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South Korea was free of the Middle East Respiratory Syndrome (MERS) until 2015. The
MERS outbreak in South Korea during 2015 was the largest outbreak of the Coronavirus
outside the Middle East. The major characteristic of this outbreak is inter- or intra-hospital
transmission. This recent MERS outbreak in South Korea is examined and assessed in this
paper. The main objectives of the study is to characterize the pattern of the MERS outbreak
in South Korea based on a basic reproductive ratio, the probability of ultimate extinction of
the disease, and the spatio-temporal proximity of occurrence between patients. The sur-
vival function method and stochastic branching process model are adapted to calculate the
basic reproductive ratio and the probability of ultimate extinction of the disease. We
further investigate the occurrence pattern of the outbreak using a spatio-temporal auto-
correlation function.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mathematical epidemic models are crucial tools to understand, analyze, predict and control infectious diseases. However
epidemic modeling has been a long standing challenge because of its complexity. The epidemiology of communicable dis-
eases such as hepatitis B, tuberculosis, influenza and HIV involves an interplay between the nature of infectious organisms,
evolving andmutating over time, and their transmission dynamics through direct or indirect individual contacts. Therefore, it
requires both biological and sociological perspectives when mathematically modeling the outbreak.

1.1. Previous works

Early contributions to infectious disease modeling were pioneered mostly by public health physicians. The first known
result in mathematical epidemiology was to appraise the effectiveness of a controversial inoculation against smallpox in 1760
by a mathematician, Daniel Bernoulli (1766). In 1889, P. D. En'ko contributed to the development of theoretical basis of
epidemiology (Dietz,1988), correlating a discrete timemodel with actual cases of ameasles epidemic, and Hamer developed a
discrete time model to understand the spread of the measles epidemic in 1906 (Hamer, 1906). Ross assumed that the rate of a
new infection was proportional to the numbers of susceptible and infectious individuals, and developed the ordinary dif-
ferential equation models of vector-borne diseases to first model malaria in 1911 (Ross, 1911). However, one of the early
unications Co., Ltd.
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triumphs in mathematical epidemiology was the formulation of a simple model by Kermack and McKendrick in 1927
(Kermack&McKendrick,1932;McKendrick,1926). Their predictions explained the behavior of countless epidemics, including
one of the worst epidemics in history, known as the Great Plague of London, that dicimated more than 15% of London's
population in 1665e1666. The Kermack and McKendrick epidemic model is a standard SIR model, consisting of three
compartments that are Susceptible (S), Infected (I) and Recovered (R), and assumes that the sizes of the compartments are
large enough so that each compartment is assumed to be homogeneous, or at least there is homogeneous mixing in each
subgroup if the population is stratified by activity levels. The compartment model has been often used, modified and applied
to different epidemic models (Brauer & Castillo-Chavez, 2011; Hethcote, 2000; Keeling & Rohani, 2008), as well as other
phenomena in social networking, viral marketing, sensor networking, etc. However, at the beginning stage of a disease
outbreak, there are a relatively small number of infected individuals, and the transmission of the infection is stochastic rather
than homogeneous where the individual contacts between members of the population are distinguishable and traceable. To
describe the early stage of an epidemic, stochastic branching process, first formulated by Galton andWatson in 1874, was used
to model the reproduction of a population from generation to generation. It was also used to study the extinction of family
names by Galton and Watson. Gets et al. (Lloyd-Smith and SchreiberGetz, 2006) introduced a natural generalization of the
basic reproductive ratio that was critical in controlling disease outbreak. In the stochastic branching process model, the major
interest is placed on finding the probability that the disease eventually dies out, i.e., the probability of ultimate extinction,
during the transmission.

Besides the mathematical models to predict epidemics, the temporal and spatial proximity of subjects has been studied
and used to characterize an epidemic that occurs through direct contacts at different places and times. Earlier, spatial patterns
were analyzed to describe the geographical spread of plant and human diseases (Campbell & Noe, 1985; Nicot, Rouse, &
Yandell, 1984; Snow, 1855). John Snow (Snow, 1855) greatly contributed to the early medical geography by mapping and
analyzing the major cholera outbreak of London in 1854. However, it was later realized that the disease outbreak patterns
needed to be explained not only spatially but also temporally. The techniques of spatio-temporal autocorrelation were
introducedwith an example of population diffusion in North-west England by Bennett (Bennett,1975a,1975b) and it waswell
summarized in subsequent literature (Reynolds &Madden, 1988). Recently, the spatio-temporal analysis and autocorrelation
were used to analyze fatal infectious human diseases such as Dengue fever epidemics in Southern Vietnam (Cuong et al.,
2013), and the spread of Severe Acute Respiratory Syndrome (SARS) in mainland China (Cao et al., 2016), etc. Cao, in the
analysis of the spread of SARS in China (Cao et al., 2016), used Bayesian Maximum Entropy modeling and observed the
empirical covariance based on a fitted theoretical covariancemodel with behavior of sine fluctuation in space and exponential
decay in time.
1.2. Background of MERS outbreak in South Korea

In this section, we provide the introduction and statistical summary of the MERS outbreak in South Korea to have the
general picture of the outbreak though it may be known or published earlier.

Middle East Respiratory Syndrome (MERS) is an infectious illness caused by a coronavirus that was first identified in Saudi
Arabia in 2012. It resulted in a total of 2220 laboratory-confirmed cases including 790 related deaths with a case-fatality rate
of 35:6% as of May 2018 according to World Health Organization (WHO). South Korea was free of MERS until 2015. The
outbreak ofMERS in South Korea started inMay 2015 and officially ended in December 2015. The index case of the outbreak in
South Korea was a 68 year-old male who developed symptoms on May 11, 2015 and sought care at two outpatient clinics and
two hospitals according to WHO. As a result, he exposed MERS to a number of medical staff, hospital patients, their family
members and visitors, but was not diagnosed with MERS until May 20, 2015, nine days later. The last patient, diagnosed also
with lymphoma, spent 172 days in quarantine after being diagnosed with MERS on June 7, 2015 and died on November 25,
2015. The Ministry of Health and Welfare (MoHW) in South Korea declared a formal end to the MERS virus outbreak on
December 23, 2015, which was the 218th day since the confirmation of the first patient. The end date was achieved after 28
days without any new infection, or twice the maximum incubation period for the MERS virus. Among 186 infected patients,
39 died of MERS, equating the fatality rate of MERS in South Korea to 20:97%. In this paper, we define a super-spreader as a
laboratory-confirmed patient who infected the disease to more than five contacts.

The characteristics of the MERS outbreak in South Korea are that one index case who traveled to middle eastern countries
introduced the disease to the population of South Korea, and the pattern of transmission is limited to inter-hospital or intra-
hospital infection, except one possible case of household transmission. The size of the outbreak is much smaller than the size
of the whole population in South Korea. It enables us to investigate the detailed transmission dynamics of the infectious
disease. This paper is designed to make a situational assessment on the outbreak of MERS in South Korea based on the basic
reproductive ratio and the probability of ultimate extinction. Furthermore, spatio-temporal proximity of the occurrence
between patients is investigated using an autocorrelation function.

The data were publicly available by the Ministry of Health and Welfare, the Korea Centers for Disease Control and Pre-
vention, and other press releases in South Korea. Each infected patient was numbered in chronological order based on the
infection confirmation date. In this study, we count the period of the infection starting from Day 1 which corresponds to May
20, 2015. Since there is no change in epidemic status after Day 200, we use the outbreak period from Day 1 (May 20, 2015) to
Day 200 (December 5, 2015) for figures in this paper. Fig. 1 displays the cumulative number of patients and deaths.



Fig. 1. Cumulative number of infected patients each day from Day 1 to Day 200.
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The generation is determined by how closely a patient is linked to the index case, Patient 1. The index case is the only
member of Gen 0 (Generation 0) in this outbreak. Gen 1 is a group of people who were directly infected from Patient 1, Gen 2
is infected from the members of Gen 1, and so on. The MERS outbreak in South Korea ended with four generations from Gen
0 to Gen 3 with a total of 186 MERS patients. The outbreak started in Seoul, South Korea, the shaded region in Fig. 2, and
spread out to the neighbor provinces. There were 17 hospitals where these 186 patients were confirmed with MERS. The
hospitals are identified with the first letter of the province where each hospital is located and a number by random
numbering within the province in Fig. 2. Table 1 provides the hospital identification and its corresponding location in latitude
and longitude for geographic information, and it will be used for spatio-temporal analysis later in this paper.

The box plot on the left in Fig. 3 displays the distribution of age, where the box represents the middle 50%with themedian
in red. The median age of the entire population of patients in this MERS outbreak is 55, which is ten percent higher than the
world median age (50) of MERS patients reported by the Centers for Disease Control and Prevention. The gender ratio of
patients is 1.45:1, with 110 male and 76 female patients. The fatality rates are 23:64% for male and 15:79% for female, indi-
cating male predominance with p-value¼ 0.0885 based on a one-sided test. Gen 2 has the highest rate of fatality, shown on
the right in Fig. 3, with 29:73% for male and 18:00% for female.

Fig. 4 summarizes the distribution of total new cases indicating gender and status where the square dots represent male
and the round dots represent female, In the same figure the shaded dots indicate the survivors and the unshaded dots indicate
the deceased. Each generation spanned about two weeks, which is close to the maximum incubation period for the MERS
virus. The mode of the distribution in each generation is primarily determined by the time when the super-spreaders appear
in the previous generation. The mode of the distribution in Fig. 4 is Day 19 in Gen 2. The distributions of infection period for
both the survivors and the deceased are right-skewed as shown in Fig. 5. The median durations of infection are 15 days with
the interquartile range ð12;21Þ for the survivors, and 11 days with the interquartile range ð5;15Þ for the deceased.
2. Methods

2.1. Reproductive ratio and probability of extinction

The basic reproductive ratio is important since a disease outbreak is classified as a minor outbreak or a major outbreak
depending on this number. A minor outbreak ultimately extinguishes itself with the probability of 1 when R � 1, while a
major outbreak defines itself by the boundless spread of the disease with a positive probability when R>1. There are more
than one possible interpretations for the definition of the basic reproductive rate (R). We adopt the survival function method
that is introduced in (Heesterbeek & Dietz, 1996), known as the gold standard determination of R. In this approach, the
reproductive ratio is defined as

R ¼
Z∞

0

bðtÞFðtÞdt (1)

where bðtÞ is the average number of newly infected individuals whom one infectious patient will produce per unit timewhen
infected for total time t, and FðtÞ is the survival function, i.e., the probability that a newly infected individual remains in-
fectious for at least time t. The function bðtÞFðtÞ is called the reproduction function. This approach allows us to use a time
dependent bðtÞ instead of a fixed constant rate b.



Fig. 2. MERS outbreak in South Korea. S: Seoul, K: K(G) yeonggi Province, C: Chungcheong Province, D: Daejeon, and B: Busan.

Table 1
Hospital Identification and its corresponding location in latitude and longitude.

Area Seoul

Hospital ID S1 S2 S3 S4 S5 S6 S7
Latitude 37.54 37.49 37.53 37.52 37.50 37.54 37.55
Longitude 127.13 127.09 127.11 126.94 127.09 127.07 127.16

Area Gyeonggi Chungcheong

Hospital ID K1 K2 K3 K4 K5 C1 C2
Latitude 37.01 37.22 36.99 36.99 37.23 36.93 36.78
Longitude 127.07 127.08 127.12 127.09 127.28 127.04 127.02

Area Daejeon Busan

Hospital ID D1 D2 B
Latitude 36.31 36.31 35.15
Longitude 127.34 127.37 129.11

Fig. 3. Distributions of patient age (left) and gender (right) over generation.
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Fig. 4. Summary distribution of infected cases.

Fig. 5. Distributions of infection periods for survivors (left) and non-survivors (right).
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The stochastic branching process model is often used to describe the beginning stage of a disease outbreak when the
number of infected patients remains significantly smaller than the entire population. The network of individual contacts and
transmission is more focused in this approach, and a network diagram of patients, consisting of two major objects: vertices
and edges, is often used to visualize it. Vertices represent infected patients in our study, and edges are contacts between the
members that cause transmission of the disease. We assume that every contact through each edge leads to an infection. The
orientation of transmission always flows from a generation to a higher generation but never flows reversely, which means
that the previous generation cannot be infected again by any subsequent generation. The degree of a vertex is the number of
edges connected to the vertex in the network. For a random node with a vertex degree k, the excess degree of the vertex is
defined as the number of contacts infected by the current vertex. Since the current vertex has the k connected neighbor
vertices including the source node who infected the disease to the current node, and a patient cannot be infected again from
its descendants as we assumed earlier, then the excess degree of the current node is ðk� 1Þ. The distribution of vertex degree
is essential in the description of disease transmission since it determines how fast or slow the disease spreads or dies out.

We start with the probability generating function of the neighbor distribution in a power series representation:

GðzÞ¼ E
�
zX
�
¼

X∞
x¼0

PrðX¼ xÞ zx; (2)
where PrðXÞ is the probability density function for a discrete random variable X. The power series (2) converges for 0� z � 1
since this series is differentiable and

P∞
x¼0PrðX ¼ xÞ ¼ 1. The interval ½0;1� is taken as the domain for GðzÞ since z represents

probability. Let qk�1 be the probability that a vertex has excess degree ðk� 1Þ and consider the probability generating function
of the descendent distribution in terms of qk:
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G1ðzÞ ¼
X∞
k¼1

qk�1 zk�1: (3)
To derive the probability of ultimate extinction, let zn be the probability that the infectionwill die out within n generations.
We assume that q0 is positive, otherwise the infectionwill never die out, and that qj is non-negative for all j>0. For a random
vertex with excess degree j, the probabilities zn and zn�1 are compared and depicted in Fig. 6. The sequence fzng is mono-
tonically increasing since the probability that an infection dies out within n generations is generally larger than or equal to the
probability that it dies out within ðn� 1Þ generations. For a certain j, the probability of ultimate extinction of the infection
within n generations is the product of qj and zjn�1. Thus the probability zn is the summation over all possible non-negative
integers j2J, which is the expected value of zJn�1 where J ¼ N∪f0g:

zn ¼ E
�
zJn�1

�
¼

X∞
j¼0

qj z
j
n�1 ¼ G1ðzn�1Þ: (4)
Since zn is a Cauchy sequence, then it converges. Let z* be the limit value of zn as n goes to infinity, lim
n/∞

zn ¼ z�. By taking
the limit to Equation (4), then we have:

z� ¼ G1ðz�Þ; (5)

which is a fixed-point problem. It is important to know where the zeros of Equation (5) are located since it provides the
probability for equilibrium when the infection eventually dies out. If z� is 1, then the infection will certainly extinguish,
otherwise it may manifest into a major outbreak. The detailed calculation and derivation can be found in (Brauer & Castillo-
Chavez, 2011).

2.2. Spatio-temporal analysis: auto-correlation

While the stochastic branching process model gathers the information of the individual transmission in each generation
and predicts the probability of the ultimate extinction of the disease, it does not include both spatial and temporal infor-
mation of the transmission. Autocorrelation analysis is the most straightforward way to establish direct links between two
series. In this section, we adapt the autocorrelation function to analyze the spatio-temporal proximity of occurrence during a
disease outbreak.

We modify the traditional definition of autocorrelation function (Reynolds & Madden, 1988) for our analysis. Let a real-
ization Xi;j indicate occurrence of a diseasewhere Xi;j ¼ 1 if a vertex vi infects the disease to another vertex vj, otherwise Xi;j ¼
0.We note that the direction of transmission is always from one generation to the next generation but never in reverse. Let I
be the index set of vertices and N ðiÞ be the index set of vertices that are infected by a vertex vi in the neighborhood of vertex
vi for i2I .

We define indicator functions, △s in space and △
t in time, respectively, such that
Fig. 6. Probability that a disease dies out within n generations from a vertex with excess degree j.
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△
s
i;j ¼

8<
:

1 if ds
�
vi; vj

� ¼ s
0 otherwise;

△
t
i;j ¼

8<
:

1 if dt
�
vi; vj

� ¼ t
0 otherwise;

where dsðvi; vjÞ and dtðvi; vjÞ are the spatial distance and serial interval of occurrence between two vertices vi and vj,
respectively. For the sake of simplifying notation, we adopt:

Xs
i;j ¼ △

s
i;j Xi;j;

Xt
i;j ¼ △

t
i;j Xi;j;

where Xs
i;j plays as an indicator if the distance between the two serial vertices vi and vj is s or not, and Xt

i;j plays as an indicator
whether the serial interval between these two vertices is t or not. For all i2I and j2N ðiÞ, we define the spatio-temporal
autocorrelation function of occurrence as:

Coðs; tÞ ¼

P
i2I

j2N ðiÞ

�P
t△

t
i;j X

s
i;j

��P
s△

s
i;j X

t
i;j

�

0
BBBBB@
P

i2I
j2N ðiÞ

�P
t△

t
i;j X

s
i;j

�2
1
CCCCCA

1=20
BBBBB@
P

i2I
j2N ðiÞ

�P
s△

s
i;j X

t
i;j

�2
1
CCCCCA

1=2 (6)

which describes how likely the distance and time difference between two connected vertices vary together when one vertex,
vi, transmitted the disease to the neighbor vertices vj for j2N ðiÞ. The autocorrelation in Equation (6) is defined differently
from traditional definitions where only the fluctuation parts of variables are considered. However, we use the full variable
term instead of the fluctuation part since we are interested in the number of occurrences rather than the fluctuation of
occurrence.

3. Results and discussion

The network map for the transmission of MERS in South Korea during 2015 is shown in Fig. 7. The vertices without any
shade represent the deceased. It starts from the index case (Gen 0), numbered as 1 in the map, who transmitted MERS to 29
people in the next generation, Gen 1, and so on. Since the sources of infection for Patients 43, 44, 51, 53, 166, 178, 183, 184 and
185 are unknown, we assume that their excess degree of vertex is 0. The source of infection for Patient 52 is also unknown but
the excess degree of vertex is 1 as Patient 52 infectedMERS to Patient 119. In Fig. 7, there are a few super-spreaders, Patients 1,
14, 15, 16 and 76, who contributed to 83% of all active cases.

To calculate the reproductive rate for the MERS outbreak in South Korea, we use Equation (1) in a discrete form. The
average number bðtÞ of new patients from an infectious patient per unit time (one day) and the survival function FðtÞ at time t
are graphed in Fig. 8. The calculated reproductive ratio based on these two functions is R ¼ 3:7949 which is considerably
larger than 1 and this outbreak is classified as a major outbreak. For the probability of ultimate extinction that is the root of
Equation (5), we define hðzÞ ¼ G1ðzÞ� z. The graph on the left in Fig. 9 shows hðzÞ and the probability of ultimate extinction for
R>1, i.e., the zero of the function hðzÞ less than 1, is located at z� ¼ 0:4996. The graph on the right shows the profile of the
probability of ultimate extinction over the outbreak. The probability drops but immediately increases after the appearance of
super-spreaders on Days 14e16, which indicates how important successful quarantine of super-spreaders is during an
epidemic.

The demographical distribution of each generation over the 17 hospitals in Fig. 2 as well as in Table 1 is depicted in Fig. 10.
One may expect a strong association between the size (bed counts) of the hospital and the number of MERS cases. However,
we found the association to be very weak with a coefficient of determination close to zero for this particular outbreak. This
explains the importance of quarantine regardless of hospital size. Our interest lies in the spatio-temporal proximity of
occurrence between two patients where one patient infected MERS to the other, i.e. the two connected vertices in Fig. 7. For
this purpose, we use the geographical distance and the difference of the confirmation dates (serial interval) between these
paired patients. The distance is measured by the haversine formula between two hospitals in latitude and longitude in Table 1.
While this Euclidean distance may not give the exact travel distance in a metropolis such as Seoul in South Korea, we assume
that it is sufficient to characterize the geometrical distances between hospitals or the travel distances of patients. The dis-
tributions of the distance and the serial interval between all connected vertices in Fig. 7 are depicted in Fig. 11. As we observe
in the graph on the left in Fig. 11, there are three major distances, approximately 0 km, 53 km and 81 km, that are well



Fig. 7. Transmission diagram of the MERS outbreak in South Korea. The nodes without shade represent the deceased. The different shades represent different
out-degrees, i.e., the excess vertex degrees.

Fig. 8. Graphs of bðtÞ and the survival function FðtÞ in Equation (1).
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associated with the major distances in Fig. 10, characterizing inter-hospital or intra-hospital transmission. Most of the pa-
tients in Gen 1 are located at Hospital K1 in Fig.10, where the index case in Gen 0was also confirmed, contributing the highest
probability at the distance of 0 km in the left graph of Fig. 11. The major hospitals in Gen 2 are S2, K1-K3 and D1-D2.



Fig. 9. The function hðzÞ¼ G1ðzÞ � z on the left and the probability of ultimate extinction in terms of days on the right.

Fig. 10. Number of patients confirmed at each hospital over each generation.
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Considering the three prominent distances in the graph on the left in Fig. 11, we infer that the disease was transmitted
intensely between S2 and K1-K3 (about 53 km apart), and between K1-K3 and D1-D2 (about 81 km apart), rather than
transmitted directly between S2 and D1-D2 (about 133 km apart), unless otherwise intra-hospital (0 km apart) transmission
in Gen 2. Lastly, the major hospitals in Gen 3 are located mostly within 25 km from each other in Seoul, and the total number
of patients in Gen 3 is not as high as those in other generations. The mean serial time interval is 9.8057 days with a 95%
confidence interval of (9.1975, 10.414) in the graph on the right in Fig. 11.

Fig. 12 demonstrates the spatio-temporal autocorrelation results of the MERS outbreak in South Korea, based on Equation
(6). The first row in Fig.12 is the profile of Coðs; tÞ over the entire transmission period in the three-dimensional presentation in
Fig. 11. Distributions of the distance and serial interval between two connected vertices (patients) in Fig. 7.



Fig. 12. Spatio-temporal Autocorrelation functions for the entire period of transmission (first row), Gen 1 (second row), Gen 2 (third row) and Gen 3 (fourth row)
from the top. The 3-dimensional presentation on the left and the corresponding contour figures in st -plane on the right.

H. Lee / Infectious Disease Modelling 4 (2019) 227e238236
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the left and the corresponding contour plots in st -plane in the right. The second to the fourth rows in Fig. 12 are the au-
tocorrelations for Gens 1, 2 and 3, respectively. The autocorrelation over the full domain has a few distinct spikes at certain s-
and t-lags. The peaks in the spatial and temporal lag domain explains that there are a few hospitals mainly involved in the
transmission, that characterizes a typical pattern of inter- and intra-hospital transmission. These patterns of the autocor-
relation in spatial and temporal directions can be closely associatedwith Fig.11. The transmissions in Gen 1weremainly intra-
hospital as there is very little spatial distribution. The index case was confirmed with MERS in Hospital K1 and most of Gen 1
were located at the same hospital, which creates a strong autocorrelation at s ¼ 0 as depicted in the second row in Fig. 12. In
Fig. 10, we can infer that most of Gen 2 in Hospital S2 were infected by patients from Hospital K1 in Gen 1 that were located
about 53 km apart. This explains the peak in the autocorrelation in Gen 2. The patients in Gen 3 were mostly infected from
patients at the same hospital or nearby hospitals. To understand these graphs better, we note that the projections of the
autocorrelation in the first row in Fig. 12 onto s-axis and t-axis have similar patterns with the left graph and the right graph in
Fig. 11, respectively.

4. Conclusion

In this paper, we examine and assess the outbreak of MERS in South Korea based on the reproductive ratio and the
probability of ultimate extinction as well as the spatio-temporal autocorrelation of occurrence.

The basic reproductive ratio is the expected number of secondary infections arising from an infectious individual over the
entire epidemic. Since the estimation of the reproductive ratio is based on sufficient data acquired from the fully-completed
or well established epidemic, the prediction of further development of the epidemic is somewhat limited (Mills et al., 2004).
Though there are different approaches for estimating the reproductive ratio (Hefferman, Smith, & Wahl, 2005), we chose to
use the survival function method that is widely applicable as there is no assumption of a constant transmission rate. To
calculate the reproductive ratio, the average contact rate bðtÞ as a function of t is directly simulated from the data instead of
using a constant rate in other works (Chang, 2017; Choi, Jung, Choi, Hur,& Ki, 2018), and the survival function is also examined
from the outbreak data. The resulting reproductive ratio for the MERS outbreak in South Korea is R ¼ 3:7949, and the MERS
outbreak in South Korea is classified as a major outbreak.

The stochastic branching process model fits well with this scenario of theMERS outbreak in South Korea since it involves a
relatively small number of patients compared to the whole population of South Korea, allowing us to trace the individual
contacts and gain the detailed dynamics of the transmission. Based on the transmission data, we estimate the probability of
ultimate extinction by using the probability generating function and assuming the probability of extinction eventually rea-
ches the equilibrium state. The probability of ultimate extinction of the MERS outbreak in South Korea is calculated as 0.4996.

While the reproductive ratio and the probability of ultimate extinction are useful to classify the outbreak and predict the
extinction of the disease in a long term, it fails to provide any spatial or spatio-temporal aspects of the transmission. The
spatial and temporal proximity of the transmission between occurrences is measured based on the autocorrelation function
that describes how likely the spatial and temporal differences between patients vary together. The autocorrelation profiles the
entire transmission period, as well as over each generation period, and provides good insight in understanding and char-
acterizing the patterns of inter-hospital or intra-hospital transmission of the MERS outbreak in South Korea. We observed a
few distinct peaks of autocorrelation values in the spatial and temporal domain, clearly displaying the characteristics of the
MERS outbreak in South Korea.

Finally, we observe that a few super-spreaders greatly contributed to the MERS epidemic in South Korea, infecting 83% of
all active cases, and elevated the reproductive ratio. To reduce the number of super-spreaders and consequently the repro-
ductive ratio, more thorough quarantine can be ordered. However, Lipsitch et al. (Lipsitch et al., 2003) also argued the trade-
off between reducing the reproductive ratio and stressing the population with excessive quarantine, suggesting that the
reproductive ratio may not always be the best measure. As a future endeavor, modeling super-spreading events with non-
diffusive terms in mathematical equations will be investigated and a better quarantine plan will be suggested.
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