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ABSTRACT

Objective: The study sought to evaluate the feasibility of using Unified Medical Language System (UMLS) se-

mantic features for automated identification of reports about patient safety incidents by type and severity.

Materials and Methods: Binary support vector machine (SVM) classifier ensembles were trained and validated

using balanced datasets of critical incident report texts (n_type¼2860, n_severity¼1160) collected from a state-

wide reporting system. Generalizability was evaluated on different and independent hospital-level reporting

system. Concepts were extracted from report narratives using the UMLS Metathesaurus, and their relevance

and frequency were used as semantic features. Performance was evaluated by F-score, Hamming loss, and ex-

act match score and was compared with SVM ensembles using bag-of-words (BOW) features on 3 testing data-

sets (type/severity: n_benchmark¼286/116, n_original¼444/4837, n_independent ¼6000/5950).

Results: SVMs using semantic features met or outperformed those based on BOW features to identify 10 differ-

ent incident types (F-score [semantics/BOW]: benchmark¼82.6%/69.4%; original¼77.9%/68.8%;

independent¼78.0%/67.4%) and extreme-risk events (F-score [semantics/BOW]: benchmark¼87.3%/87.3%;

original¼25.5%/19.8%; independent¼49.6%/52.7%). For incident type, the exact match score for semantic clas-

sifiers was consistently higher than BOW across all test datasets (exact match [semantics/BOW]: bench-

mark¼48.9%/39.9%; original¼57.9%/44.4%; independent¼59.5%/34.9%).

Discussion: BOW representations are not ideal for the automated identification of incident reports because they

do not account for text semantics. UMLS semantic representations are likely to better capture information in re-

port narratives, and thus may explain their superior performance.

Conclusions: UMLS-based semantic classifiers were effective in identifying incidents by type and extreme-risk

events, providing better generalizability than classifiers using BOW.

Key words: UMLS, semantics, patient safety, incident reporting, supervised machine learning, text classification, natural lan-

guage processing

INTRODUCTION

Health systems are experiencing a growing need to better harness

their incident monitoring systems to improve patient safety. Incident

monitoring is now widespread with the implementation of monitor-

ing systems in most developed nations.1 Healthcare professionals

are routinely submitting reports about incidents or safety events in

the delivery of care that could have resulted or did result in unneces-

sary harm to patients.2 By retrospectively analyzing incident reports,

health systems are striving to detect and manage emerging risks to

patient safety.3
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The timely detection and response to patient safety incidents is

highly dependent on rapid analysis of reports by humans, which is a

highly resource-intensive task. Patient safety experts typically triage

incidents by their type and severity level for detailed analyses of un-

structured free text data to identify contributing factors so that les-

sons can be learned and corrective action can be taken. Incident

types are usually based on priority areas for safety and quality im-

provement (eg, falls, medications), whereas severity level is based on

the consequences of incidents and the likelihood of recurrence.4,5

For instance, hospital-level analyses could investigate common

causes, contributing factors, and outcomes for specific incident types

(eg, medications). Similarly, clusters of similar high-risk incidents

could be identified at a health system level, indicating an emerging

risk to patient safety. Take, for instance, an update to an order entry

system that turns off the alerts for a high-risk medication across

multiple sites. An incident at one site involving the medication may

not be significant, whereas a cluster across multiple sites can facili-

tate early detection of the issue.

A major limitation of manual analysis is that it can no longer

keep up with the growing volume of reports. For instance, 203 140

incidents were reported in the Australian state of New South Wales

in 2018.4 One way to improve the identification of incident clusters

is to ask reporters to categorize incidents in a standardized manner

using structures like the Agency for Healthcare Research and Qual-

ity Common Formats.6 However, the labeling of incidents only

works if reporters are knowledgeable about classification systems

and are able to apply them consistently.7 Studies have shown that

the ratings provided by reporters are often inaccurate, and there is a

high discordance in labels because health professionals may not

have expertise in categorizing incidents.7–9 Moreover, labeling may

often be absent, incomplete, or delayed, reducing the ability to re-

spond in near real time.8

Another—potentially more effective—way to improve the effi-

ciency of incident analyses is to apply machine learning methods. Re-

cent work in this area has demonstrated the feasibility of using

supervised text classification methods to automatically sift through the

large volumes of incident reporting data and identify specific clusters of

reports for further detailed analysis by humans.10 However, most stud-

ies have focused on using supervised methods for binary classification

to identify a specific incident type. In reality, there are multiple incident

types reflecting the breadth of problems in patient safety and little is

known about the most optimal way to represent the free text from inci-

dent reports for automated identification. We recently demonstrated

that a convolutional neural network with word embedding was effec-

tive in identifying incidents by type and severity, providing better gener-

alizability than support vector machine (SVM) classifiers.11 While a

convolutional neural network is an elegant solution to distinguish mul-

tiple incident types, it does not support multiple labels.

Often an incident report can relate to more than 1 patient safety

problem (ie, it can be assigned to multiple incident types).1 For ex-

ample, “Episode label A for patient X was placed incorrectly onto

the specimen that belongs to patient Y,” describes an error in patient

identification that also relates to documentation. In another previ-

ous study to identify up to 2 labels for 10 incident types, we found

that classifiers based on the bag-of-words (BOW) model failed when

causes and consequences of incidents were implicitly described in

reports.12 This is because BOW does not take the semantic structure

of language into consideration, and the ordering of words is also

lost. For instance, an incident about a deteriorating patient was misi-

dentified as a medications problem because there was a long list of

medications and their doses in the incident narrative.12 We also

found that BOW classifiers were not effective in identifying rare

classes of incidents (ie, making up < 2% of all incidents) in which

the data available for training were limited (eg, infection, deteriorat-

ing patient).

Thus, in this study, we sought to evaluate the utility of semantic

feature representation for automated identification incident reports

by type and severity. We chose the Unified Medical Language Sys-

tem (UMLS) Metathesaurus, as it covers more than 2.9 million med-

ical concepts from more than 150 source biomedical vocabularies.13

The UMLS links alternative names for concepts and identifies useful

relationships between concepts. The semantics in reports were repre-

sented by mapping incident narratives to UMLS concepts to train

and validate (SVM) classifiers. For incident type, ensembles of bi-

nary classifier chains (ECCs) were used because they perform better

than other multilabel classification algorithms, such as binary rele-

vance,14,15 and their chain structure can leverage the relationships

among labels. We then compared the performance of this approach

with BOW features from our previous work.12,15

MATERIALS AND METHODS

An overview of our approach comprising 4 main steps is shown in

Figure 1.

1. Data preprocessing: Incident reports were collected from 2 sepa-

rate reporting systems, the Advanced Incident Management Sys-

tem (AIMS) and Riskman.4,5 The reports were labeled by patient

safety experts to provide a gold standard label for experiments.

2. Semantic features representation: The narratives of reports were

processed to generate semantic features.

3. Training and validating classifiers: Classifiers were trained and

validated under cross-validation process to select optimal models

based on performance. Here, the multilabel classification prob-

lem was transformed by training multiple basic binary classifier

chains (CCs) (ie, developing a classifier identifying one type

against all others while involving the relationships among inci-

dent types).15 For severity level, we decomposed the problem

into a series of binary classification problems. To distinguish 4

severity levels, 6 binary classifiers were trained using balanced

datasets with one-vs-one (OvsO) strategy.12

4. Testing classifiers: Was undertaken with 3 testing datasets from

the AIMS and Riskman systems. Incident type and severity level

were examined separately. Model performance was evaluated

and compared with BOW classifiers.10 Each of these 4 steps is

further detailed subsequently.

Step 1: Data preprocessing
Incident reporting systems

The reports were collected from 2 separate incident reporting sys-

tems: AIMS and Riskman.4,16 AIMS has been used in Australia,

New Zealand, South Africa, and the United States. In Australia, it

has been used across the public hospital system in 4 of the 8 states

and territories: New South Wales, Western Australia, South Austra-

lia, and the Northern Territory. In one Australian state, 137 522

incidents were reported to AIMS from January to December 2011.

Of these, 6000 reports were selected using a random sampling ap-

proach.5 Similarly, an independent set of 6000 reports were ran-

domly selected from those that had been submitted to a hospital-

level Riskman system from January 2005 to July 2012. The Risk-

man system is an independent tool used across the state of Victoria

and a number of private hospitals.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 10 1503



Incident reports consist of a number of structured and free text

fields to describe the event and its consequences (Box 1). Upon col-

lection, any personally identifiable information was removed in ac-

cordance with jurisdictional privacy requirements (eg, name, date of

birth). Only descriptive narratives were used in experiments includ-

ing incident description, patient outcome, actions taken, prevention

steps, investigation findings and results. All system-specific codes,

punctuation, and nonalphanumerical characters were removed, and

text was converted to lowercase. Ethical approval was obtained

from university committees as well as a committee governing the

hospital and state datasets.

BOX 1. THE BASIC ELEMENTS OF AN
INCIDENT REPORT FROM THE AIMS AND
RISKMAN SYSTEMS

Labeling reports

Given the inconsistency of reporter labels,9 3 experts in the classifi-

cation of incidents reviewed and validated labels for all reports

based on the international classification for patient safety.5 The

reports were split among the 3 experts, and the labels they provided

were used as “gold standard” for training and testing the perfor-

mance of classifiers. The reports were classified into 20 incident

types, and this study focused on 10 of these types that have been rec-

ognized as priority areas for safety and quality improvement (Ta-

ble 1).2,5,12 Interrater reliability for determining incident types was

Cohen’s kappa ¼ 0.93 (P< .001; 95% confidence interval, 0.9301-

0.9319). To cover the whole dataset, an “Others” set was created

using a random sampling approach to ensure representativeness of

10 other unrelated incident types—see Appendix B in in Wang

et al.12

The seriousness of an incident was rated by an internationally ac-

cepted rating system called the severity assessment codes (SACs), de-

veloped by the U.S. Veterans Administration.17 Given the severity of

an incident and the likelihood of recurrence, 4 risk ratings (i, ex-

treme; ii, high; iii, medium; and iv, low) were used.18 The gold stan-

dard was based on assignment of SAC ratings for every report by

local patient safety managers who had received training in assessing

incident seriousness and were familiar with the nature of incidents

and their consequences.

Generating training and testing subsets

Of the 6000 AIMS reports, we used 260 that were randomly selected

from each incident type and 290, also randomly selected, for each

SAC level to create a balanced dataset (Table 1). The sample sizes

were based on previous studies.12 The balanced dataset was further

divided into training (80%), validation (10%), and testing (10%)

subsets under a 10-fold subsampling cross-validation process. The

training and validation subsets were used to identify the most effec-

tive classifiers, and the testing subset (benchmark) was applied to

generate benchmark results.

To evaluate applicability in real-world conditions, classifiers

were further tested on imbalanced (ie, “stratified”) datasets from

AIMS (original). These stratified datasets were randomly selected

from the remaining AIMS reports based on the real-world ratio inci-

dents by type and severity (Table 1). To examine generalizability to

an independent incident reporting system, classifiers were tested on

a stratified Riskman dataset (independent).

Step 2: Semantic features representation
We developed a bag-of-concepts model to extract unique concepts

as semantic features from incident narratives. This approach is simi-

lar to a BOW model extracting unique words but maps tokens,

terms, and words from incident reports into medical concepts from

the UMLS. To identify unique concepts, a software tool called

MetaMap was used to annotate the UMLS concepts and semantic

types.19 The bag-of-concepts model was represented as an unor-

dered collection of concepts in which each concept was used as a

feature. Three feature engineering approaches were adopted to rep-

resent the occurrence of concepts: binary count, term frequency

(TF), and TF–inverse document frequency (TF-IDF).20

Step 3: Training and validating classifiers
Ensemble strategy

The classification problem was decomposed into a number of binary

classification problems.12,15 There are 2 traditional ensemble strate-

gies to pool decisions from each base binary classifier: one-vs-all

(OvsA) and OvsO.21 OvsA divides an n class problem into n binary

problems by training classifiers to distinguish one class from all

other classes.21,22 It was used in identifying incident types as it con-

sidered all possible label combinations, suiting the design of learning

label relationships.15,23 The OvsO strategy transforms an n class

problem into n*(n-1)/2 binary problems by involving all possible

combinations between pairs of classes. Given its good performance

Figure 1. Flowchart to train, validate and test semantic classifiers using 3 testing datasets: benchmark, original, and independent.

Report format Structured Free text

Basic element incident ID description of incident

date and time actions taken
• incident type(s)
• severity access code

• preventative steps
• patient outcome

investigation findings and

results

1504 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 10



to identify severity levels in our previous work,12 the OvsO strategy

was adopted.

Base binary classifiers

SVM with radial basis function (RBF) kernel was chosen, as it has

been shown to be effective for smaller datasets with a large feature

space.24,25 Furthermore, SVM outperformed other binary classifiers

in our previous work, such as a logistic regression model.12,15

We used an ensemble of SVM classifiers with semantic fea-

tures.15,26 For incident type, SVM classifiers were linked along a

chain where each classifier dealt with a binary problem. Classifier

chains were different from the common binary classifiers because

their feature space was extended with binary values to indicate the

relationships between incident types that appeared in training

data.26 The order of the chain itself was determined by the order of

the label variables. In the extended feature space, binary values of

labels only indicated which of previous labels were assigned to

reports.14 To reduce the influence of label order, incident types were

randomly reordered and training was repeated. Final decisions were

based on the predictions of each ECC. As classification performance

often increases with ECC size used in training, ECCs may become

unnecessarily large and impose a high computational cost. We ex-

amined the optimal size for ECC combinations by varying the num-

ber of ensembles from 3 to 40. A learning curve was used to find the

optimal ECC by trading off computational cost against classifier ac-

curacy.26 The feature space for severity level involved the sematic

features alone. This is because severity level involves a single label or

risk group while there may be multiple incident types.

Base classifiers were trained, validated, and tested on balanced

datasets using 3 semantic feature representations: binary count, TF,

and TF-IDF. A 10-fold subsampling cross-validation method was

applied to optimize the classifier parameters. The parameters from

classifiers achieving the highest F-score were adopted for testing.

Step 4: Testing classifiers
In group decision making, majority vote is an efficient method and

has been commonly accepted in classification ensembles.25 To iden-

tify incident type, the final decisions were made by averaging multi-

ple predictions from individual CCs. Up to 2 labels were predicted if

the averaged classification probabilities exceeded a predefined

threshold. For severity level, each base classifier voted and the final

prediction was based on the level with the most votes.27

For incident type, overall performance was evaluated using

example-based and label-based measures.15 Example-based meas-

ures evaluate the difference of the true and the predicted sets of

labels over all testing reports. Label-based measures consider addi-

tional degrees of freedom with multilabels and evaluate performance

separately for each incident type, and then average the performance

over all types. We used 6 commonly example-based measures, in-

cluding Hamming loss, accuracy, exact match score, precision, re-

call, and F-score.28 Given 2 labels per report, the performance for

individual types was evaluated based on OR logic when matching

the predicted and true set of labels. Label-based measures included

macro-averaged and micro-averaged precision, recall, and F-

score.12,15 We also examined the top 20 UMLS concepts from each

incident type to identify concepts that were common across the 10

types of incidents, as well as those that were unique to each incident

type.

For severity level, overall performance was evaluated using

micro-averaged measures of precision, recall, and F-score based on

the cumulative number of true positives, true negatives, false posi-

tives, and false negatives per type.12,28 When identifying a specific

severity level, the F-score, precision, and recall measures were evalu-

ated per level. Individual measures were calculated based on the

probability that a specific severity level was classified as such (eg, %

of extreme-risk incidents correctly identified among the test set for

SAC1).

Table 1. Composition of balanced and stratified datasets for training and testing semantic classifiers

Benchmark (balanced AIMS) Original (stratified AIMS) Independent (stratified Riskman)

N1 N2 N1 N2 % N1 N2 %

Incident type

Falls 260 261 90 91 20 872 939 15

Medications 260 304 68 74 15 1053 1217 18

Pressure injury 260 264 37 38 8 190 197 3

Aggression 260 271 49 57 11 487 541 8

Documentation 260 589 26 67 6 252 809 4

Blood producta 260 273 5 6 1 59 70 1

Patient identificationa 260 337 7 8 2 86 117 1

Infectiona 260 274 6 6 1 22 35 <1

Clinical handovera 260 301 7 8 2 87 101 1

Deteriorating patienta 260 264 1 2 <1 14 21 <1

Others 260 689 148 173 33 2,878 4039 48

Total 2860 3827 444 530 6000 8086

Severity level

SAC1 • 290
• 290
• 290
• 290

• 1160

• 25
• 95

• 2198
• 2519
• 4837

<1 • 23
• 105

• 2609
• 3213
• 5950

<1

SAC2 2 2

SAC3 45 44

SAC4 52 54

Total

The same data was used to train bag-of-words classifiers.

N1 is the number of reports based on primary labels. N2 is the number of reports considering 2 labels, and % is based on primary label alone.

AIMS: Advanced Incident Management System; SAC: severity assessment code.
aRare incident type (ie, <2%).
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RESULTS

Overall performance to identify incident type
For incident type, the most effective classifier was an ensemble of 12

binary classifier chains of SVM RBF kernel with TF-IDF UMLS-

based semantic feature representation, achieving an averaged F-

score of 82.6% on the benchmark, 77.9% on the original, and

78.0%, on the independent datasets (Table 2).

Compared with BOW, the overall performance of semantic clas-

sifiers was superior (Table 3). When identifying multiple incident

types to which reports could be assigned, semantic classifiers

achieved better exact match scores, improving overall performance

on all 3 testing datasets. Hamming loss dramatically dropped from

7.2 to 3.7 on the original dataset and decreased from 8.1 to 3.9 on

the independent dataset. By label-based measures, both semantic

and BOW classifiers performed consistently on the original and in-

dependent datasets. With the exception of macro-recall, all label-

based measures were higher.

Identifying individual incident types
On the benchmark dataset, semantic classifiers outperformed BOW

when identifying all incident types except falls and deteriorating pa-

tient, which remained steady at 88.1% and 87.5%, respectively (Ta-

ble 4). With the original dataset, F-score improved, ranging from

64% for patient identification to 92.4% for falls. On the indepen-

dent dataset, F-scores improved for all incident types except docu-

mentation, which remained steady at 75.2% (BOW: 75%), and for

deteriorating patient, in which it worsened to 48.8% (BOW:

54.6%).

When identifying the rare incident types of blood products, pa-

tient identification, infection, and clinical handover, performance of

the semantic classifiers improved dramatically on the original and

independent datasets (Table 4). For instance, the F-score for blood

products increased from 44.4% to 75% on the original; and from

54.9% to 76.9% on the independent. Patient identification incidents

were frequently misclassified by BOW as documentation and others

(F-score: original¼34.0%; independent¼56.4%). However, se-

mantic classifiers improved this performance to 64.0% and 70.5%.

For infection, F-scores were also improved (original: 46.2% to 80%;

independent 30.8% to 63.1%). For clinical handover, F-scores for

the semantic classifiers ranged from 50.4% to 51.6%, compared

with from 32% to 34.5% with BOW.15 The exception was deterio-

rating patient, in which F-score improved on the original dataset

(from 44.4% to 66.7%), but was worse on the independent dataset

(from 54.6% to 48.8%).

Mapping between UMLS concepts and incident types
We reviewed the top 20 concepts from each incident type (see Sup-

plementary Appendix). Not surprisingly, the UMLS concept that

was common across all types was patients. Other concepts that were

common across 8-9 incident types were ward, result, present, and

time (see Supplementary Appendix Table 5). Physicians, nurses, and

notification were common across 6 incident types. Concepts that

were unique to individual incident types generally related to specific

clinical tasks and procedures (see Supplementary Table 6). For in-

stance, the concepts dosage, prescribed, pharmacy, and pharmacist

infusion procedures were unique to medications, whereas secluding

patient, aggressive behavior, and escort were unique to aggression

incidents. For blood products, unique concepts included peripheral

blood, blood transfusion, blood product, blood bank, and depart-

ments such as laboratory and pathology. For documentation, unique

concepts included signature and electronic health records, whereas

Table 2. The most effective classifiers for incident type using semantic features compared with BOW

Classification studies Semantics BOW15

Ensemble strategy OvsA OvsA

Ensemble size 12 ECCs 6 ECCs

Feature extraction Bag of concepts BOW

Feature space representation TF-IDF þ label associations Binary count þ label associations

Base classifier SVM RBF kernel SVM RBF kernel

Group decision making Voting Voting

Average F-score

Benchmark dataset, % 82.6 69.4

Original dataset, % 77.9 68.8

Independent dataset, % 78.0 67.4

BOW: bag-of-words; ECCs: ensemble of binary classifier chains; OvsA: one vs all; RBF: radial basis function; SVM: support vector machine; TF-IDF: term fre-

quency–inverse document frequency.

Table 3. Overall classification performance of semantic features in

identifying incident type compared with BOW

Benchmark Original Independent

Feature representation Semantics BOW Semantics BOW Semantics BOW

Example-based measures

Hamming loss 3.9 7.8 3.7 7.2 3.9 8.1

Accuracy 82.2 64.4 75.6 68.0 75.4 61.7

Precision 84.7 70.6 77.3 72.9 78.1 66.4

Recall 84.4 77.1 76.7 76.6 76.8 67.4

F-score 84.6 73.7 77.0 74.7 77.4 66.9

Exact match 48.9 39.9 57.9 44.4 59.5 34.9

Label-based measures

Macro-precision 86.7 69.7 77.7 52.4 70.2 54.2

Macro-recall 91.1 79.0 79.9 77.4 78.2 70.3

Macro–F-score 87.9 73.7 77.1 59.2 73.6 58.8

Micro-precision 82.8 67.1 78.0 67.1 78.9 68.7

Micro-recall 82.4 71.9 77.9 70.7 77.1 66.1

Micro–F-score 82.6 69.4 77.9 68.8 78.0 67.4

Values are %.

BOW: bag-of-words.
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transfer of care and communication were unique to clinical hand-

over.

Identifying severity level
For severity level, OvsO ensembles of SVM RBF kernel with TF-IDF

feature representation was the most effective combination. While

the micro-averaged F-score (71.6%) was higher than BOW on the

benchmark, it was lower on the original (42.2%) and independent

(49.6%) datasets (Table 4). For SAC1, performance of the semantic

classifiers was consistent with BOW on the benchmark (F-score-

¼87.3%) but markedly improved on the original (F-score up from

19.8% to 25.5%) and independent (F-score up from 12.5% to

50.7%) datasets. For SAC2 and SAC3, semantic classifiers per-

formed better than BOW on the benchmark dataset (SAC2: F-score

up from 49.0% to 69.8%; SAC3: F-score up from 49.1% to

75.3.8%), but this improvement did not carry over to the original

and independent datasets. For SAC4, F-score was consistently lower

than BOW across all testing datasets.

DISCUSSION

Main findings and implications
We evaluated the feasibility of a UMLS-based semantic feature rep-

resentation by comparing it with BOW features and found that it

can enhance the performance of SVM classifiers in identifying pa-

tient safety incidents by type and severity, particularly high-risk

SAC1 events. To the best of our knowledge, no previous studies

have compared these 2 approaches to represent the free text from in-

cident reports for automated identification.10 In terms of overall

performance, semantic feature representation improved generaliz-

ability, showing consistent performance from the original (F-score:

77.9%) to independent (F-score: 78.0%) datasets. Identification of

primary and secondary labels was also improved; semantic classi-

fiers achieved exact match scores of 57.9% and 59.5% on the origi-

nal and independent datasets (BOW: 44.4%/34.9%).

For the different incident types, semantic classifiers improved

identification of 8 types (ie, medications, pressure injury, aggression,

documentation, blood products, patient identification, infection,

and clinical handover). F-score was above 75% for 7 of 10 types in

the original dataset. These 7 types made up 95% of all reported inci-

dents (Table 1). There was a marked improvement in identifying

rare incident types and extreme-risk events, indicating that UMLS

concepts better capture information in report narratives compared

with BOW and may thus be an effective strategy to address the

highly unbalanced distribution of incident classes, particularly for

rare incident types and high-risk incidents, which make up <2% of

incidents. These results show that semantic classifiers have the po-

tential to be applied in real-world settings. When human resources

are lacking, automated methods can reduce effort by supporting the

first step in incident analysis. Rapidly screening which incidents re-

quire immediate attention, and grouping incidents by type, allows

human efforts to focus on a much smaller volume of incident

reports. Automated methods are currently meant to be used in con-

junction with expert review and are not intended to replace human

input.

While the feasibility of automated incident identification has

been demonstrated in controlled experiments, further work is re-

quired to understand the extent to which these methods can be gen-

eralized and how best they can be adapted to new settings to help

identify clusters of potentially related reports with an underlying

common cause. There is a need to trial text classifiers in real-world

settings and to shift research from its sole focus on algorithmic per-

formance to studying, in parallel, strategies for successful implemen-

tation and impact of these models on quality improvement

initiatives and patient safety outcomes.29 Any translation, sharing,

and reuse of text classifiers should seek to leverage the growing use

of common data formats and platforms for machine-executable

models.30

Table 4. F-score for identifying incident types and severity level using semantic features compared with BOW

Benchmark Original Independent

Feature representation Semantics BOW12,15 Semantics BOW12,15 Semantics BOW12,15

Incident type

Falls 88.1 88.1 92.4 89.7 90.3 81.0

Medications 78.5 67.4 87.1 76.3 85.1 75.2

Pressure injury 96.4 91.5 91.6 85.4 85.7 81.4

Aggression 93.1 74.0 82.6 69.1 79.3 63.8

Documentation 71.0 62.2 78.2 61.2 75.2 75.0

Blood productsa 96.6 71.1 75.0 44.4 76.9 54.9

Patient identificationa 77.2 66.0 64.0 34.0 70.5 56.4

Infectiona 93.8 81.1 80.0 46.2 63.1 30.8

Clinical handovera 77.0 62.5 51.6 32.0 50.4 34.5

Deteriorating patienta 87.5 89.7 66.7 44.4 48.8 54.6

Others 75.8 60.0 78.6 67.9 83.4 69.4

Severity level

Average F-score 71.6 62.9 42.2 50.1 49.6 52.7

SAC1 87.3 87.3 25.5 19.8 50.7 12.5

SAC2 69.8 49.0 8.4 12.3 11.9 12.0

SAC3 75.3 49.1 42.1 42.6 58.4 48.3

SAC4 60.0 64.0 52.2 61.8 39.3 60.0

Values are %.

BOW: bag-of-words; SAC: severity assessment code.
aRare incident type (ie, <2%).
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Feature representation
We noted that the most effective feature representation for semantic

classifiers was TF-IDF and binary count for BOW. TF-IDF reflects

how important a word is to a report from all training documents,

and its term-weighting scheme decreases the weight for commonly

used concepts and increases the weight for infrequent concepts (ie,

those might be specific to individual rare types). This might explain

why the semantic features represented more distinctive concepts

from rare classes and achieved better performance. Many clinical

tasks and procedures unique to specific incident types were captured

quite well by the UMLS concepts (Supplementary Table 6), contrib-

uting to better performance. However, these concepts did not focus

on patient safety. To improve classification performance, more

broadly applicable concepts for specific incident types are required.

Better UMLS coverage of essential patient safety terminologies

would be helpful for large-scale analysis of patient safety incidents.

Another approach for incident types not adequately covered is to

combine UMLS concepts with BOW features. This is an area that

requires further investigation.

Identifying severity level
For severity level, semantic features improved the identification of

SAC1 incidents in stratified datasets. On the independent dataset, F-

score increased dramatically from 12.5% (BOW) to 50.7% (seman-

tics). However, there was no consistent improvement for SAC2 and

SAC3 incidents. SAC4 incidents were more likely misclassified as

SAC3 and SAC2 by the semantic classifiers, achieving a lower F-

score. As SAC4 is a common class, the average F-score across all lev-

els was lowered. SAC4 was mostly misclassified as SAC3. We ob-

served that the reports from SAC3 and SAC4 covered all 10 incident

types, making it hard for them to be distinguished from each other,

as the training reports from both severity levels generated similar se-

mantic feature spaces. In addition, the involvement of 10 incident

types resulted in a sparse semantic feature space to cover all the con-

cepts representing the different clinical tasks and procedures. In gen-

eral, sparse input requires more training samples to achieve reliable

prediction. However, we did not have access to a larger training

dataset. One possible solution is to apply feature engineering, such

as feature selection, to obtain more informative features but with

lower dimensionality. The semantic feature spaces from the medium

and low severity levels of SAC3 and SAC4 were overlapped. The

incidents from these 2 levels covered similar types of incidents, lead-

ing to the harder boundary in feature space for distinguishing them.

Limitations and future work
First, we used datasets from 2 independent reporting systems, but

both came from the same Australian state. Therefore, the semantic

classifiers may not be generalizable to other jurisdictions and regions

using different reporting, linguistic styles, and terminology. Second,

the training datasets were balanced. Given the class imbalance prob-

lem with incident types in real-world settings, a stratified training

dataset may be more desirable when large training datasets are

available. Last, to identify the different incident types, we used the

same threshold to make final decisions when evaluating results from

binary classifiers. We observed that classifiers identified common

types with more confident probabilities (eg, most falls achieved a

probability higher than 0.9), but the probabilities for rare classes

were relatively lower (eg, infection �0.5). This indicates that the

same threshold for common and rare types may not be optimal, as it

may result in some reports belonging to rare types being missed. Fur-

ther experiments are required to investigate optimal thresholds for

common and rare incident types.

CONCLUSION

Our experiments showed that semantic classifiers using UMLS con-

cepts outperformed classifiers based on BOW features for identify-

ing most incident types and extreme risk events. Semantic classifiers

demonstrated better generalizability on the independent dataset by

combing TF-IDF feature representation. Analysis of concepts unique

to specific incident types indicated that semantic representation pro-

vides more distinct features to specify clinical tasks and procedures

and may thus improve identification of incident types. Further work

is required to improve identification of lower severity levels where

decision boundaries are overlapped.
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