
Volatile compounds released by disturbed and undisturbed adults of Anchomenus dorsalis... 13

    Volatile compounds released by disturbed and 
undisturbed adults of Anchomenus dorsalis (Coleoptera, 
Carabidae, Platynini) and structure of the pygidial gland

    Teresa Bonacci1, Pietro Brandmayr1, Tullia Zetto1, Ida Daniela Perrotta1, Salvatore 
Guarino2, Ezio Peri2, Stefano Colazza2

   1 Department of Ecology, Università degli Studi della Calabria – via P. Bucci s.n., 87036, Rende (CS), Italy 

2 Department of Demetra Ed. 5, Università degli Studi di Palermo - Viale delle Scienze, 90128, Italy

   Corresponding author   :    Teresa Bonacci    ( t.bonacci@unical.it )

    Academic editor: Terry Erwin |  Received  20 September 2010  |  Accepted 25 January 2011  |  Published 18 February 2011

 Citation: Bonacci T, Brandmayr P, Zetto T, Perrotta ID, Guarino S, Peri E, Colazza S (2011) Volatile compounds 

released by disturbed and undisturbed adults of Anchomenus dorsalis (Coleoptera, Carabidae, Platynini) and structure of 

the pygidial gland. ZooKeys  81 :  13 – 25 . doi:  10.3897/zookeys.81.1122 

  Abstract  
Volatile compounds produced by adults of Anchomenus dorsalis under undisturbed and disturbed condi-

tions were investigated with an all-glass aeration apparatus. GC-MS analysis of the crude extracts from 

undisturbed and disturbed adults highlighted four major volatile compounds, undecane, heneicosane, 

Z-9 tricosene and tricosane, of which signifi cantly more undecane was released by disturbed adults com-

pared to undisturbed beetles. Th e pygidial glands of adults of A. dorsalis were investigated using light and 

Transmission Electron Microscopy (TEM). Each gland showed dense aggregates of secretory cells organ-

ized into visually distinct lobes; a long collecting canal that drains the secretion towards the reservoir, a 

bean-shaped double lobed muscular reservoir in which secretion is stored and a short duct (eff erent duct) 

through which the secretion is discharged. Th e function of the pygidial glands and the possible role played 

by undecane as a defensive allomone and/or chemical signalling molecule are discussed.
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      Introduction

  Carabid beetles are known to produce a large variety of defensive substances, and their 

chemical nature has been elucidated in more than 500 species (Schildknecht et al. 

1964, 1968; Eisner et al. 1963; Eisner 1970; Eisner et al. 1977; Moore and Wallbank 

1968; Moore 19 79; Forsyth 1970, 1972; Kanehisa 1996; Scott et al. 1975; Dazzini-

Valcurone and Pavan 1980; Will et al. 2000). Th e defensive compounds are produced 

by a pair of glands that open at the tip of the abdomen, known as the “pygidial glands” 

(Eisner 1958, 1970; Eisner and Aneshansley 1982, 1999; Eisner et al. 1992, 2000). 

Th e defensive substances are normally sprayed in the form of large droplets, but in 

the bombardier beetles the spray mechanism involves a two-chamber system by which 

benzoquinones are forced against attackers by way of an exothermic reaction (Schild-

knecht et al. 1968; Eisner et al. 2001). Previous chemical analytical studies on the de-

fensive secretions of several Carabidae species revealed that these substances are blends, 

mainly characterized by polar organic compounds such as acids, phenols, aldehydes 

and quinones plus minor non-polar compounds such as ketones, esters and hydro-

carbons (Dettner 1987). Th ese c hemicals are ejected or discharged mainly when a 

disturbance stimulus occurs, such as the attack of a predator (Schildknecht et al. 1968; 

Forsyth 1972; Th iele 1977; Rossini et al. 1997; Eisner et al. 2001). In this case, one or 

both glands can be discharged almost immediately and the secretion aimed towards the 

disturbance source (Forsyth 1972). To date, defensive compounds produced by these 

insects have been analyzed using whole body or droplet extracts but the diff erences 

in the quality and amounts of volatiles emitted from the undisturbed and disturbed 

carabid adults have been not yet been thoroughly investigated.

  Anchomenus dorsalis (Pontoppidan, 1763) is a gregarious platynine carabid inhabi-

ting muddy soils and fi elds across Europe. It is often found in association with species 

of Brachinus (Juliano 1985; Zaballos 1985; Lindroth 1986; Bonacci et al. 2004a, b; 

Mazzei et al. 2005; Zetto Brandmayr et al. 2006) and, like Brachinus, it has a bright 

bicoloured (green-blue and red-brown) coat body that contrasts with the background. 

Th ese species usually aggregate under heavy stones in open lands with sparse vegeta-

tion, such as pasturelands, croplands or in humid, sun exposed soils (Bonacci et al. 

2004b; Mazzei et al. 2005). Zetto Brandmayr et al (2006) described a peculiar “rub-

bing behavior” of A. dorsalis towards B. sclopeta (Fabricius, 1792) observed in labora-

tory conditions and in natural aggregations, where the individuals (conspecifi cs and 

no-conpecifi cs)live in strinct contact and in peaceful coexistence. Th iele (1977) defi nes 

the carabid aggregations as positive intraspecifi c relationships and as “indications of a 

type of social behavior”, in which the members of the species are mutually benefi cial. 

Aggregation in ground beetles seems to occur in only very few species and specially 

between conspicuous and chemically protected species (Th iele 1977; Bonacci et al. 

2004b; Zetto Brandmayr et al. 2006). Laboratory investigations carried out by Bo-

nacci et al. (2008) showed that A. dorsalis and B. sclopeta (which in natural habitats 

live gregariously), use aposematic colours and warning odours versus natural enemies 

(Bonacci et al. 2004a, 2006). Th e authors supposed that the combination of visual 
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and olfactory signals, common in many insect groups (especially aposematic coloured 

insects, Rothschild and Moore 1987; Moore et al. 1990), can produce a multimodal 

warning display that, acting along many sensory channels (Rowe and Guilford 1999), 

increases the antipredatory strategies.

When disturbed, the ground beetles A. dorsalis releases a strong odour (perceived 

even by humans) (Bonacci, personal observation), and quickly retreat (with dispersal 

movement that produce a great confusion in the observer) into deeper soil crevices 

(like the dilution eff ect). Under laboratory conditions, Bonacci et al. (2004a, 2006, 

2008) demonstrated that A. dorsalis and B. sclopeta are attacked less by predators, such 

as Ocypus olens (O. Muller, 1764) (Staphylinidae), Crocidura leucodon (Hermann, 

1780) (Insectivora, Soricidae) and Podarcis sicula (Rafi nesque, 1810) (Reptilia, Lacer-

tidae) than other carabids used as preys (Juliano 1985; Zaballos 1985; Lindroth 1986; 

Bonacci et al. 2006, 2008; Zetto Brandmayr et al. 2006). Based on these behavioural 

studies and observations, experiments were conducted to characterize and quantify the 

volatile compounds produced by A. dorsalis upon disturbance. Th e putative organs 

producing such defensive compounds, the pygidial glands, were also investigated using 

light and electronic microscopy.

    Materials and methods

   Insects

  Adults of A. dorsalis were collected by hand from diff erent inter-specifi c aggrega-

tions (each composed by 100–130 individuals) of B. sclopeta and A. dorsalis found 

under stones or straw bales in Calabr ia (Crati Valley, province of Cosenza, latitude: 

39°35'56"N; longitude: 16°15'48"E; elevation: 60 m a.s.l.). Following fi eld collec-

tions, monospecifi c groups were placed in separate plastic cages (30 × 22 × 20 cm) with 

4 cm of clay soil in a climatic chamber at 22 °C, photoperiod L/D of 18/6, and fed on 

veal meat and earthworm pieces (Lumbricus terrestris (Linnaeus, 1758)).

    Air collection of adult volatiles

  Th e collection of volatiles from A. dorsalis adults was conducted using a horizontal all-

glass apparatus 1 l in volume. Humidifi ed and charcoal fi ltered air was drawn through 

the apparatus at 0.5 l min-1 by a peristaltic pump for 2 h in a conditioned room at tem-

perature of 22 ± 2 °C. Th e volatiles produced by experimental groups of 20 individuals 

of A. dorsalis adults of both sexes were trapped in glass collectors (6 mm ID) loaded 

with 600 mg of porapak Q, and held in place by glass wool plugs. Two experimental 

individual groups were considered: disturbed and undisturbed. Adults were considered 

undisturbed when they were gently transferred into the glass apparatus and disturbed 
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when, before the start of the aeration, the glass chamber containing the adults was vig-

orously shaken for 10 seconds (Gomez et al. 2005). Preliminary observations showed 

that during this time the A. dorsalis adults released the odour. Five replicates were 

carried out for each groups: “disturbed” and “undisturbed”. We proceeded in order to 

avoid any pseudo-replication and each individual was tested once. At the end of the 

aeration period, collectors were eluted with hexane (400 μl) and the extracts stored at 

-15 °C until used for GC-MS analysis. Blank aerations were also carried out with the 

empty apparatus using the same procedure.

    Chemical Analyses

  GC–MS analyses were performed using a Hewlett-Packard 5890 GC system inter-

faced with an HP 5973 quadrupole mass spectrometer detector. As a stationary phase 

an HP5–MS capillary column (5% diphenyl-95% dimethylpolysiloxane 30 m - 0.2 

mm, 0.25 μm fi lm thickness, J&W Scientifi c, USA) was used. Injector and detector 

temperatures were 250 °C and 270 °C respectively. Helium was used as the carrier gas. 

Th e GC oven temperature program was 60 °C for 5 min, than increased by 10 °C/

min to 280 °C. Electron impact ionization spectra were obtained at 70 eV, recording 

mass spectra from 42 to 550 uma. Compound analysi s and identifi cation was carried 

out using a commercial NIST 2005 mass spectra library search and by comparison 

with standard analytical grade compounds purchased from Sigma-Aldrich (U.S.A.). 

Quantitative analysis was carried out for 4 compound identifi ed by GC-MS analysis: 

undecane, heneicosane, (Z)-9 - tricosene and tricosane.

  For this analysis the elutes were diluted in 1 ml of hexane using a volumetric fl ask. 

Six point calibration curves, using analytical standards undecane, heneicosane, (Z)-9 

- tricosene and tricosane, in the 0.2–100 ng μl-1 range, were used in order to evaluate 

the chromatographic response. Th e mean amount ± SE of each of these compounds 

was calculated dividing the amount of the compound obtained per replicate per the 

number of individuals used in each replicate.

    Gland anatomy

  For anatomical study by optical microscopy, adult beetles were killed at -15 °C and 

their abdomens were treated with 10% potassium hydroxide for 4 days before exami-

nation of the chitinous structures. Th e glands were mounted on clean glass slides and 

observed by optical microscopy equipped with Nomarsky interference contrast and 

photographed with a Coolpix 4500 camera (Nikon).

  For light and transmission electron microscopy (TEM), samples were fi xed in 3% 

glu taraldehyde solution in 0.1 M phosphate buff er (pH. 7.4) for 2 h at 4 °C and post 

fi xed with 3% osmium tetroxide for 2 h. Th e specimens were then washed in phos-

phate buff er, dehydrated through graded acetone solutions and embedded in Araldite 
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(Fluka, Buchs, Switzerland). Semithin sections (1 μm) were obtained wit h a Leica 

Ultracut UCT ultramicrotome by using glass knives, mounted on clean glass slide 

and stained with 1% toluidine blue. Th ey were then photographed with the Zeiss Axi-

oskop microscope. For transmission electron microscopy, ultrathin sections (600–900 

Ǻ) were prepared using a diamond knife and collected on copper grids  (G 300 Cu), 

contrasted using both lead citrate and uranyl acetate and then examined with a “Zeiss 

EM 900” electron microscope (TEM). Gland structure terminology follows Forsyth 

(1972) and Eisner et al. (2001).

    Statistical Analysis

  Th e quantitative analysis to determine diff erences in the amount of undecane, henei-

cosane, (Z)-9 - tricosene and tricosane recovered from A. dorsalis adults were compared 

by t-test (Sokal and Rohlf 1995). Th e statistical analysis was performed using Statistica 

for Windows 6.0 (Stat Soft Italia 1997).

     Results

   Chemical analysis of adult volatiles

  GC-MS analysis of volatile collections showed that disturbed and undisturbed adults 

of A. dorsalis released the same four major volatile compounds: undecane, heneicosane, 

(Z)-9 - tricosene and tricosane (Table 1; Fig. 1). A signifi cant diff erence between dis-

turbed and undisturbed adults was observed only in the released amount of undecane. 

An amount of 22 .37 ± 8.48 ng (Mean ± SE) were collected from each disturbed adult 

vs. 0.94 ± 0.29 ng collected from a undisturbed adult (t = 2,52; df = 8; p = 0.035). 

Other chemicals (heneicosane, (Z)-9 - tricosene and tricosane) tend to be released 

more when A. dorsalis individuals are disturbed but their amount is not statistically 

signifi cant (Table 1).

  Table 1. Volatile compounds from A. dorsalis adults obtained from air collections carried out for 2 hours 

at 0.5 l min-1. RT: retention time at the GC-MS analysis; df: degree of freedom.

Compound
R.T. 

(min.)

Amount (ng) /adult (mean ± SE) t- value df p

Disturbed Undisturbed

Undecane 9.82 22.37 ± 8.48 0.94 ± 0.29 2.52 8 0.035

Heneicosane 32.92 1.09 ± 0.96 0.44 ± 0.31 0.63 8 NS

(Z )- 9 - Tricosene 35.96 2.19 ± 2.10 0.78 ± 0.70 0.63 8 NS

Tricosane 36.98 0.93 ± 0.86 0.38 ± 0.28 0.60 8 NS
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    Gland structure

  Th e pygidial glands of A. dorsalis are cuticular invaginations of the body wall that open 

outside immediately behind the eighth abdominal tergite. Each gland consists of a ag-

gregate of sec retory cells, an collecting canal, a reservoir and an eff erent duct through 

which the secretion is discharged. Th e eff erent duct open near the abdominal tip to the 

sides of anus. Each lobe is essentially a ball of cells (fi g. 2 A) aligned radially around 

a central collecting lumen (sensu Forsyth 1970) that carry the secretion towards col-

lecting canal. Th e overall structure of the secretory lobe and collecting canal resemble 

a cluster of grapes (fi g. 2 A). Each cluster of cells converges to form a long eff erent 

duct that drains the chemical product into a bean-shaped sac (reservoir) in which it is 

stored (fi g. 2 C). Th e reservoirs extend forward, one along each side of the hindgut. 

Th is reservoir or “storage sac” (sensu Rossini et al. 1997) in A. dorsalis has a smooth 

constriction at about one third from its hind end, where both the collecting canal as 

well the eff erent duct (sensu Forsyth 1970) converge (fi g. 2 C and D). Th e collecting 

canal (Forsyth 1970) is a cylindrical tube twice the length of the body of the carabid 

(fi g. 2 B and D), its lumen occupying about one third of the diameter. It carries the 

secretion from the secretory lobes to the reservoir and shows a continuous and regular 

spiral ridge along the whole length of its outer surface (fi g. 2 D). Each eff erent canal 

(treated with potassium hydroxide) show evident apical ramifi cations (fi g. 2 E) extend-

ing towards the center of the secretory lobe. Th ese structures, as observed by Eisner 

et al. 2001 in Crepidogaster Boheman, 1848 genus and defi ned by these authors also 

microtubules (intracellular organelle sensu Rossini et al. 1997), are grouped into con-

vergent clusters, to form tiny individual “fl oret” that carry the secretion from the secre-

tory lumen (fi g. 2 E) to the main collecting canal. Th e tubules and fl orets are cuticular 

and could be isolated readily by potassium hydroxide treatment of the glands.

  Figure 1. Gas chromatograms of volatile compounds collected from disturbed (up) and undisturbed 

(down) adults of A. dorsalis. 1 undecane 2 heneicosane 3 (Z)-9 - tricosene 4 tricosane. On the x axis is 

reported the retention time (minutes). As a stationary phase an HP5–MS capillary column was used. Th e 

GC oven temperature program was 60 °C for 5 min, than increased by 10 °C/min to 280 °C.    
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  Figure 2. Light microscope: A Dorsal aspects of pygidial gland; ed, eff erent duct; r, reservoir; cc, col-

lecting canal; sl, secretory lobe (Scale bar = 0.5 mm) (not treated with potassium hydroxide) B collecting 

canal (Scale bar = 0.125 mm) C reservoir with smooth constriction at about one third from its hind end 

(Scale bar = 0.125 mm) D insertion of collecting canal (black arrow) and eff erent duct (white arrow) in 

the reservoir (Scale bar = 0.05 mm) E collecting canal with apical ramifi cations (white arrows) (Scale bar = 

0.05 mm) F “fl oret” (sensu Eisner et al. 2001) (Scale bar = 0.015 mm) (treated with potassium hydroxide).    

  Examined by TEM, the wall of the collecting canal is lined by epidermal part (fi g. 3 A) 

that consist of cells connected to each other by micro-canals projecting into the collecting 

canal lumen. Th e lumen of collecting canal contain a heterogeneous secretion (fi g. 3 A).
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Each secretory lobe consist of secretory cells arranged radially around the central 

lumen. Each secretory cell has an secretory vesicle which is almost as long as the cell 

itself (fi g. 3 B) with a coated membrane and bear many microvilli projecting into the 

cavity (fi g. 3 C). Between the secretory cells are evident (fi g. 3 B) the vesicular ducts 

that carry the secretion in the collecting lumen (fi g. 3 B). Each microvillus (fi g. 3 D) 

is formed by three structures: one with a typical spiral shape and other two structures, 

similar in shape and size. All the structures are enveloped by a thin lamina (fi g. 3 D). 

Th e inner wall of the reservoir is composed of a thick chitinous layer (basal lamina) 

(fi g. 3 E). A thick muscle layer was found surrounding the reservoir. Likely, the mus-

cles play an important role for the expulsion of the secretory products through the 

eff erent duct. Th is is composed of muscle bundles that pass spirally around it.

     Discussion and conclusions

  Th e chemical analyses of disturbed and undisturbed A. dorsalis adults showed that 

undecane was produced signifi cantly in larger amounts in disturbed individuals. Th is 

suggests that this compound (which can be perceived even by humans) could play 

a prominent role in the chemical defence of the species. Th e role of undecane as a 

defensive substance has been widely reported in the Insecta: Acanthomyops claviger 

(Roger, 1862) (Regn ier and Wilson 1968), Formica polyctena Foerster, 1850 (Löfqvist 

and Bergström
, 
1980), Paratrechi na longicornis (Latreille, 1802) (Morgan et al. 2005) 

and in Oxytelinae rove beetles (Bledius spectabilis Kraatz 1857, Platystethus arenarius 

(Fourcroy, 1785), and Oxytelus piceus L.) (Dettner and Schwinger 1982). Although 

in other carabids, hydrocarbons are generally produced in lesser amounts than polar 

compounds such as acids, phenols, aldehydes or quinones (Dettner 1987), but the oc-

currence of undecane in pygidial glands has been described in Pterostichini (Abaris ae-

nea Dejean, 1831, Pseudabarys Chaudoir, 1873, sp), Loxandrini (Loxandrus LeConte, 

1852, spp), Morionini (Morion simplex Dejean, 1831, Moriosomus seticollis Straneo, 

1985), Catapieseini (Catapiesis Solier, 1835, spp), Perigonini (Diploharpus laevissimus 

Chaudoir, 1850) and Odacanthini (Colliuris pensylvanica Linnaeus, 1758) (Will et al. 

2000). Furthermore, Peschke and Eisner (1987) reported that hydrocarbons produced 

by carabid species are potentially defensive.

  Undecane is an optimal chemical signalling molecule, its molecular weight and po-

larity combining moderate olfactory effi  ciency with a suffi  ciently high vapour pressure to 

broadcast in the centimetre range when present in microgram quantities or less (Regnier 

and Wilson 1968). As with a number of carabids (Eisner 1958; Eisner et al. 1963; Will 

et al. 2000), a defensive spray constituted mainly of undecane appears to be an eff ec-

tive deterrent of predators (Bonacci et al. 2004a, 2008). Moreover, the effi  cacy of these 

chemicals is improved in that carabid species that are able to direct their ejections direct-

ly against the head or the eyes of the predator (Eisner 1958; Peschke and Eisner 1987).

Th e laboratory observations of the pygidial glands of A. dorsalis show that they re-

semble those of other Carabidae in their structure (Forsyth 1970, 1972), and the form 
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of the reservoir, clearly double lobed, resembles the apparatus of Anthia and Harpalines 

described by Forsyth (1972). Th e secretory “fl orets” show a very small lumen, compared 

to other tribes of carabid beetles, (Forsyth 1972; Rossini et al. 1997; Eisner et al. 2001), 

but very little investigations have been done on Platynine (Agoninae) ground beetles. 

Th e inner wall of reservoir of pygidial glands in A. dorsalis shows a thin coat of chitinous 

tissue which probably preserves the cells by the toxic mixture of chemicals and requires 

that this secretion must be effi  ciently isolated from the rest of the body. Another feature 

of the glands of A. dorsalis is the extreme length of the collecting canal. Th is tube seems 

to be much longer than necessary for the transfer of chemical secretion. Very long col-

lecting canals were found by Forsyth (1970) in Pterostichus madidus (Fabricius) and the 

author proposed that this feature serves to abridge the back-pressure from the reservoir.

As mentioned above, the defense glands in carabid beetles produce chemical com-

pounds primarily to provide protection against putative predators (Th iele 1977; Will 

et al. 2000). Nevertheless, in A. dorsalis, volatile compounds ejected after disturbance 

could have a double function: repellent function to predators and chemical signalling 

  Figure 3. Transmission electron microscope (TEM): A, collecting canal with lumen (lu); the black ar-

rows show interstitial spaces (is) B secretory lobe with secretory lumen (sl) C vesicle (v) with microvilli 

(mv) D microvilli structure (mv) at highest enlargement (the white arrows show the thin lamina) and 

E  Inner wall of the reservoir with chitinous basal lamina (la) (black arrows) and massive muscle layer 

around.    
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function for conspecifi cs. In fact, previous studies showed that the defensive com-

pounds released by a number of disturbed A. dorsalis individuals is not only a repellent 

towards natural enemies, but also elicited dispersal behavior in conspecifi cs (Bonacci 

et al. 2004a,b, 2006, 2008). Such an intra-specifi c dispersal function is supported 

by the gregarious nature of this species; gregariousness and high population density 

allowing rapid intra-specifi c communication is generally thought to be necessary for 

evolution of chemical signalling molecule (Nault and Phelan 1984). It is reasonable 

to believe that in A. dorsalis, undecane emission (characterized by strong smell, which 

can be perceived even by humans) by the pygidial glands causes dispersal movement of 

individuals inside the aggregation (authors’ personal observations). If the assumption 

of Blum (1985) is correct (deterrence against predators and intraspecifi c alarm func-

tion of the same compounds being coupled), the chemicals of this carabids evoke an 

alarm reaction in conspecifi cs and avoidance behaviour in natural enemies, as showed 

by Bonacci et al. (2004a, 2006, 2008). Usually A. dorsalis occurs in dense aggregations 

of many individuals with other carabids belonging to the genus Brachinus. It can be 

expected that in species occurring in such masses an adequate defense mechanism has 

evolved towards potential predators. B. sclopeta producing several defensive chemicals 

(Zetto Brandmayr et al. 2006) and A. dorsalis producing a putative chemical signal-

ling molecule, undecane, from the pygidial glands. Assemblages of mixed species that 

share common predators may experience benefi ts that are similar to or exceed those of 

monospecifi c groups. Th ese benefi ts may be particularly pronounced if individuals of 

one species can recognize the alarm signals produced by individuals of other species in 

the assemblage (in Mathis and Smith 1993).

In summary, undecane and the pygidial glands appear to play a role in the defence 

mechanism of A. dorsalis. Further studies will carry on to investigate if undecane emis-

sion is able to elicit dispersal and retreating movements both in co-specifi c and inter-

specifi c groups.
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