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Objective: The objective of this study was to characterize the number of loci affecting growth 
traits and the distribution of single nucleotide polymorphism (SNP) effects on growth traits, 
and to understand the genetic architecture for growth traits in Hanwoo (Korean cattle) using 
genome-wide association study (GWAS), genomic partitioning, and hierarchical Bayesian 
mixture models.
Methods: GWAS: A single-marker regression-based mixed model was used to test the asso-
ciation between SNPs and causal variants. A genotype relationship matrix was fitted as a 
random effect in this linear mixed model to correct the genetic structure of a sire family. 
Genomic restricted maximum likelihood and BayesR: A priori information included setting 
the fixed additive genetic variance to a pre-specified value; the first mixture component was 
set to zero, the second to 0.0001×

 2 

Title of the manuscript: Genomic partitioning of growth traits using a high-density SNP array in Hanwoo 32 

(Korean cattle) 33 

 34 

ABSTRACT 35 

Objective: The objective of this study was to characterize the number of loci affecting growth traits and the 36 

distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic 37 

architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic 38 

partitioning, and hierarchical Bayesian mixture models. 39 

Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs 40 

and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to 41 

correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori 42 

information included setting the fixed additive genetic variance to a pre-specified value; the first mixture 43 

component was set to zero, the second to 0.0001× 𝜎𝜎𝑔𝑔2 , the third 0.001× 𝜎𝜎𝑔𝑔2, and the fourth to 0.01× 𝜎𝜎𝑔𝑔2. BayesR 44 

fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed 45 

distribution. 46 

Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had 47 

a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic 48 

region explained approximately 10% of the variance against total additive genetic variance and body weight 49 

heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on 50 

BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be 51 

very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained 52 

only 0.04% to 0.5% of the genetic variance 53 

Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small 54 

effects on growth traits at different ages were also identified. 55 

 56 

Keywords: Genetic Architecture; Genome-wide Association Study; Hanwoo 57 

  58 

  59 

, the third 0.001×

 2 

Title of the manuscript: Genomic partitioning of growth traits using a high-density SNP array in Hanwoo 32 

(Korean cattle) 33 

 34 

ABSTRACT 35 

Objective: The objective of this study was to characterize the number of loci affecting growth traits and the 36 

distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic 37 

architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic 38 

partitioning, and hierarchical Bayesian mixture models. 39 

Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs 40 

and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to 41 

correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori 42 

information included setting the fixed additive genetic variance to a pre-specified value; the first mixture 43 

component was set to zero, the second to 0.0001× 𝜎𝜎𝑔𝑔2 , the third 0.001× 𝜎𝜎𝑔𝑔2, and the fourth to 0.01× 𝜎𝜎𝑔𝑔2. BayesR 44 

fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed 45 

distribution. 46 

Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had 47 

a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic 48 

region explained approximately 10% of the variance against total additive genetic variance and body weight 49 

heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on 50 

BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be 51 

very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained 52 

only 0.04% to 0.5% of the genetic variance 53 

Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small 54 

effects on growth traits at different ages were also identified. 55 

 56 

Keywords: Genetic Architecture; Genome-wide Association Study; Hanwoo 57 

  58 

  59 

, and the fourth to 0.01×

 2 

Title of the manuscript: Genomic partitioning of growth traits using a high-density SNP array in Hanwoo 32 

(Korean cattle) 33 

 34 

ABSTRACT 35 

Objective: The objective of this study was to characterize the number of loci affecting growth traits and the 36 

distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic 37 

architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic 38 

partitioning, and hierarchical Bayesian mixture models. 39 

Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs 40 

and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to 41 

correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori 42 

information included setting the fixed additive genetic variance to a pre-specified value; the first mixture 43 

component was set to zero, the second to 0.0001× 𝜎𝜎𝑔𝑔2 , the third 0.001× 𝜎𝜎𝑔𝑔2, and the fourth to 0.01× 𝜎𝜎𝑔𝑔2. BayesR 44 

fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed 45 

distribution. 46 

Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had 47 

a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic 48 

region explained approximately 10% of the variance against total additive genetic variance and body weight 49 

heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on 50 

BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be 51 

very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained 52 

only 0.04% to 0.5% of the genetic variance 53 

Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small 54 

effects on growth traits at different ages were also identified. 55 

 56 

Keywords: Genetic Architecture; Genome-wide Association Study; Hanwoo 57 

  58 

  59 

. BayesR 
fixed a priori information was not more than 1% of the genetic variance for each of the SNPs 
affecting the mixed distribution.
Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 
14 (BTA14) and 3 had a moderate effect that may contain causal variants for body weight 
at 6, 12, 18, and 24 months. This genomic region explained approximately 10% of the variance 
against total additive genetic variance and body weight heritability at 12, 18, and 24 months. 
BayesR identified the exact genomic region containing causal SNPs on BTA14, 3, and 22. 
However, the genetic variance explained by each chromosome or SNP was estimated to be 
very small compared to the total additive genetic variance. Causal SNPs for growth trait on 
BTA14 explained only 0.04% to 0.5% of the genetic variance
Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other 
loci with small effects on growth traits at different ages were also identified.
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INTRODUCTION 

High-density single nucleotide polymorphism (SNP) panels are available as a result of 
genome sequencing, and large-scale genome-wide association studies (GWASs) have been 
conducted to identify many novel loci associated with complex polygenic traits in humans 
and livestock. A good example is a GWAS for human height, which is a polygenic trait. 
The heritability of human height is approximately 80% [1,2]. However, conventional genome-
wide single-marker association studies explained only a very small portion of heritability 
for human height [3,4]. Recent GWASs for human height identified 697 variants in 423 
loci from large-scale data (>253,000 individuals), but those loci only explained 16% of the 
entire heritability. Yang et al [5] estimated heritability from 3,925 unrelated individuals and 
294,831 SNPs using a linear mixed model to overcome the problem of the “missing heri-
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tability.” That study showed that ~45% of variance could be 
explained by all of SNPs simultaneously. Therefore, most of 
the presumably missing heritability was not actually missing, 
but it was not detected because the single SNP effects were too 
small to pass stringent statistical tests [5]. Therefore, in order 
to search for markers that can increase the explanatory power 
of genetic variance, it is necessary to obtain a large number 
of markers and confirm their association.
 Nowadays, as the sequencing information of livestock was 
released and SNP array was developed, GWASs can consider 
that addresses three objectives of the livestock industry. First, 
GWASs aim to identify genomic regions, such as quantita-
tive trait loci (QTL), harboring causal variants underlying 
genetic variation in polygenic traits. Second, GWASs are used 
to investigate the genetic architecture of polygenic traits by 
estimating the genetic variance explained by a genomic re-
gion containing causal variants. Finally, GWASs can be used 
to predict genomic estimated breeding value and future phe-
notypes to rank animals for selective breeding [6]. Growth 
traits are associated with profit in livestock raised for meat 
production. Therefore, growth traits are an important breed-
ing trait for selection in Hanwoo Korean cattle breeding 
programs [7]. Growth traits are genetically highly correlated 
with carcass weight (CWT), which has a large contribution 
to total auction price in the Hanwoo production system. 
 The previous genome-wide QTL mapping studies have 
identified a major QTL for bovine body stature and growth 
traits on chromosome 14 [8,9]. Karim et al [8] localized a 
major genomic region for bovine body stature to a 780-kb 
segment on bovine chromosome 14, which contains two 
candidate quantitative trait nucleotides (QTNs) located at 
PLAG1–CHCHD7. Nishimura et al [9] identified three QTL 
regions for CWT on bovine chromosomes 6, 8, and 14 in 
Japanese Black cattle, and the QTL mapped on BTA14 was 
the same region as a PLAG1–CHCHD7 QTN for stature. 
Based on these previous studies, it can be estimated that the 
genomic relationship of growth and CWT traits can be con-
firmed in Hanwoo cattle.
 Recent developments in bovine high-density SNP arrays, 
such as the BovineSNP50 BeadChip (Illumina, San Diego, 
CA, USA), allow for an understanding of the genetic archi-
tecture of complex traits and to more accurate prediction of 
genomic breeding value in livestock. Moreover, genomic pre-

diction using genome-wide SNP markers is a promising 
breeding technology to accurately predict breeding value at 
an early stage of identifying candidate animals for selection 
[10]. The genetic architecture of polygenic traits, such as the 
number of SNPs associated with the polygenic traits and the 
distribution of SNP effects can affect the accuracy of genomic 
prediction [11,12]. In this point of view, GWASs can help to 
clarify the genomic structure of polygenic traits for the livestock 
industries. Hayes et al [12] performed a GWAS to determine 
the number of SNPs associated with coat color and milk fat 
percentage and the distribution of SNP effects for more ac-
curate prediction of breeding value. Therefore, it is necessary 
to estimate more accurate breeding value in order to efficiently 
improve Hanwoo, and the causal mutation or genetic marker 
searched by GWAS analysis of production related trait and 
genomic information can provide useful information for es-
timating more accurate breeding value.
 The aim of the present study was to characterize the num-
ber of loci affecting growth traits and the distribution of SNP 
effects on growth traits using a whole-genome association 
study in Hanwoo cattle.

MATERIALS AND METHODS 

Animals and genotype assays
The animals (n = 904) used in the study were born from 2000 
to 2010 and belonged to the National Progeny test program 
(only male samples). Phenotype data were live body weight 
(BW) at different ages (6, 12, 18, and 24 months). The num-
ber of genotyped individuals and phenotypic growth traits and 
the trait summary statistics and heritabilities are shown in 
Table 1. The average BW±standard deviation was 164.3±28.2 
kg at 6 months (BW6), 310.7±33.9 kg at 12 months (BW12), 
475.4±45.3 kg at 18 months (BW18), and 618.0± 58.6 kg at 
24 months (BW24). The heritability for growth traits was 0.25, 
0.32, 0.38, and 0.45 for BW6, BW12, BW18, and BW24, re-
spectively (Table 1). DNA was extracted from blood using the 
DNeasy 96 Blood & Tissue Kit (Qiagen, Valencia, CA, USA). 
DNA quality control (QC) was assessed and DNA quantified 
using the NanoDrop 2000 (Thermo Fisher Scientific, Inc., 
Wilmington, DE, USA). Total DNA concentration was di-
luted to 900 ng with a 260/280 ratio >1.9, and the final DNA 
concentration for genotyping was 20 ng/μL. The high-density 

Table 1. Summary statistics for growth traits in Hanwoo

Trait Mean SD Min Max Median h2(±SE)

BW6 (kg) 164.3 28.2 69.5 245.0 164.0 0.25 ± 0.09
BW12 (kg) 310.7 33.9 176.0 479.0 311.0 0.32 ± 0.10
BW18 (kg) 475.4 45.3 278.5 655.0 474.5 0.38 ± 0.11
BW24 (kg) 618.0 58.6 361.0 848.5 617.0 0.45 ± 0.11

SD, standard deviation; SE, standard error; BW, body weight of each month age. 
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SNP genotyping was performed using the Illumina bovine 
50K array (Illumina, USA). All genotyping was done by the 
Animal Genome & Bioinformatics Division of the National 
Institute of Animal Science, RDA, Korea. As a result of the 
genotyping of the 50k array, a total of 48,845 SNPs was ob-
tained, which was imputed to the 777K bovine reference 
genome (731,261) SNPs using 4,887 reference population. 
The SNP QC criteria were call rate of 90%, minor allele fre-
quency (MAF) <0.01, and Hardy–Weinberg equilibrium 
(HWE) <0.0001. SNP QC was performed using Plink1.9 
software. 

Genome-wide association to reveal the genetic 
architecture of complex traits in Hanwoo cattle
A single-marker regression-based mixed model was used to 
test the association between the SNPs and the causal variants. 
A genotype relationship matrix (GRM) was fitted as a ran-
dom effect in this linear mixed model to correct the genetic 
structure of the sire family. The basic concept of a GWAS is 
that the SNP is assumed to be in linkage disequilibrium (LD) 
with causal variants in close proximity. The effect evaluated 
was an additive effect. SNP genotypes were recoded as allele 
counts (0, 1, 2), which represent copies of the variant allele. 
The following mixed linear regression model was fitted to 
map QTL for growth traits using a genome-wide complex 
trait analysis (GCTA) [5]. The statistical model was, 
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𝟐𝟐 , and the 173 

fourth to 0.01 × 𝝈𝝈𝒈𝒈
𝟐𝟐 . Bayesian mixture model (BayesR) fixed a priori information at not more than 1% 174 

of the genetic variance for each SNP effect using a mixed distribution. The BayesR model set the a 175 

priori condition that if the number of markers was not in LD with the causal variant, then these have 176 

zero effect, whereas markers associated with a causal mutation have a small to moderate effect. 177 

Therefore, the SNP effects are conditionally related to the variance of the components 𝝈𝝈𝟐𝟐 =178 

(𝝈𝝈𝟏𝟏
𝟐𝟐, ⋯ , 𝝈𝝈𝒌𝒌

𝟐𝟐) and the mixed proportions 𝝅𝝅 = (𝝅𝝅𝟏𝟏, ⋯ , 𝝅𝝅𝒌𝒌), which are constrained to be positive and to 179 

sum to unity: 𝒑𝒑(𝜷𝜷|𝝅𝝅, 𝝈𝝈𝟐𝟐) =  ∑ 𝝅𝝅𝒌𝒌𝑵𝑵(𝜷𝜷|𝟎𝟎, 𝝈𝝈𝒌𝒌
𝟐𝟐)𝒌𝒌

𝒌𝒌=𝟏𝟏 , where (𝜷𝜷|𝟎𝟎, 𝝈𝝈𝒌𝒌
𝟐𝟐) indicates the density function of 180 

the univariate normal distribution with mean 0 and variance 𝝈𝝈𝒌𝒌
𝟐𝟐. The Bayesian approach requires the 181 

assignment of prior distributions to all unknowns in the model. Following Erbe et al [13], we assumed 182 

an a priori mixture of four zero-mean normal distributions, where the relative variance for each mixture 183 

component was fixed:  184 
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𝟐𝟐 ) + 𝝅𝝅𝟐𝟐 × 𝑵𝑵(𝟎𝟎, 𝟏𝟏𝟎𝟎−𝟒𝟒 × 𝝈𝝈𝒈𝒈

𝟐𝟐 ) + 𝝅𝝅𝟑𝟑 × 𝑵𝑵(𝟎𝟎, 𝟏𝟏𝟎𝟎−𝟑𝟑 × 𝝈𝝈𝒈𝒈
𝟐𝟐 ) + 𝝅𝝅𝟒𝟒186 

× 𝑵𝑵(𝟎𝟎, 𝟏𝟏𝟎𝟎−𝟐𝟐 × 𝝈𝝈𝒈𝒈
𝟐𝟐 ) 187 

 188 

Here, 𝝈𝝈𝟐𝟐 is the additive genetic variance explained by SNPs that fixed the marker variance at a pre-189 

specified value. 190 

 191 

RESULTS AND DISCUSSION  192 
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mation was imputed as follows. A total of 731,261 SNPs was 
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imputed using 48,845 samples of 777K SNPs as a reference. 
After QC assessment, 644,726 SNPs were included for fur-
ther analyses, and 782, 82,450, and 4,085 SNPs were removed 
by QC criteria of low call rate, MAF, and HWE, respectively. 
The majority of SNPs were mapped to the intergenic and 
intron regions, i.e., 59% and 31% of SNPs were located in 
intergenic and intron regions of the bovine reference genome, 
respectively (Figure 1). The exon region mapped only 1% of 
SNPs, and the regulatory and upstream regions included 4.3% 
(Figure 1).

Genome-wide association results for each growth traits
The GWAS revealed that common 2-Mb genomic regions 
may contain a causal variant on BTA14 for body weight at 6, 
12, 18, and 24 months (Figure 2). This genomic region ex-
plained approximately 10% of the genetic variance against 
the total additive genetic variation. A total of 72 SNPs showed 
significant association with BW traits at each stage, and 69 of 
them were found on BTA14. In this chromosome, the 22 SNP 
regions were identified on 24 to 27 Mbp range. These areas 
were identified as matching areas in the phenotypes at BW12, 

Figure 1. The SNP annotation result of imputed 777K SNPs to bovine reference genome. Of the total 644,726 SNPs completed, approximately 90% of the 660.8K variants 
were identified as intergenic and intron SNPs, and about 1% of the 7.6K SNPs were identified as exonic SNPs. SNP, single nucleotide polymorphism. 

Figure 2. Genome wide association study for growth traits using linear mixed model in Hanwoo. A total of 72 regions in all BW measurement intervals were identified as 
positions representing the association with each growth trait. Among them, 38 SNPs showed association with growth traits except for overlapping SNPs. BW6 has 1 SNP 
on BTA14, BW12 has 17 SNPs on BTA14, BW18 has 19 SNPs on BTA14 and 1 SNP on BTA22, BW24 has 32 SNPs on BTA14 and 2 SNPs on BTA6 were confirmed 
association results with each growth trait. BW, body weight; SNP, single nucleotide polymorphism.
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18, and 24 months. (Supplementary Table S1). Other than 
this region, the genomic region on BTA22 (48M) showed a 
significant effect on body weight at 18 months. Two SNP posi-
tions (39M and 42M) on BTA6 showed significant effects for 
body weight at 24 months in Hanwoo. The body weight trait 
is genetically correlated with CWT in cattle. A recent GWAS 
of Hanwoo cattle identified a highly significant genomic re-
gion for CWT on BTA14 [14,15]. That study detected a major 
genome region ranging from 23 to 25 Mb on BTA14 associ-
ated with CWT in Hanwoo. The most significant SNPs within 
the region explained 6.7% to 10.6% of the genetic variance, 
which is a large proportion of the total additive genetic vari-
ance. In cattle other than Hanwoo, BTA14 is well known as a 
major QTL region for bovine body stature, CWT, and growth 
traits [8,9]. Karim et al [8] revealed that the major QTL for 
bovine stature was localized to a 780 kb section on BTA14 
and was mapped to two candidate genes (PLAG1–CHCHD7). 
Moreover, Nishimura et al [9] reported three major genomic 
regions for CWT and body stature on BTA6, 8, and 14 in 
Japanese Black cattle. Taken together, previous studies sug-
gest that BTA14 has a high genetic relationship to growth 
and CW traits and a high probability of finding causal varia-
tion. Thus, a high-density bovine SNP array allowed animal 
scientists to understand the genetic architecture of a poly-
genic trait. 

Genomic partitioning of the growth traits 
We estimated the proportion of genetic variance explained 
by the common SNPs on each chromosome to determine 

whether the growth trait was a polygenic characteristic in the 
Hanwoo population studied. The proportion of total additive 
genetic variance attributed to each chromosome averaged 
across three growth traits against chromosome length (Figure 
3) was estimated using a linear mixed model with the restrict-
ed maximum likelihood method. Figure 3 shows the genetic 
variance explained by each chromosome. The BTA14 ex-
plained >10% of body weight heritability (genetic variance) 
at 12, 18, and 24 months. BTA3 also had a moderate (≤10%) 
effect on body weight in Hanwoo cattle. However, the other 
chromosome had marginal effects on these traits. As for the 
BTA14 region that identified the largest genetic variance, the 
genetic variance of the entire BTA14 except for the 25 to 34 
Mb region where significant SNPs exist was found to be small 
(Supplementary Table S2). These results suggest that BTA14 
may be a major autosome that affects the entire genome, but 
since the GWAS is estimated by the LD relationship, there 
was a limitation in confirming the exact causal variants. We 
assessed the correlation between heritability explained by each 
chromosome and chromosome length by calculating the pro-
portion of the genome represented by each chromosome 
(not including the length of sex chromosomes). The regres-
sion line showed a positive correlation between heritability 
and chromosome length, indicating that each chromosome 
explained a very small portion of the genetic variance. No 
gene with a large genetic effect on this trait was observed, but 
some chromosomes, such as BTA 14, 3, and 19, had moder-
ate genetic effects on the growth traits. Yi et al [16] performed 
a GWAS to detect QTLs affecting growth traits. That study 

Figure 3. Proportion of genetic variance attributed to each chromosome averaged across body weight traits (12, 18, 24 months) against chromosome length. These 
proportion values were estimated using a linear mixed model with the restricted maximum likelihood method. The BTA14 accounted for the largest (>10%) portion of the 
heritability of the three different growth traits, and BTA3 and BTA19 explained moderate (4% to 8%) portion.
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found 16 significant SNPs for weaning weight (WWT) and 
18 significant SNPs for 365-d yearling weight (YWT) in Han-
woo. In that study, a strong signal associated with the weight 
trait was detected on BTA14, and other traits, such as WWT 
and YWT, were identified on BTA20. Yang et al [5] revealed 
that common SNPs explained a large proportion of genetic 
variance for the height trait in humans. The heritability of 
human height is around 80%, but that study showed that 
around 45% of heritability was explained by common SNPs, 
and the remaining heritability was due to incomplete LD in 
the human population [5]. Unlike the human population, 
cattle have a very strong LD structure because of selection. 
Therefore, BTA14, 3, and 19 have very strong LD structure 
between marker and causal variants with moderate genetic 
effects. 

Hierarchical Bayesian mixture model 
Given the high density of SNPs, it was impossible to fit all of 
the SNP markers in the model at the same time. The GWAS 
used a large number of SNP markers so that the number of 
parameter estimates was larger than the number of samples. 
Therefore, we reduced the number of SNP markers using 
variable selection methods, either by discarding unimportant 
predictors or by shrinking the marker effect to zero. Among 
the variable selection methods, Bayesian methods such as 
the BayesA, B [10], and C [17] models have been developed 

to very accurately estimate individual SNP effects. Erbe et al 
[13] developed a new Bayesian method called BayesR, which 
uses a Bayesian mixed model and the a priori assumption of 
a mixture of a normally distributed mixture of SNP effects. 
 Comparisons between a normal GWAS and BayesR were 
assessed based on their ability to identify a genomic region 
of causal variant for growth trait on BTA14 in Hanwoo cattle. 
Figure 4 shows that BayesR identified the exact genomic 
region containing causal SNPs on BTA14, 3, and 22. How-
ever, the genetic variance explained by each chromosome 
or SNP was estimated to be a very small proportion against 
total additive genetic variance (Figure 4). Even SNPs on BTA14 
were confirmed six overlapped position with GWAS that 
had causal effects on growth explained only 0.01% to 0.8% 
of the genetic variance (Supplementary Table S3). Interest-
ingly, the highest effective SNP for growth trait was confirmed 
0.48% of rs42837161 on BTA22 for BW12 to 24, and 0.21% 
of rs110647998 SNP on BTA3 for BW18 in the research pop-
ulation (Supplementary Table S3). Both areas of BTA3 and 
22, which are more effective than BTA14, may need to be 
monitored for further developmental associations. The propor-
tion of each mixed distribution of SNP markers was estimated 
for the body weight traits (Figure 5). The proportion of vari-
ance explained by each mixed component differed greatly 
among the four growth traits (Figure 5). In this study, many 
SNPs with small effects (0.0001×
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Figure 4. Genome wide proportion of variance for body weight traits at different age (6, 12, 18, and 24 months) using Bayesian mixture model (BayesR) in Hanwoo. The 
BayesR identified the exact genomic region containing causal SNPs by shrinking marker effect to zero. In these results, six SNP positions on BTA14 were identified same 
position with the GWAS results, which showed an effect of 0.01% to 0.09%. In BTA22, one SNP position was consistent with the GWAS result, and the effect of this SNP 
was 0.48%. A high effect SNP of 0.21% was also found in the 96 Mb region of BTA3, but this was not confirmed in the GWAS results. SNP, single nucleotide 
polymorphism; GWAS, genome-wide association study.
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ance, i.e., 25% of BW6, 25% of BW12, 23% of BW18, and 
7% of BW24. The large genetic contribution to the effect size 
of the SNP produced a moderate effect (0.001×
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). These results confirm that 
the average 70% of genetic variance for small and moderate 
effects explains the growth traits of Hanwoo cattle. There-
fore, growth traits are controlled by many SNPs with small 
and moderate effect sizes in Hanwoo. 

CONCLUSION

Our results revealed that differences exist in the genetic archi-
tecture of different complex traits in Hanwoo cattle. Segregating 
mutations with a moderate effect on BTA14, 3, and 19 and 
many other loci with small effects were found for growth traits 
at different ages. The distribution of the effects was assumed 
to be normal. The genetic architecture of growth traits will 
provide important information for predicting the genomic 
breeding value of animals for selection in the Hanwoo breed-

ing industry.
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