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ABSTRACT The genome of Salmonella enterica serovar Typhimurium LT7 comprises
a chromosome and two plasmids. One plasmid is very close to pSLT of Salmonella
Typhimurium LT2; the second harbors a shufflon region. Prophage content is dis-
tinct: LT7 lacks Fels-1, while Gifsy-1 and Fels-2 show island-like divergence and likely
programmed inversion, respectively.

The isolates Salmonella enterica subsp. enterica serovar Typhimurium LT7 and LT2
were early model organisms for the study of gene transfer (1–3). Salmonella tax-

onomy has varied (4); these two lysotypes differ in prophage content (5). Isolates of
LT2 were found to be more genetically stable than those of LT7 (6), which remains a
model for its mutator properties (6, 7). Our LT7 isolate, STK003, was MST1656 from
Stanley Maloy.

A Pacific Biosciences RS II instrument and the SMRT Analysis pipeline were
used for sequencing, contig assembly, and modification analysis as described in
reference 8. Briefly, cells were grown in LB and harvested, and DNA was then iso-
lated with phenol-chloroform (9). A SMRTbell library was constructed from 5mg
sheared (Covaris g-TUBE, 5 to 10 kb) DNA; sequencing used polymerase 6, chem-
istry 4. A total of 1,964 Mb of sequence in 131,952 polymerase reads with mean
subread lengths of 3,046 bp and an N50 subread length of 4,016 bp was obtained
(;329� coverage). Assembly (RS_HGAP_Assembly.3; smrtanalysis_2.3.0.140936.
p5.167094) specified a 5-Mb expected genome size, minimum subread length
(MSL) of 1,000 bp, minimum read accuracy of 0.80, and minimum polymerase
read length (MPRL) of 1,000 bp (other parameters were at default settings).
Three contigs resulted with sizes of 4,835,584 bp, 115,234 bp, and 109,793 bp.
The overall structure was rechecked with RS_HGAP3, resulting in an MSL of
3,000 bp and an MPRL of 9,000 bp.

Annotation, manipulation, and analysis employed Geneious_9.1.8 (Biomatters)
with the options “Annotate_from_Database” (resulting in a 100% DNA match to
the genome sequences found under the GenBank accession numbers AE006468,
AE006471, and NZ_CP012929), “Sequence,” and “change residue numbering.”
Circularization employed reference 10 or the procedure described in reference 11,
File S1. Coordinates were set to agree with the reference origins. The final circular
polished (Quiver) assemblies were a chromosome (4,817,454 bp) and two plas-
mids (93,946 bp and 88,171 bp). The GC contents are, respectively, 52.2%, 53.1%,
and 50%.

The 4.8-Mb chromosome of STK003 shows 98.8% nucleotide identity to LT2
(MAFFT [12]). One plasmid is a close relative of pSLT of LT2; the second most
closely resembles p12-4374_96 from Salmonella enterica subsp. enterica serovar
Heidelberg (GenBank accession number NZ_CP012929). LT7 lacks prophage Fels-1,
which is expected from the lysotype (13, 14). Prophages Fels-2 and Gifsy-1 of the
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two strains differ in important respects. Gifsy-1 carries a substitution of ;7.5 kb
between LT2 loci STM2620 and STM2630, likely from a different prophage (e.g.,
serovar Newport [GenBank accession number CP025230]). In contrast, Gifsy-2 is
almost identical to the LT2 copy. Inversion of a Fels-2 tail fiber gene (Fig. 1; from
the Geneious_Prime_2020.2.4 implementation of Mauve [15]) likely was mediated
by pin homolog ITP16_13610 (LT2 locus tag STM2702) (16). Alternative host ranges
are conferred by similar inversions mediated by cin of phage P1 and gin of phage
Mu (17) and possibly pin of the e14 prophage-like element. The second plasmid
harbors an ;2-kb region related to shufflons of IncI conjugal plasmids, which
employ site-specific recombination to generate variation in pilus protein adhesion
specificity (18, 19).

The methylation phenotype (from RS_Modification_and_Motif_Analysis) and ge-
notype agree with activities expected for the serovar (Table 1), confirming function-
ality of methyltransferase (MTase) open reading frames (ORFs). No major single nu-
cleotide polymorphisms (SNPs) were found in the restriction-modification (R-M)
systems. Partial activity of M.SenLT2IV orthologs was previously reported for LT2
and other Salmonella enterica serovars (20).

Data availability. The genome sequences described here have been deposited
under GenBank accession numbers CP064263 to CP064265 (assembly number
ASM1547561v1) (PGAP annotated [21, 22]) and SRA numbers SRR12788408 and
SRR12788409.

FIG 1 Inversion of candidate phage tail fiber coding sequence of Fels-2. Colored blocks represent segments of matching sequence (LCB), with
genome coordinates above the blocks. Blocks above the horizontal lines have identity on the same strand; for the one below it, the bottom strand is
identical to the top strand of its homolog. Accession numbers are below the horizontal lines; below that are open boxes labeled with locus tags of
predicted coding DNA sequences (CDS). CDS STM2702 of LT2 (GenBank accession number AE006468) and its identical homolog, ITP16_13610 (fin) of
LT7 (CP064263), adjoin the inversion. Alternative C-terminal segments are fused to identical N termini for STM2703 and ITP16_13615; similarly,
identical N termini of STM2706 and ITP16_13630 are fused to alternative C termini. (We observe that notes in the LT2 sequence misleadingly describe
STM2703 as similar to pin of e14; a more extensive description of STM2702 accurately notes similarity to site-specific recombinases and invertases.)

TABLE 1Methylation specificity of DNA MTases in Salmonella enterica subsp. enterica serovar Typhimurium LT7a

MTaseb Motifc Type of modification Sites with IPD> 2 (%)d

M.SenLT7I (StyLT) 59 CAG*AG 39 m6A 99.2
M.SenLT7III (StySA) 59 GATC*AG 39 m6A 99.3
M.SenLT7II (StySB) 59 G*AGNNNNNNRTAYG 39

39 CTCNNNNNNY*ATRC 59
m6A 98.8

100
M.Dam 59 G*ATC 39 m6A 99.7
M.Dcm 59 C*CWGG 39 (m5C) 0.3
M.SenLT7IV 59 ATGC*AT 39 m6A 54.9
a The PacBio technology does not detect m5C accurately.
b For MTases associated with restriction activities (R-M), synonyms found in the restriction literature are in parentheses.
cModified sequence motifs (* precedes the methylated base).
d The percentage of recognition sites that were methylated. IPD, interpulse duration (23).
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