data (from a tiling array with 4 bp

resolution) we obtain a signal xi corresponding to the log-ratio of

signal from the nucleosome and background sample for each

probe i along the genome. Similarly, for ChIP-seq data we extend

each read to length 147 bp and defined the ‘signal’ xi at each

genomic position i as the logarithm of the number of reads

overlapping position i. We assume that the signal xi is proportional

to the logarithm of the probability Pi that a nucleosome is bound

to the corresponding segment in the genome, i.e

xi~l log(Pi)zc, ð17Þ

where l and c are unknown constants. We determine c and l by

demanding that the average coverage probability matches the

experimentally observed average nucleosome coverage of 0:8, and

that all coverage probabilities Pi must lie in the interval ½0,1�.
Finally, there is a small number of probes (0:1 percent of all

probes) with an abnormally high signal xi and we removed these

outliers before fitting c and l. As shown in Figure S1 in Text S1,

this procedure leads to highly similar coverage distributions for

different data-sets.

Predicted average nucleosome coverage profiles around tran-

scription starts and ends were obtained by simply averaging the

predicted nucleosome coverage at different positions relative to

TSS and transcription end over all genes. We similarly averaged

the experimental coverage profiles relative to transcription starts

and ends.

Model fitting
To optimize the concentration and specificity scaling parame-

ters (c,c) we used the Melder-Mead algorithm in combination

with a simulated annealing algorithm that is implemented in the

GNU Scientific Library (GSL). To avoid over-fitting when fitting

different models with varying numbers of parameters we used a

80=20 cross-validation scheme for each model and data-set. That

is, for each data-set and model, we randomly divide the data-set of

annotated nucleosomes and linkers into 5 equally sized sub-sets.

We then perform the parameter fitting 5 independent times, each

time optimizing the parameters on 80% of the data and then

evaluating the final quality score of the model on the ‘test-set’

containing the remaining 20% of the data. Whereever quality

scores are shown we show the average quality score and its

standard-error across the 5 test-sets.

For the in vivo reference set of nucleosomes and linkers, we first

performed optimizations of the nucleosome-only model with

different (fixed) values of the specificity scaling parameter cnucl,

i.e. optimizing only the concentration cnucl. For both the in vivo and

in vitro reference sets we optimized the two-parameter nucleosome-

only model (obtaining an optimal cnucl~0:47 for the in vivo data,

and cnucl~0:41 for the in vitro data). After this we fixed the

nucleosome specificity and concentration to their optimal values

and, for the in vivo data, fitted the model with all TFs, fitting the

concentrations and scale parameters for all TFs.

For the biophysical characterization of the fitted model, we

first averaged the fitted concentrations c and scale parameters c
over the 5 training sets. We then calculated the predicted

posterior binding probabilities P(t,nDc,c) for every factor t
(i.e. the nucleosomes and all TFs) at every position n in the yeast

genome. For each factor t, we then calculated the fraction of the

genome ft covered by this protein: ft~lt
P

n P(t,nDc,c)=Lgenome,

where lt is the length of the footprint of protein t and Lgenome is the

length of the yeast genome. We also calculated the average

binding energy SEtT of the binding sites of each protein t,
i.e. SEtT~

P
n Et,nP(t,nDc,c)=½

P
n P(t,nDc,c)�, and its standard

deviation s(Et)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

t T{SEtT2
q

. Here Et,n is the binding energy

of protein t at position n, measured in units kBT . Finally, we

calculated the average entropy Ht per binding site:

Ht~

{
P

n P(t,njc,c) log2½P(t,njc,c)�z 1{P(t,njc,c)ð Þ log2½1{P(t,njc,c)�P
n P(t,njc,c)

:

ð18Þ

To calculate the information content for a TF t, as shown in

Figure S11 of Text S1, we used the standard formula

IC(t,ct)~
Xlt

i~1

X
a[fA,C,G,Tg

vt(i,a) log2½
vt(i,a)

pa
�, ð19Þ

where the pa~0:25 are background probabilities (which we chose

uniform) and the vt(i,a) are the weight matrix entries. Note that,

to incorporate the scaling parameter ct, the weight matrix entries

are rescaled according to:

vscaled(i,a)~
½vunscaled(i,a)�ctP
a’ ½vunscaled(i,a’)�ct

: ð20Þ

To assess the contribution of different TFs we fitted, for each

TF, the model with nucleosomes and this single TF. For each TF

we calculated, on each of the 5 test-sets, the difference dF between

the quality score using only the nucleosome, and the quality score

with the TF added, and determined the mean SdFT and standard

error SE~s(dF )=
ffiffiffi
5
p

over the 5 test-sets. We then ranked the TFs

by the z-statistic z~SdFT=SE. These fits and statistics were

obtained separately for both the in vivo and the in vitro data. Finally,

we also created a set of 158 randomized WMs by, for each WM,

randomly shuffling the columns of the WM. Note that this
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randomization conserves both the sequence composition and the

information scores of the WMs. We then performed the fitting

with these 158 randomized WMs and obtained z-statistics in the

precise same way.

For the in vivo data we then also fitted models including the top

5, 10, 20, and 30 TFs from the list ranked by their z-statistic, re-

optimizing all parameters. Finally, to assess the contribution of the

nucleosome specificity when TFs are added for the in vivo data, we

fitted the model including all TFs, but without nucleosome

sequence specificity, i.e. setting cnucl~0.

Annotating chromatin related TFs
To annotate TFs with known roles in chromatin dynamics we

used the Gene Ontology (GO) annotations available from the

Saccharomyces cerevisiae genome database. We considered a TF

‘chromatin related’ when its GO annotation included any of the

following categories:

N GO:0016568 chromatin modification.

N GO:0006338 chromatin remodeling.

N GO:0008301 DNA bending activity.

N GO:0031491 nucleosome binding.

N GO:0003682 chromatin binding.

N GO:0033698 Rpd3C(L) A histone deacetylase complex which

deacetylates histones across gene coding regions.

Finally, we also added the TFs identified in [12] to this list.

To calculate the over-representation of ‘chromatin related’ TFs

among the top 20 TFs effecting nucleosome positioning, we

performed a simple hypergeometric test.

Protein-protein interactions between TFs, histones, and
chromatin remodelers

We first annotated yeast proteins that are either (1) part of

chromatin remodeling complexes, (2) histone modification en-

zymes, or (3) histones themselves. Subunits of chromatin

remodeler complexes were taken from [61,62]. As subunits of

histone modification enzymes we took genes that have GO

annotation ‘‘covalent chromatin modification’’ and all children

GO categories, i.e. histone methylation, acetylation etcera (108

genes in total). Information about protein-protein interactions

were downloaded from the STRING database (http://www.

string-db.org, file ‘protein.links.detailed.v9.0.txt.gz’), using only

experimental evidence with a cutoff of 400. After determining all

known protein-protein interactions between the 158 TFs and the

three classes of proteins (histones, histone modification enzymes,

and subunits of chromatin remodeling complexes) we calculated

enrichment of interactions between each class and the top 20 TFs

that significantly explain nucleosome positioning. To assess the

significance of the enrichment we used a simple hypergeometric

test. The results are listed in Table 1.

Supporting Information

Table S1 Information for every transcription factor about Z-

scores, fitted parameters and protein-protein interactions with
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