
cancers

Article

Chromoanagenesis Landscape in 10,000 TCGA Patients

Roni Rasnic 1,* and Michal Linial 2

����������
�������

Citation: Rasnic, R.; Linial, M.

Chromoanagenesis Landscape in

10,000 TCGA Patients. Cancers 2021,

13, 4197. https://doi.org/10.3390/

cancers13164197

Academic Editor: Alan Spatz

Received: 3 August 2021

Accepted: 17 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of
Jerusalem, Jerusalem 9190401, Israel

2 Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem,
Jerusalem 9190401, Israel; michall@mail.huji.ac.il

* Correspondence: roni.rasnic@mail.huji.ac.il

Simple Summary: Chromoanagenesis is a single catastrophic event in which one or few chromo-
somes are shattered and disorderly reassembled. Chromoanagenesis is common in many types of
cancers. In this study, we utilize data from The Pan-Cancer Analysis of Whole Genome (PCAWG) to
build a machine learning algorithm that detects chromoanagenesis with high accuracy. We applied
the algorithm on ~10,000 samples from The Cancer Genome Atlas (TCGA), thereby providing, for the
first time, chromoanagenesis status labels for the complete data set. An in-depth analysis of somatic
and clinical chromoanagenesis features is presented for 20 cancer types. Mutual exclusivity patterns
between genes impaired in chromoanagenesis versus non-chromoanagenesis cases might imply at
distinct pathways involved in chromoanagenesis-driven tumorigenesis.

Abstract: During the past decade, whole-genome sequencing of tumor biopsies and individuals with
congenital disorders highlighted the phenomenon of chromoanagenesis, a single chaotic event of
chromosomal rearrangement. Chromoanagenesis was shown to be frequent in many types of cancers,
to occur in early stages of cancer development, and significantly impact the tumor’s nature. However,
an in-depth, cancer-type dependent analysis has been somewhat incomplete due to the shortage
in whole genome sequencing of cancerous samples. In this study, we extracted data from The Pan-
Cancer Analysis of Whole Genome (PCAWG) and The Cancer Genome Atlas (TCGA) to construct and
test a machine learning algorithm that can detect chromoanagenesis with high accuracy (86%). The
algorithm was applied to ~10,000 unlabeled TCGA cancer patients. We utilize the chromoanagenesis
assignment results, to analyze cancer-type specific chromoanagenesis characteristics in 20 TCGA
cancer types. Our results unveil prominent genes affected in either chromoanagenesis or non-
chromoanagenesis tumorigenesis. The analysis reveals a mutual exclusivity relationship between the
genes impaired in chromoanagenesis versus non-chromoanagenesis cases. We offer the discovered
characteristics as possible targets for cancer diagnostic and therapeutic purposes.

Keywords: CNA; cancer; TP53; chromothripsis; mutual exclusivity

1. Introduction

Over the past decade, the term chromoanagenesis (for chromosome rebirth) was
coined to describe a catastrophic cellular event in which large numbers of complex rear-
rangements occur at one or a few chromosomal loci. A chromoanagenesis event consists of
multiple chromosomal breakage and results in a variety of chromosomal abnormalities,
including copy number alterations (CNA), inversions, and inter-and intra-chromosomal
translocations. Chromoanagenesis was originally discovered in tumor cells and in indi-
viduals with congenital disorders [1]. It was also found in healthy individuals [2]. The
full extent and impact of the different types of chromoanagenesis remain unknown. Most
commonly, whole genome sequencing is applied in order to identify the phenomenon.

There are three subtypes of chromoanagenesis: chromothripsis, chromoplexy, and
chromoanasynthesis [3,4]. Chromothripsis is the localized shattering and reshuffling of
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tens to hundreds of chromosome segments. Micronuclei formation is considered to be the
source of chromothripsis [5], and the non-homologous end joining is presumed to be chro-
mothripsis reassembly measure [1]. Chromoplexy is characterized by the interdependent
occurrence of multiple inter- and intra-translocations and deletions resulting from double
stranded breaks with precise junctions [6]. Non-homologous end joining is also presumed
to be a chromoplexy main reassembly measure. Chromoanasynthesis is a replication-based
complex rearrangement process. The breakpoint junctions in chromoanasynthesis show
micro-homology and template insertions, consistent with defective DNA replications and
suggesting the involvement of error-prone DNA replication pathways [6].

The most exhaustive research on chromoanagenesis was performed as a part of The
Pan-Cancer Analysis of Whole Genomes (PCAWG) study [7]. PCAWG analysis included
2658 cancer genomes and their matching normal tissues across 38 tumor types. The PCAWG
study confirmed that chromoanagenesis is common in many cancer types. There is an
overlap of 799 samples (from 22 tumor types) between PCAWG and The Cancer Genome
Atlas (TCGA) project. We utilized this overlap to curate a data set with TCGA genic CNA
data, and PCAWG chromoanagenesis labeling. We utilized the curated data set to create a
highly accurate machine learning model that identifies chromoanagenesis and employed it
on additional ~10,000 cancerous samples from TCGA.

In this study we performed an in-depth analysis of chromoanagenesis’ somatic, cancer-
type specific characteristics while focusing on coding genes. Many of the found somatic
single nucleotide variants (SNV) and CNA patterns match previous studies, as we concur
on chromoanagenesis related genes. Additionally, we identified CNA and cancer-type
specific mutual-exclusivity patterns matching established observations that were reported
regardless of chromoanagenesis. We offer our TCGA samples classification and novel
discoveries as the basis for further investigating chromoanagenesis.

2. Materials and Methods
2.1. Study Population

Masked CNA data at the gene level for 10,728 TCGA individuals was downloaded
from the GDC portal (https://portal.gdc.cancer.gov/ (accessed on 1 August 2020). The
data does not include genes in the Y chromosome. The PCAWG project performed a whole
genome analysis of 799 of those individuals. PCAWG thoroughly described each individual
chromosomal state. The data was downloaded from the Chromothripsis Explorer site (http:
//compbio.med.harvard.edu/chromothripsis/ (accessed on 3 June 2020). The site includes
chromothripsis labeling, as well as a labeling for other complex chromosomal events [8].
The labeling for other complex chromosomal events does not include additional details
regarding the nature of the events in each individual. We reduced the description to include
only whether an individual had chromothripsis, other complex chromosomal events or
not. For more advanced analysis, we considered an individual with chromothripsis and/or
other complex chromosomal events as having chromoanagenesis. We also extracted from
TCGA masked SNV data (from the MuTect2 pipeline variant data, including variant
annotation) and clinical and exposure data. HNSC HPV status was extracted from the
Lawrence, M. et al. study [9].

2.2. Machine Learning Pipeline

We used the data of the 799 individuals examined by PCAWG as the basis for our
ML model selection and training. We used 70% of the data as training samples, 15% as
model and feature selection testing data (development testing data), and another 15% of
the data as the final test set, only used after the model was finalized and feature selection
was completed. The selected model, presenting the best results on the development testing
data was sklearn’s DecisionTreeClassifier [10].

We tested multiple features designed to capture copy number oscillation patterns in
the data. We considered an oscillation to be an adjacent collection of genes from the same
chromosomal arm with the same CNA. The examined features included: overall number
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of amplifications, overall number of deletions, maximal and mean CNA length (in genes),
number of CNA in highly varied chromosomes, maximal number of oscillations (in all
chromosomal arms), and several features designed to reflect the relations between the
maximal number of oscillations in chromosomal arm to the mean number of oscillations in
all chromosomal arms. After careful consideration of the different features, we manually
choose features with both relatively high correlation to chromoanagenesis status and small
overlap with other chosen features.

We represented each individual with the chosen features. The optimal model used
only features concerning the distribution of oscillation number in the chromosomal arms.
The model selected to use only the two most informative features: (i) max number of
oscillations in a chromosomal arm −3* mean number of oscillations in all chromosomal
arms. (ii) standard deviation of the number of oscillations across all chromosomal arms.
We assessed our models according to their accuracy rate. Accuracy is defined as [true
positive + true negative]/[all positive + all negative]. This model presented the best results
for the development testing data, and reached 85.7% accuracy on the final testing data.

2.3. Statistical Analysis

We applied Fisher’s exact test (using scipy stats module [11]) when testing differ-
ences in chromoanagenesis genic CNA. We applied the same methodology when com-
paring the number of per-gene somatic mutation types across chromoanagenesis and
non-chromoanagenesis samples. We chose a significance threshold of 5 × 10−7; which is
based on performing a Bonferroni correction for 20,000 genes, with a conservative threshold
of 0.01.

2.4. Visualization

Matplotlib [12] and seaborn [13] were used to generate the boxplot visualization
representing interquartile range (IQR) including, 25th percentile, median, 75th percentile,
and 1.5 * IQR for the whiskers. Matplotlib was also used to create Figures 2 and 3 and all
Manhattan and Kaplan–Meier plots.

3. Results

Chromoanagenesis status for 799 cancer samples from 22 cancer types in the TCGA
cohort was collected via PCAWG (see Methods). Overall, 371 of the samples (46.4%)
had chromoanagenesis. The chromoanagenesis samples can be further divided: 64 have
chromothripsis, 143 have both chromothripsis and other complex chromosomal events,
and 164 with only other, non-chromothripsis, complex chromosomal events.

Chromoanagenesis frequency varied greatly between cancer types, ranging from
3% in thyroid carcinoma (THCA) to 88% in glioblastoma (GBM). Chromoanagenesis
subtype distributions also varied among cancer types. For example, 75% of kidney renal
clear cell carcinoma (KIRC) chromoanagenesis samples had chromothripsis, while 57%
of liver hepatocellular carcinoma (LIHC) chromoanagenesis samples had strictly non-
chromothripsis events (Figure 1a).

3.1. Cancer Type Impacts Genic CNA Frequency

We collected masked genic CNA from TCGA for the 799 samples. Namely, for each
sample and for 19,729 known coding genes, we know whether the number of copies in
the somatic sample is higher, identical, or smaller than in the matching germline sample
(see Methods). We chose to use genic CNA (derived from GISTIC [14] results) and not
whole genome CNA to reduce noise and limit data dimensionality. Notably, genic CNA
cannot capture all key chromoanagenesis features. Specifically, we cannot detect inter-
chromosomal and intra-chromosomal translocations or inversions. Similarly, deletions or
insertions in intergenic regions are not recorded. Accordingly, chromoplexy, which has less
CNA than other types of chromoanagenesis, might be missed (Figure 1b).
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Figure 1. Chromoanagenesis in PCAWG–TCGA joint samples. The PCAWG cohort includes chromoanagenesis status for
799 individuals with 22 types of cancer. Notably, TCGA samples normally only have CNA data rather than whole genome
sequencing. (a) Cancer type and chromoanagenesis subtypes distribution for the 799 individuals. (b) A schematic depicting
the common chromosomal abnormalities caused by chromoanagenesis, and presents which of the abnormalities can be
captured when considering only genic CNA data.

We examined the total number of genes with CNA for each of the four chromoanage-
nesis states: (i) no chromoanagenesis; (ii) chromothripsis; (iii) chromothripsis and other
complex chromosomal events; (iv) non-chromothripsis complex chromosomal events. In all
three chromoanagenesis groups, the number of genes with CNA was significantly higher.
The mean number of genes with altered copy number is 559.2 for the no chromoanagenesis
group, 701.2 for chromothripsis, 1268.5 for samples with both chromoanagenesis and other
complex events and 964.1 for non-chromothripsis complex events. One-way ANOVA test
yields a p-value of 1.5 × 10−24 (Figure 2a). Similar results and trends were observed when
examining separately CNA for deletion or amplification events (Figure S1).

The variability in the total number of CNAs is heavily influenced by cancer type, as
different cancer types have wildly distinct somatic characteristics. The TCGA–PCAWG sam-
ples are distributed unevenly among cancer types and chromoanagenesis status. Therefore,
the total number of genic CNA will not suffice to identify a sample’s chromoanagenesis
status. For example, for BRCA (Breast invasive carcinoma) and LUSC (lung squamous
cell carcinoma), a one-way ANOVA test on chromoanagenesis number of genic CNA
yields non-significant p-values of 0.42 and 0.88, respectively (Figure 2b). The genic CNA
distribution among all 33 cancer types in TCGA is presented in Figure 2c. The different
cancer-type samples exhibit huge variability in the number of altered genes. The mean
number of altered genes per cancer type range over 2–3 orders of magnitude with minimal
number in thyroid carcinoma (THCA) and maximal in ovarian serous cystadenocarcinoma
(OV).

3.2. Predicting Chromoanagenesis at High Accuracy

To overcome the variation in somatic background and chromoanagenesis proportions
between cancer types, we examined more complex genic CNA attributes as chromoanage-
nesis status predictors. When examining adjacent genes on the same chromosomal arm, it
is likely that a similar CNA status (i.e., amplification or deletion) is attributed to the same
CNA event. The alternative possibility of having unrelated similar CNA events in adjacent
genes is less probable. We used this assessment to measure different CNA features for each
chromosomal arm. For example, the number of genes affected by the same CNA or the
number of gene-affecting CNA per chromosomal arm.
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Figure 2. Genic CNA frequency in PCAWG–TCGA. (a) Boxplots for the number of genes with altered copy number for each
chromoanagenesis subtype. (b) Boxplots for the number of genes with altered copy number for BRCA and LUSC patients.
(c) Genic CNA number distribution in each of the 33 types of cancer included in TCGA. The cancer types are sorted by the
median number of copy-altered genes (marked by an orange bar).

A key indicator for chromoanagenesis is CNA oscillations along the affected chromo-
somes. We calculated the number and length (in genes) of oscillations per chromosomal
arm. Interestingly, the chromoanagenesis samples include one or few chromosomal arms
with exceptionally high number of oscillations. Contrastingly, the non-chromoanagenesis
samples (with many oscillations) include many chromosomal arms with a high number
of oscillations (Figure 3). This attribute is exactly what is expected in the context of chro-
moanagenesis. Consequently, some features were engineered to express the difference
between maximal number of oscillations (in a chromosomal arm) and the average number
of oscillations (across all chromosomal arms).

We trained a decision tree on 85% of the data to identify whether a sample has
chromoanagenesis (see Methods). We reached an 85.7% accuracy rate, with 88.9% accuracy,
83.6% specificity, and 78.4% sensitivity for having chromoanagenesis. This generic somatic
chromoanagenesis detection module is applicable to any cancer type. However, due to
the limited sample size and previously discussed data limitations, we were not able to
distinguish between different chromoanagenesis subtypes (i.e., chromothripsis and other
chromosomal events).

The machine learning model was applied on all remaining 9929 TCGA samples
from all 33 cancer types reported in TCGA (Figure 4a, Table S1). Overall, we classified
3892 individuals (39.2%) as having chromoanagenesis. Figure 4b describes the predicted
percentage of chromoanagenesis for each cancer type. We also marked 10 cancer types that
were not examined by PCAWG and therefore were not a part of the model training. When
comparing our results to PCAWG-verified chromoanagenesis identification (of samples
from TCGA and the International Cancer Genome Consortium), we observed that the
chromoanagenesis rate is very similar for most cancer types, with R2 of 0.7461 (Figure 4c).
Notably, the high correlation was evident across all cancer types, despite the limited sample
size for some cancer types in PCAWG.
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Figure 3. Chromoanagenesis samples present chromosome-specific CNA oscillations. CNA patterns for four representative
PCAWG–TCGA samples. For each chromosome, gene amplification and gene deletion are depicted by blue and red,
respectively. Centromeres are signified by a white gap, separating the p-arm (left) from the q-arm (right). (a) TCGA-QG-
A5YW, a COAD patient without chromoanagenesis with a total of 7 oscillations. (b) TCGA-AO-A124, a BRCA patient
without chromoanagenesis with a total of 118 oscillations. (c) TCGA-GN-A26A, a SKCM patient with chromoanagenesis with
a total of 35 oscillations (primarily in chromosomes 1 and 15). (d) TCGA-66-2756, a LUSC patient with chromoanagenesis
with a total of 122 oscillations (primarily in chromosome 3).

Figure 4. Chromoanagenesis prediction. PCAWG and TCGA data were integrated and processed to train a machine learning
(ML) model (a) The selected model has an accuracy rate of 85.7%. It was applied to predict chromoanagenesis status for
the remaining 9929 TCGA individuals. (b) Predicted chromoanagenesis rate for all 33 cancer types in TCGA. Bars of the
histogram representing chromoanagenesis percentage estimates for cancer types not included in the training set are colored
red. (c) Correlation between predicted chromoanagenesis rate and the PCAWG reported chromoanagenesis rate for shared
cancer types.
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3.3. Chromoanagenesis Cancer Specific CNA Patterns

An in-depth analysis was performed to uncover cancer type specific chromoanage-
nesis CNA patterns. For each gene, we tested whether the frequency of CNA in each
sample type (chromoanagenesis and non-chromoanagenesis) was significantly different
(see Methods). We limited the analysis to the 20 cancer types with at least 50 chromoanage-
nesis samples and 50 non-chromoanagenesis samples: BLCA (Bladder Urothelial Carci-
noma), BRCA (Breast invasive carcinoma), CESC (Cervical squamous cell carcinoma and
endocervical adenocarcinoma), COAD (Colon adenocarcinoma), ESCA (Esophageal carci-
noma), GBM (Glioblastoma multiforme), HNSC (Head and Neck squamous cell carcinoma),
KIRC (Kidney renal clear cell carcinoma), LGG (Brain Lower Grade Glioma), LIHC (Liver
hepatocellular carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell
carcinoma), OV (Ovarian serous cystadenocarcinoma), PAAD (Pancreatic adenocarcinoma),
PRAD (Prostate adenocarcinoma), READ (Rectum adenocarcinoma), SARC (Sarcoma),
SKCM (Skin Cutaneous Melanoma), STAD (Stomach adenocarcinoma), and UCEC (Uterine
Corpus Endometrial Carcinoma).

The emerging patterns mostly consisted of numerous adjacent genes and often in-
cluded more than one chromosomal region. Some CNA regions showed clear distinction
between copy number deletion and amplification, while other regions were significantly
altered, but not specifically enriched with either deletions or amplifications (Figure 5 and
Figures S2–S20, Supplementary Tables S2–S4). Unsurprisingly, the vast majority of the
significantly altered chromosomal regions are associated with chromoanagenesis samples,
while in the non-chromoanagenesis samples, the copy number of the chromosomal regions
is maintained. Namely, the presented associations mostly indicate high CNA frequency in
the chromoanagenesis samples and very low CNA frequency in the non-chromoanagenesis
samples. The number of significant association regions varies greatly between cancer types;
UCEC is extremely abundant in statistically significant regions for any CNA (Table 1).

Table 1. Number of significant CNA regions per cancer type.

Cancer
Type

# Amplified
Regions

# Deleted
Regions

# Additional
Altered Regions

BLCA Bladder urothelial carcinoma 4 3
BRCA Breast invasive carcinoma 20 3 14

CESC Cervical squamous cell carcinoma and endocervical
adenocarcinoma 2

COAD Colon adenocarcinoma 1 1
GBM Glioblastoma multiforme 1 1

HNSC Head and neck squamous cell carcinoma 5
LGG Brain lower grade glioma 1 5

LUAD Lung adenocarcinoma 1 6
LUSC Lung squamous cell carcinoma 1

OV Ovarian serous cystadenocarcinoma 2
PRAD Prostate adenocarcinoma 1
SARC Sarcoma 1
SKCM Skin cutaneous melanoma 3 3
STAD Stomach adenocarcinoma 16 4 38
UCEC Uterine corpus endometrial carcinoma 166 57 74

Various CNA association patterns are linked to the different cancer types. Notably,
amplifications are more common than deletions (Table 1). Despite differences between
cancer types, some CNA regions display the same phenomenon in chromoanagenesis in
several cancer types (Table S5). For instance, both BRCA and COAD have deletions in
region 8p11.21, which occur around the same set of genes, and include the known driver
gene HOOK3 [15]. Additional examples include STAD and UCEC that exhibit similar
deletion patterns in the 4q34–4q35 region, which includes tumor suppressor gene FAT1.
The deletion of FAT1 promotes malignant progression [16]. BRCA, STAD, and UCEC have
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similar large amplifications in regions 17q12–17q21, previously observed in breast and
gastric cancers [17,18]. This gene rich large region includes several known cancer genes.
An amplification in the gene ERBB2 was shown to occur in breast cancer with a high rate
of proliferation [19,20].

Figure 5. LGG (Brain lower grade glioma) Manhattan plots. Genic Manhattan plot over Fisher’s exact test p-values between
LGG chromoanagenesis samples and non-chromoanagenesis samples. (a) LGG Manhattan CNA (combined deletion or
amplification) plot. (b) LGG Manhattan plot of deletion events. (c) LGG Manhattan plot for amplification events. The
sequential chromosomes are colored differently for visualization purposes. The conservative significance statistical threshold
is set to 5 × 10−7.

Three of the examined cancer types—ESCA, PAAD, and READ—did not have any
statistically significant copy number alterations, in either chromosomal region or gene
level. The lack of significant results is mostly explained by the relatively small number
of samples for either chromoanagenesis or non-chromoanagenesis samples. Applying
a more relaxed significance threshold will likely reveal additional results, for all tested
cancer types. Figure 5 and Figures S2–S20 depict Manhattan plots for deleted, amplified,
and altered regions for each of the 20 cancer types. Supplementary Table S5 details the
significantly altered chromosomal region per cancer type. The gene-level p-values are
summarized in Supplementary Tables S2–S4.
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3.4. Chromoanagenesis Single Gene Focal Alterations

Some prominent and significant CNA consist only of a single gene. We consider a gene
as a distinct CNA gene if the Fisher’s exact test p-value passes the predefined significance
threshold of 5 × 10−7, and is at least ×2.5 orders-of-magnitude more significant than
its adjacent genes. For UCEC, we applied a threshold of × 4 orders-of-magnitude, to
mitigate the extreme results in this cancer type. The analysis revealed several deleted genes:
LRP1B, PDE4D, DLG2, ANKS1B, WWOX, and DMD. LRP1B (a known tumor suppressor)
deletion was associated with chemotherapy resistance in high-grade cancers [21]. The
amplified genes are PARK2, MECOM, RAD51B, THSD4, and SKAP1 (Table 2). Some of the
prominently altered genes display gene-specific CNA in several cancer types, but often fail
to meet the significance threshold.

Table 2. Significant CNA genes.

Gene Gene Full Name Amplified in Deleted in Altered in Is Driver

ANKS1B Ankyrin Repeat And Sterile Alpha
Motif Domain Containing 1B UCEC −

CSMD1 CUB And Sushi Multiple Domains 1 BRCA −
DLG2 Discs Large MAGUK Scaffold Protein 2 UCEC −
DMD Dystrophin UCEC, ESCA *, STAD * −

ELAVL1 ELAV Like RNA Binding Protein 1 UCEC −
ESR1 Estrogen Receptor 1 UCEC +

FGF14 Fibroblast Growth Factor 14 PRAD −
KAZN Kazrin, Periplakin Interacting Protein UCEC −
LRP1B LDL Receptor Related Protein 1B UCEC, OV * +
LSAMP Limbic System Associated Membrane Protein UCEC, STAD * −

MACROD2 Mono-ADP Ribosylhydrolase 2 STAD −
MECOM MDS1 And EVI1 Complex Locus UCEC +
PARK2 Parkin RBR E3 Ubiquitin Protein Ligase COAD −
PDE4D Phosphodiesterase 4D STAD, UCEC, ESCA * BLCA −
PGM5 Phosphoglucomutase-Related Protein UCEC −

RAD51B RAD51 Paralog B UCEC +
SKAP1 Src Kinase Associated Phosphoprotein 1 UCEC −
THSD4 Thrombospondin Type 1 Domain Containing 4 UCEC −
WWOX WW Domain Containing Oxidoreductase UCEC −
ZMAT4 Zinc Finger Matrin-Type 4 −

* Prominently altered but fail to meet the significance threshold.

It is unclear whether these altered genes drive the chromoanagenesis and tumori-
genesis processes forward, or simply accompany them. The different chromoanagenesis
processes are less likely to alter the copy number of a single gene, and are more likely to
affect a chromosomal region. Nevertheless, the chromoanagenesis process might abrupt
fragile sites (i.e., chromosomal regions with increased frequency of breaks). Previous
studies have identified some of the altered genes as fragile sites: DMD, WWOX, PARK2,
and LRP1B [22–24]. Other altered genes include known oncogenes and tumor suppressors:
MECOM, RAD51B, ESR1, and also LRP1B (based on the COSMIC catalog gene census [25]).

3.5. Chromoanagenesis CNA Pattern Overlaps with Existing Knowledge

Many of the described tumor-specific CNA were previously detected and charac-
terized in tumorigenesis studies. However, some of these CNA patterns were analyzed
prior to the depiction of chromoanagenesis, and were not considered associated with the
phenomenon. In BLCA, one of the four significantly amplified regions for chromoanagen-
esis is 6p22. There are four consecutive genes which pass the significance threshold, the
most significant being E2F3 with a p-value of 7.9 × 10−9. E2F3 is a transcription factor
that interacts directly with the retinoblastoma protein (RB1) to regulate the expression of
genes involved in the cell cycle. The amplification of this region, and specifically E2F3 in
bladder cancer, was associated with tumor cell proliferation [26]. The other three ampli-
fied regions in chromoanagenesis BLCA were also previously linked to bladder cancer;
1q23 [27], 3p25 [28], and 8q22 [29].
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BRCA chromoanagenesis samples have three deleted regions, deleted 17q21 includes
the oncogene BRCA1. Lettesier et al. [30] analyzed samples of breast cancer with copy
number amplifications in 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13. We found that
amplification in 4 of those 6 chromosomal regions is also significantly associated with
chromoanagenesis. The gene CSMD1, frequently altered in chromoanagenesis, is a known
breast cancer tumor suppressor, associated with high tumor grade and poor survival [31,32].

GBM chromoanagenesis has a small amplification of three consecutive genes in 12q15,
including the gene MDM2. MDM2 is transcriptionally regulated by p53. It promotes tumor
formation by targeting p53 protein for degradation. Overexpression or amplification of
this locus is detected in a variety of different cancers. Amplification of MDM2 without
TP53 mutations was observed in gliomas [33,34]; this matches our observation, as GBM
chromoanagenesis is not enriched for classic chromoanagenesis signature of TP53. Similarly,
the CNA at 12q15 that includes MDM2 is associated with alteration in SARC [35].

3.6. Somatic SNV Reveal Chromoanagenesis Gene Differentiation

We further analyzed somatic SNV in chromoanagenesis samples for each of the
20 examined cancer types (see Methods). We tested the total number of somatic exome
SNV, the number of affected genes, how many occurrences of loss-of-function (LOF),
missense and synonymous mutations occurred, as well as the number of affected driver
genes (based on the COSMIC catalog gene census [25]). For the most part, the total number
of somatic SNV was mostly similar between chromoanagenesis and non-chromoanagenesis
samples. None of the groups had exceedingly more SNV across all cancer types. A notable
exception was UCEC, in which the non-chromoanagenesis samples had at least five times
more SNV in all measured aspects. Aggregated SNV level-effects in chromoanagenesis are
available in Supplemental Table S6.

For each gene, in each cancer type, we calculated separately the number of individuals
with LOF, missense, non-synonymous (either LOF or missense), and synonymous muta-
tions, in chromoanagenesis and non-chromoanagenesis samples. We tested the differences
for each gene and each mutation type using the conservative Fisher’s exact test. Detailed
results for genes with p-value smaller than 5 × 10−3 are available in Supplemental Table
S7. This comparison enabled us to identify cancer driver genes related to chromoanage-
nesis and also, driver genes that specify non-chromoanagenesis tumorigenesis. The rate
of the synonymous mutations for a specific gene can be considered as the mutation rate
background.

The top four genes detected as likely chromoanagenesis inducing genes are TP53,
ATRX and to a lesser extent: PPP2R1A and ST6GAL2. TP53 and ATRX are two promi-
nent, known chromoanagenesis causing genes [36–38]. In 10 out of the 20 tested cancers
(BLCA, BRCA, COAD, HNSC, LGG, LUAD, PAAD, PRAD, STAD, and UCEC), there were
significantly more TP53 LOF or missense mutations in chromoanagenesis than in non-
chromoanagenesis. In UCEC, 79.4% of chromoanagenesis classified samples had either a
missense or LOF mutation in TP53, in comparison to only 17% in the non-chromoanagenesis
samples (p-value: 1.22 × 10−36). ATRX had significantly more missense or LOF in chro-
moanagenesis samples in both LGG and SARC. In LGG, 53% of chromoanagenesis sam-
ples were mutated while only 27.1% of non-chromoanagenesis samples were mutated
(p-value: 5.32 × 10−7). ATRX inactivation was linked to TP53 mutations and altered telom-
eres [39,40]. PPP2R1A was significantly more mutated in chromoanagenesis in UCEC
(p-value: 1.33 × 10−5), and ST6GAL2 in LUAD (p-value: 1.12 × 10−6).

Many prominent oncogenes are SNV impaired at a higher rate in non-chromoanagenesis
samples. The most substantial non-chromoanagenesis genes are PTEN, CIC, CASP8,
KMT2D, ARID1A, RNF213, and PIK3CA. PTEN, an established tumor suppressor [41], is
associated with many cancer types. In UCEC, the gene has missense or LOF in 72.5% of
the non-chromoanagenesis samples, and in only 18.25% of the chromoanagenesis samples
(p-value: 6.02 × 10−27). CIC has more damaging mutations in non-chromoanagenesis
samples in STAD, LGG, COAD, and UCEC. In LGG, it is damaged in 25.2% of non-
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chromoanagenesis samples and is not damaged at all in chromoanagenesis samples (p-
value: 3.65 × 10−13). KMT2D, ARID1A, RNF213 and PIK3CA present similar trends in
both UCEC and STAD. CASP8 is commonly mutated in HNSC non-chromoanagenesis
samples (p-value: 6.91 × 10−6).

3.7. Mutual Exclusivity Imply Distinct Tumorigenesis Pathways

Some of the examined cancer types include both genes frequently impaired (i.e., accu-
mulated missense or LOF mutations) in chromoanagenesis samples, and genes frequently
impaired in non-chromoanagenesis samples. We performed a mutual exclusivity analysis
for the differentially impaired genes in each cancer type using cBioPortal [42,43]. The
analysis tests whether we see less simultaneous mutations occur in a gene pair in the same
patients than is expected by chance. We included several different research cohorts for each
cancer type, derived from both TCGA and a number of additional resources. Only genes
with mutual exclusivity q-value of <0.005 are presented. TP53, a top chromoanagenesis
gene (and ATRX in LGG) is mutually exclusive from other cancer driver genes (Figure 6).
Recurring genes in the non-chromoanagenesis samples include CIC, KMT2D, ARID1A,
and RPL22.

Figure 6. Mutually Exclusive Genes. A schematic presenting mutual exclusivity analysis for chro-
moanagenesis differentially impaired genes. TP53 and ATRX (in LGG) are significantly more impaired
in chromoanagenesis, and are also mutually exclusive from genes significantly more impaired in
non-chromoanagenesis individuals. Only genes with mutual exclusivity q-value < 0.005 are shown.
Genes that appear in more than one cancer type are indicated by the same background color. Paralo-
gous genes are marked with red font and colored with a similar background. * Only the top 10 genes
are shown, for cancer types with more differentially-impaired, mutually-exclusive genes.

Many of these mutually exclusive relationships were previously detected and studied.
In LGG, the genes TP53 and ATRX are impaired in chromoanagenesis samples, while
CIC and FUBP1 are impaired in non-chromoanagenesis samples, these mutually exclusive
genes were connected to specific pathological and clinical characteristics [39]. In HNSC, the
genes TP53 and HRAS impairment are mutually exclusive. Specifically, individuals with
TP53 mutated HNSC have reduced immune activity while individuals with HRAS mutated
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HNSC have an increased immune activity [44]. In BLCA, mutations in FGFR3 (mutually
exclusive to TP53) are correlated with bladder tumors of lower grade and stage [45].

Among the genes mutually exclusive with TP53 are several members of the ARID
family (i.e., ARID1A, ARID1B, and ARID5B. Figure 6). The human ARID family contains
15 coding genes whose main function is in cell differentiation and proliferation, specifically
in cancer-related signaling pathways. Mutations in ARID family members are common
in many tumor tissues, and it is a sensitive marker for cancer prognosis or therapeutic
outcome [46]. It was observed that mutations in ARID1A and TP53 are typically mutually
exclusive in epithelial ovarian cancer [47]. In many gynecological cancers, the lack of
ARID1A predicts early recurrence. Moreover, somatic ARID1A in these cancer types
consist mostly of frameshift or nonsense mutations leading to LOF. It is likely that the
mutual exclusivity between ARID1A and TP53 is explained by epigenetic signaling in
gynecological cancers [48]. A proposed mechanism underlying the mutual exclusivity
suggests that mutations in ARID1A contribute to the inactivation of p53-induced apoptosis.
In healthy tissues, ARID1A suppresses the expression of the HDAC6 gene. However,
in cancer samples with LOF of ARID1A, HDAC6 is elevated which in turn, represses
apoptotic function of p53 [47].

The differences in SNV impaired genes across chromoanagenesis states is likely to im-
ply on two distinct pathways in cancer development. A TP53-chromoanagenesis pathway,
driven by DNA instability and DNA breaks, and a more diverse, cancer-type dependent,
non-chromoanagenesis pathway that cover multiple processes as depicted by the major
cancer hallmarks.

3.8. Chromoanagenesis Samples Are Mostly Not Signified by Distinct Clinical Characteristics

We compared all available clinical attributes between chromoanagenesis and non-
chromoanagenesis samples for the 20 types of cancer. The analysis included demographic
characteristics such as age, gender, race and ethnicity, tumor specific characteristics such as
morphology, prior treatment, and tumor stage. Exposure features, such as BMI, smoking,
and alcohol use history were also examined. In addition, we performed Cox-regression
analysis for the 20 cancer types (Supplemental Figures S21–S40). For the most part, there
were no distinct differences in the many variables tested between chromoanagenesis and
non-chromoanagenesis samples. There were also no prominent differential survival trends
favoring either chromoanagenesis or non-chromoanagenesis samples. These results are
available in Supplemental Table S8.

Notably, there were three cancer types with varied morphology distribution be-
tween chromoanagenesis and non-chromoanagenesis samples: ESCA, SARC, and UCEC
(Figure 7). In UCEC, 90.1% of the non-chromoanagenesis patients had endometrioid car-
cinoma, while 61.9% of the chromoanagenesis patients had serous cystadenocarcinoma.
The distribution in morphology matches the molecular subtypes distribution [49–51] for
these three cancer types. Interestingly, the integrated genomic characterizations for ESCA,
SARC, and UCEC highlights genes detected in this study as chromoanagenesis-related
genes, such as TP53, ATRX, PPP2R1A, and MDM2.

3.9. Chromoanagenesis Does Not Correlate with HPV

It was postulated that human papillomavirus (HPV) causes certain chromoanagenesis
effects in infected individuals [3]. We collected HPV status for HNSC samples [9], and tested
whether there is an enrichment for HPV infections within our classified chromoanagenesis
samples. Out of the 171 non-chromoanagenesis samples, 13 (7.6%) were positive for HPV,
and 7 out of the 63 chromoanagenesis samples (11.1%) were positive for HPV. These
results suggest that HPV does not seem to induce chromoanagenesis-like patterns during
tumorigenesis.
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Figure 7. Chromoanagenesis morphological distribution. Pie charts representing the morphology
distribution in chromoanagenesis and non-chromoanagenesis samples for (a) ESCA, (b) SARC, and
(c) UCEC.

4. Discussion

We performed CNA, somatic SNV, and clinical data chromoanagenesis analyses for
20 cancer types. Chromoanagenesis samples presented distinct CNA patterns, mostly
cancer-type specific. The somatic SNV analysis, however, revealed similar genic phenoms.
Many of the observed CNA and somatic SNV patterns were previously independently
reported, but some were not associated with chromoanagenesis. We offer these reported
patterns as further evidence to the validity of our methodology and discoveries and sug-
gest chromoanagenesis as a possible driving force for known oncogenic CNA phenoms.
Providing this additional context can aid in better defining subtypes of cancer, as well as
revealing underlying shared tumorigenesis mechanisms. Surprisingly, we hardly found
any distinguishing clinical features between the proposed tumorigenesis routes, despite ex-
isting reports on a diminished survival rate in chromoanagenesis [37,52]. It is still possible
that the different subtypes of chromoanagenesis underlie the mostly homogeneous results.
In this case, there might be clinical properties obscured by considering all individuals with
chromoanagenesis as a unified group. In this study, we limited the analysis to genic CNA;
however, a more general non-gene-centric CNA predictor could better distinguish the dif-
ferent chromoanagenesis subtypes, and provide additional insights regarding overlooked
non-genic CNA regions. Notably, TCGA data only provides a single time point for each
tumor sample and therefore testing chromoanagenesis intra-tumor heterogeneity is not
possible [53,54].

TP53 is the most common gene damaged in many chromoanagenesis samples. TP53
has a much higher rate of missense or LOF mutations in chromoanagenesis [37], while some



Cancers 2021, 13, 4197 14 of 17

other known driver genes are often damaged in non-chromoanagenesis individuals. There
is a pattern of mutual exclusivity between genes damaged in chromoanagenesis and non-
chromoanagenesis samples. As some types of chromoanagenesis are considered to occur in
an early stage of tumorigenesis [7], it is possible that there are two main distinct pathways
in the observed samples: one driven by a single dramatic chromosomal rearrangement
event and the other process relies on accumulated point mutations in crucial cancer genes.
Each process is propelled by its own driver genes and a distinct primary tumorigenesis
process.

The high frequency of the chromoanagenesis phenomenon in cancer became evident
in recent years [7]. It was also detected as a possible cause for other serious conditions,
such as congenital disorders [55–57]. As chromoanagenesis was only defined with the
advances in technologies in recent years, the extent of the phenomenon is widely unknown.
Quite surprisingly, several cases of chromoanagenesis were reported from the germline
of healthy individuals [58]. Chromoanagenesis in healthy individuals mostly generates
copy number neutral translocations and inversions. These healthy individuals often suffer
natural abortions or give birth to offspring with congenital disorders [59]. Evidently, the
consequences of a chromoanagenesis event are dependent on the nature of the chromoso-
mal rearrangements it induces. The abundance and variety of cancerous chromoanagenesis
samples provides an ideal resource to investigate the chromoanagenesis phenomenon,
which is probably understudied in the non-cancerous context.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13164197/s1, Table S1: Chromoanagenesis classification for 9929 TCGA individuals.
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amplification frequency comparison. Table S4: Gene level p-values for CNA frequency comparison.
Table S5: Summary of CNA regions in each cancer type. Table S6: Aggregated somatic SNV level-
effects in chromoanagenesis. Table S7: Gene-level somatic mutation frequency comparison. Table S8:
Clinical and exposure chromoanagenesis comparison. Supplementary Figures S1–S40. A document
containing all supplemental figures. S1: CNA frequency in the PCAWG-TCGA cohort. S2-S20: Cancer
type specific CNA Manhattan plots. S21–S40: Cancer type Kaplan-Meier survival estimates and Cox
regression hazard ratios.
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