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Since the first reported cases of acquired immunodeficiency 
syndrome (AIDS) in 1981 (ref. 1) and the identification of the AIDS-
causing virus in 1983 (ref. 2), it is estimated that more than 40 mil-
lion people have died from human immunodeficiency virus (HIV) 
infection.3,4 About 35 years have elapsed since the first documented 
HIV-1 infections and no substantial progress has been made in 
developing a vaccine that could effectively protect against HIV 
infection in the vast majority of people.5–8 Similarly, with the single 
exception of the “Berlin patient”,9–11 eradication of HIV from infected 
individuals has also not been achievable.12 Although the develop-
ment of potent antiretroviral drugs has made it possible to vastly 
extend the life expectancy of HIV-infected individuals, anti-HIV 
drugs do not cure virus infection.12–20 As of 2014, it was estimated 
that almost 37 million people were living with HIV globally, with a 
continuing new infection rate of 2 million per year.21

There are good reasons for believing that development of an 
effective vaccine against HIV-1 is going to be a very difficult task.22,23 
The predicted difficulties have more or less been borne out by vac-
cine trials in monkeys and in humans.6–8,24 Of the six large-scale, 
placebo-controlled human efficacy trials of HIV vaccines, three 
showed no protection against acquisition and two actually showed 
enhanced acquisition of HIV-1 infection in the vaccine recipient.25–37 

Only one of the six vaccine trials, termed RV144 (ref. 38), appeared 
to show some protective effects against acquisition,39–47 but claims 
regarding vaccine efficacy have not been straightforward to inter-
pret. Furthermore, none of the six HIV efficacy trials reported a 
reduction of viral loads in vaccine recipients that became infected.

While attempts to develop improved vaccine strategies continue, 
many feel that alternate approaches that differ from conventional 
vaccination may be needed. One such alternate approach is the 
delivery of anti-HIV monoclonal antibodies (mAbs) by recombinant 
AAV (rAAV) gene transfer. This technology is independent of the 
host immune system and AAV-delivered antibodies have the poten-
tial to create a long-term sterilizing barrier against HIV. Studies that 
have employed rAAV vectors to deliver antibodies or antibody-like 
molecules have shown protective effects against simian immuno-
deficiency virus (SIV) in monkeys,48,49 simian-human immunode-
ficiency virus (SHIV) in monkeys50,51 and HIV in humanized mice.52 
Although encouraging, efficacy in monkeys was limited by immune 
responses to the delivered transgene product.48,49,51 AAV-mediated 
delivery of broadly neutralizing antibodies (bnAbs) also shows 
promise for inhibiting viral replication and possibly even eradicat-
ing infection in HIV-positive individuals. Passive transfer of bnAbs to 
HIV-infected mice,53–55 SHIV-infected monkeys,56–58 and HIV-infected 
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Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) 
isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative 
alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier 
against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been 
identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery 
for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those 
products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-
term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising 
concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated 
protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experi-
ments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses 
appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated 
antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be 
understood and solved in order for the promise of this approach to be realized.
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humans59,60 has already shown potent antiviral effects when used 
as a therapeutic modality. However, those inhibitory effects against 
virus infection were transient due to the limited bioavailability of 
therapeutic antibodies following passive transfer. Recombinant 
AAV-antibody gene transfer could eliminate the need of repeated 
mAb infusions to already-infected humans and create constant, 
long-term levels of potent bnAbs in serum.

This review discusses the promise of AAV-delivered bnAbs for the 
ability to protect against the acquisition of HIV infection in humans 
and to block virus replication in those individuals that are already 
infected. We also discuss the problem of immunogenicity of AAV-
delivered antibodies, which appears to be a major stumbling block 
to effective application of this approach for use in people.

THE ELUSIVE HIV VACCINE
Soon after HIV was discovered, the scientific community was 
optimistic that a vaccine against the AIDS-causing virus could be 
developed in a timely manner. That belief has unfortunately been 
shattered. More than 30 years of research have shown that a vac-
cine against HIV will be much more difficult to develop than the 
successful vaccines that exist for other pathogens.5,22,61,62 The big-
gest challenge in the development of an effective HIV vaccine lies in 
the nature of the virus itself. HIV establishes a continuous presence 
by the integration of its genetic information into the host genome; 
it is able to generate and tolerate an enormous degree of genetic 
variation; and it has evolved a variety of strategies for evading host 
immune responses.7,63–70 Once HIV establishes the initial infection, it 
is able to replicate continuously and without relent despite appar-
ently strong humoral and cellular immune responses.22 Factors that 
contribute to a failed immune control of HIV infection are summa-
rized in (Figure 1).23,69,71–78

Since the first HIV vaccine trial in 1987 (ref. 79), more than 270 tri-
als have followed.80 From these, several vaccine candidates have 
progressed to a total of six phase IIb or phase III efficacy trials  
(Table 1).6,7,81 AIDSVAX B/B used in VAX004 (refs. 25–28) and AIDSVAX 
B/E used in VAX003 (ref. 29) were the first HIV vaccines to enter 
phase III clinical trials. The vaccine preparations consisted of combi-
nations of HIV recombinant gp120 envelope (env) proteins. As the 
name implies, AIDSVAX B/B included envelope protein sequences 
of two clade B isolates (MN, tissue culture derived strain; GNE-8, 
primary isolate). AIDSVAX B/E included the sequence of a clade B 
isolate (MN) and the sequence of a clade E isolate (CM244, primary 
isolate). The goal of the two studies was to test whether the gp120-
induced antibodies were capable of preventing acquisition of the 
virus in high-risk populations. The outcome of the trials showed 
that the vaccines were not effective at preventing HIV infection; the 
rates of infection in the vaccinated groups versus the unvaccinated 
groups were similar. Furthermore, the vaccines had no influence on 
viral loads, CD4+ T cell counts or progression to AIDS.25–29

These first vaccine efficacy trials were followed by two very differ-
ent efficacy trials that were based on viral vectors aimed at eliciting 
cellular responses against HIV. Virus vectors derived from replica-
tion-defective adenovirus serotype 5 (Ad5) were utilized in the STEP 
study30–34 and the Phambili study,35,36 numbers 3 and 4 of the HIV 
efficacy trials. The STEP study enrolled HIV-1-negative individuals 
that were given either a placebo or an equal mixture of three sepa-
rate recombinant Ad5 vectors from the company Merck (MRKAd5). 
The three vectors expressed gag from the HIV-1 strain CAM-1, pol 
from the HIV-1 strain IIIB and nef from the HIV-1 strain JR-FL. The 
MRKAd5 vaccine utilized in the STEP trial did not reduce HIV infec-
tion rates and did not decrease viral loads in individuals that became 

infected with HIV. On the contrary, vaccinees had a significantly 
higher risk for acquiring HIV as compared to the placebo group. The 
concomitant Phambili study aimed at testing the MRKAd5 vaccine 
in South Africa, where HIV-1 clade C is predominant, was stopped 
prematurely due to the STEP trial results. However, individuals that 
were already vaccinated in the Phambili study continued to be fol-
lowed. As in the STEP trial, vaccinees in the Phambili trial showed 
significantly increased acquisition of HIV infection. Increased acqui-
sition in the vaccine groups in both trials was restricted to sub-
groups of individuals with high pre-existing antibody titers to Ad5  
(refs. 30,32,36). A high pre-existing antibody titer to Ad5 was asso-
ciated with greater susceptibility to acquiring HIV infection when 
they were vaccinated with the recombinant Ad5 vaccine.32 It has 
been suggested that the T cell activation caused by the recombi-
nant Ad5 vaccine in individuals with pre-existing Ad5 immunity 
made them more susceptible to the initial HIV infectious event.36,82

The fifth efficacy trial, the RV144 or Thai trial,38 tested a prime-
boost regimen based on four injections with ALVAC-HIV83 (the 
vCP1521 canarypox vector expressing the HIV genes env, gag, pro) 
followed by two injections with AIDSVAX B/E (recombinant gp120 
subunit vaccine). The study enrolled over 16,000 healthy adults of 
which over 12,000 individuals completed all vaccination visits while 
remaining HIV-negative through the last scheduled vaccination. The 
ALVAC/AIDSVAX prime-boost vaccine did not have significant pro-
tective effects against acquisition when analyzed by a per-protocol 
analysis or with an intent-to-treat analysis. However, the modified 
intent-to-treat analysis showed 31% protection against acquisition 
with a p value of 0.04 (refs. 38,84). A statistical interpretation analy-
sis published by Gilbert et al. reported less than a 78% chance of 
any vaccine efficacy at all.39 It has been suggested that binding of 
IgG antibodies to variable regions of HIV-1 env proteins may have 
contributed to protective effects against HIV infection in the vaccine 
recipients.40,41,43,45–47 Statistically significant “sieving” effects have also 
been reported.42 However, these sieving effects included a gp120 
env amino acid that was present in the vaccine being overrepre-
sented in vaccine recipients who became infected as compared 
to placebo recipients who became infected. It also included selec-
tive sieving of amino acids in genes that were not even included 
in the vaccine.85 There is no rational explanation for these sieving 
effect observations. The vaccine did not induce bnAbs, it did not 
elicit CD8+ cytotoxic T cell (CTL) responses44,86 and viremia was not 
reduced in individuals that became infected with HIV.38

HVTN 505 is the sixth efficacy trial. The goal of the vaccine 
approach used in this trial was to test the efficacy of a DNA prime 
and Ad5 vector booster immunization in high-risk male or trans-
gender individuals. Because of the results of the STEP and Phambili 
trials, individuals with high pre-existing immunity to Ad5 were 
excluded from the study. The HVTN 505 study was prematurely 
stopped due to futility 24 months after initial enrollment of partici-
pants. Therefore, data analysis could only be performed on those 
individuals who completed the 24-month study visits, about two 
thirds of the intended enrollment. The vaccine induced cellular and 
humoral immune responses but failed at preventing HIV infection 
with no difference in acquisition between the vacinees and the con-
trol group. Also, the vaccine had no influence on viral loads at set 
point.37

VACCINE TRIALS IN MONKEYS
Vaccine studies in monkeys using SIV or SHIV have been used to 
inform and guide the development of vaccine concepts for human 
clinical trials.87–90 Results from monkey studies can be used to rank 
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Figure 1   Difficulties associated with immune control of HIV infection. The nature of HIV and the evolution of immune evasion strategies of the virus are 
responsible for why a HIV vaccine has remained an elusive task. HIV preferentially infects and destroys CD4+ T cells (central mediators of the immune 
systems), especially in the gut-associated lymphoid tissue (GALT). The virus early establishes a reservoir in latently infected CD4+ T cells by integration 
of proviral DNA into the host cell genome. Recognition by cytotoxic T cells is further exacerbated by downregulation of MHC class I molecules on the 
surface of virus-infected cells, which is orchestrated by the viral nef gene. Sensing of the pathogenic intruder by the host innate immune system is 
counteracted by the HIV-1 genes vif and vpu. Antibody and CD8+ T cell responses are readily escaped by selection of antigenic escape variants facilitated 
by the high mutation rate of the virus. The error-prone reverse transcriptase causes an enormous sequence diversity of the envelope glycoproteins 
gp120 and gp41 (up to 35% among clades, 20% within clades, 10% in a single infected individual). An extensive glycan shield on the env trimer shields 
vulnerable targets on envelope (about 50% of the mass of gp120). Abbreviations: reverse transcriptase (RT); integrase (IN); protease (PR); capsid (CA); 
matrix (MA); nucleocapsid (NC); long terminal repeat (LTR); group-specific antigen (gag); the pol gene encodes RT, IN and PR; viral infectivity factor (Vif ); 
viral protein R (Vpr); viral protein unique (Vpu); negative regulatory factor (Nef); trans-activator of transcription (tat); regulator of expression of virion 
proteins (rev); envelope (env) gene encodes the glycoprotein gp160 that is processed into gp120 and gp41.
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Table 1  HIV vaccine efficacy trials in humans.

Trial Name of trial
Clinical trials 

identifier Name of vaccine Vaccine components Dates Population
Estimated 

enrollment Efficacy

1 VAX 004 NCT00002441 AIDSVAX B/B gp120 proteins (clade B) 1998–2003 Adults at risk of sexually 
transmitted HIV-1 
infection

5,400 No

2 VAX 003 NCT00006327 AIDSVAX B/E gp120 proteins  
(clades B and E)

1999–2003 Intravenous drug users 2,500 No

3 STEP study 
(HVTN 502)

NCT00095576 MRKAd5 HIV-1 gag/pol/nef 
trivalent Ad5 vector 
vaccine

2004–2007 Adults at risk of sexually 
transmitted HIV-1 
infection

3,000 Enhanced 
acquisition

4 Phambili 
study  
(HVTN 503)

NCT00413725 MRKAd5 HIV-1 gag/pol/nef 
trivalent Ad5 vector 
vaccine

2007–2007 Adults at risk of sexually 
transmitted HIV-1 
infection

800 (of 
3,000)

Enhanced 
acquisition

5 RV144  
(Thai trial)

NCT00223080 ALVAC-HIV and 
AIDSVAX B/E

Canarypox vector (HIV-1 
env/gag/pro), and gp120 
proteins (clades B and E)

2003–2009 Adults at risk of sexually 
transmitted HIV-1 
infection

16,400 *

6 HVTN 505 NCT00865566 VRC DNA/rAd5 DNA plasmid (gag/pol/
nef/env), and rAd5  
(gag/pol/env)

2009–2013 Men/Transgender at risk 
of sexually transmitted 
HIV-1 infection

2,500 No

*Per-protocol analysis: no significant efficacy; intent-to-treat analysis: no significant efficacy; modified intent-to-treat analysis: 31% efficacy (P = 0.04).
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order, or select, the most promising concepts for trials in humans. 
The SIV strains SIVmac239 (ref. 91) and SIV251 (ref. 92), as well as 
the SHIV strains SHIV-SF162 (refs. 93,94) and SHIV-AD8 (refs. 95,96) 
have been preferentially used, but by no means exclusively.22,88,97 
The greatest protective efficacy in monkeys has been achieved by 
using live attenuated strains of SIV, such as those deleted of the 
nef gene.97,98 Durable protection has been consistently demon-
strated against homologous virus challenge in a variety of stud-
ies.98–105 However, considerably less protection has been observed 
by live attenuated strains when the challenge virus was not closely 
matched in sequence.105–111 This relatively unimpressive level of pro-
tection by live attenuated SIV against challenge by a heterologous 
AIDS virus strain is perhaps analogous to the inability of human 
infection with wild-type strains of HIV-1 to routinely protect against 
superinfection by different strains of HIV-1 (refs. 112–116).

The next most impressive degree of protection in monkey vaccine 
trials has been achieved with a recombinant, replication-competent 
herpesvirus derived from the simian cytomegalovirus (CMV).117–119 
Approximately 50% of vaccinated monkeys have shown a remark-
able degree of virological control following stringent SIVmac239 
challenge,118 and no detectable signs of virus infection after more 
than 1 year from the time of infectious exposure.119 The protective 
effects that were induced by the recombinant CMV vaccine have 
been associated with broad and unusual effector memory CD8+ 
T cell responses that recognize non-classical SIV epitopes including 
those that are restricted by class I antigen E or class II major histo-
compatibility complex molecules.120,121 This type of immunogenicity 
has been found to be a result of the gene-deleted rhesus CMV strain 
68-1 that was being used.122,123 However, even the rhesus CMV vac-
cine conferred no protection against acquisition of the homologous 
challenge virus and 50% of the vaccinated monkeys showed no pro-
tective effects at all.

A variety of vector-based approaches are being examined in mon-
key testing and some have already advanced to human trials.124–127 
A replication-competent vector based on adenovirus type 26 
(Ad26) has shown promise in protecting monkeys against stringent 
SIVmac251 infection128,129 and a version expressing HIV-1 env pro-
tein has advanced to phase I clinical trials in humans.130–132 Vectors 
based on rhesus monkey rhadinovirus, a gamma-2 herpesvirus that 
is closely related to human Kaposi’s sarcoma-associated herpesvi-
rus, are also being used in monkey trials.133,134 Other promising viral 
vectors that have shown significant protective effects against SIV 
challenge in monkeys include: modified replicating vaccinia virus 
Tiantan,135 modified vaccinia Ankara virus,136,137 live recombinant 
vesicular stomatitis virus, and Semliki Forest virus replicon.138

BROADLY NEUTRALIZING ANTIBODIES AGAINST HIV
Following infection with HIV-1, the anti-HIV antibodies that appear 
over the first 3 to 6 months typically show very strain-specific neu-
tralizing activity, specific for the sequence of the infecting strain of 
virus.68,139–141 These strain-specific neutralizing antibodies target the 
most variable regions of the envelope protein, the so-called vari-
able loops, principally V1 and V2 (refs. 139,142). Just as HIV can eas-
ily escape a single antiviral drug, HIV variants appear within months 
that resist neutralization by the early strain-specific neutralizing 
antibody response.140,141,143,144 While the B cell repertoire evolves and 
changes in response to the changing virus, it is a race that the B cells 
do not win.140 On rare occasions, however, antibodies with superior 
neutralization potency and breadth do emerge.145–148 These potent 
broadly neutralizing antibodies (bnAbs) emerge on these rare occa-
sions over a prolonged period of years and frequently have unusual 

structures that allow them to target the concealed, conserved 
regions of the envelope protein.149,150

Numerous attempts to induce bnAbs by vaccination in humans 
have not been successful.151 If continually replicating HIV during 
the long course of infection does not routinely induce bnAbs, it is 
easy to imagine how difficult it will be to design immunogens to 
do so. The long-lasting antibody-virus chase continuum that results 
in these rare and potent bnAbs is consequently associated with 
unusual characteristics, including: a highly-evolved, high degree 
of somatic hypermutation (SHM) that can be accompanied by 
insertions and deletions; very long complementarity determining 
regions 3 (CDR3s); unusual structures.149,152–156 Despite progress in 
areas such as reverse or structure-assisted vaccinology, it will remain 
an enormous challenge to those interested in antigen design and 
vaccine delivery to overcome these obstacles for developing a truly 
effective HIV vaccine.72,157–170

Given the difficulties in eliciting antibodies with potent neu-
tralizing activity against a broad range of HIV-1 isolates, consider-
able interest has emerged in the concept of directly delivering the 
unusual monoclonal antibodies (mAbs) with the desired properties. 
More than a dozen distinct, potent bnAbs have now been isolated 
and characterized from infected humans (Figure 2). They can be 
roughly categorized into at least five groups: CD4 binding site; man-
nose patch; the membrane-proximal external region on gp41; Apex; 
the gp120-gp41 interface. The reader is referred to a number of out-
standing reviews on the properties of these mAbs.78,144,149,150,167,171,172 
We may not know how to elicit such antibodies, but we already have 
this impressive array of potent bnAbs, they are human in origin, and 
they can be delivered for prevention or therapeutic purposes.

The discovery of bnAbs can historically be divided into two 
phases. In the early 1990s, hybridoma and phage display meth-
ods were used to isolate the first bnAbs by adsorbing sera of HIV-
infected patients with monomeric gp120 and gp41 antigens. 
These “first-generation” bnAbs could effectively neutralize clade  
B viruses at a half-maximal inhibitory concentration range (IC50) of 
1 to 10 μg/ml as assessed by in vitro assays, but they were less or 
not effective against other global HIV isolates.144 Among the first-
generation bnAbs were b12, 4E10, 2F5, and 2G12 (refs. 173–182). 
In the year 2009, the discovery of a second wave of bnAbs began 
following the development of improved mAb isolation techniques 
and the screening of larger cohorts of HIV-infected individuals. 
Selective B cell sorting and B cell capture methods have facilitated 
the isolation of a spectacular array of potent bnAbs.144,149,167,171 These 
“second-generation” bnAbs are broader and two to three orders of 
magnitude more potent than the earlier generation of neutralizing 
antibodies.144,149 Among the new bnAbs are PG9 and PG16 (ref. 183), 
VRC01 (ref. 184), 3BNC117 (refs. 185,186), PGT121 and PGT128 (refs. 
187,188), 10-1074 (ref. 189), 10E8 (refs. 190,191), 35O22 (ref. 192), 
PGDM1400 (ref. 193), and VRC34.01 (ref. 194).

Passive transfer of first-generation bnAbs has conferred protec-
tion against SHIV infection in monkeys; protective effects seen in 
those experiments could be attributed to both the neutralization 
activity and the Fc-mediated effector functions of the utilized 
mAbs.195–203 Consistent with these second-generation bnAbs exhib-
iting much higher potency in cell culture, they also showed a higher 
efficacy in vivo as compared to the first-generation bnAbs.204 Either 
3BNC117 or 10–1074, which were given to healthy macaques, were 
capable of completely blocking SHIV acquisition following a single 
intrarectal challenge with three half-maximal animal infectious 
doses (AID50), as long as the infused mAb dose was above 5 mg/
kg.58 A prevention study in monkeys that was published by the 



5

Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies
SP Fuchs and RC Desrosiers﻿

Molecular Therapy — Methods & Clinical Development (2016) 16068Official journal of the American Society of Gene & Cell Therapy

same group estimated that a 1:100 neutralization titer in plasma, 
which was generated by passively transferred bnAbs, was sufficient 
to provide protection in 50% of SHIV-exposed animals.205

The mAb PGT121 was tested for its protective efficacy against 
vaginal SHIV infection. All 10 monkeys that received a PGT121 dose 
of ≥1 mg/kg showed sterilizing immunity against a single high-
dose SHIV-SF162P3 challenge with 300 half-maximal tissue culture 
infectious doses (TCID50), and three of five monkeys were even pro-
tected with a mAb dose of 0.2 mg/kg.206 A modified version of the 
bnAb VRC01 with mutations in the IgG Fc portion, termed VRC01-LS, 
exhibited a threefold longer half-life in serum and increased trans-
location to mucosal tissues than unmodified VRC01 (ref. 207). The 
improved biochemical properties together with the overall potency 
of VRC01-LS provided superior protection against single high-dose 
rectal challenge with the strain SHIV-BaLP4 (refs. 207,208). Another 
study utilized the bnAbs VRC01, VRC01-LS, 3BNC117, and 10–1074 
to evaluate protective efficacy against SHIV-AD8 acquisition. It was 
shown that monkeys that received a single mAb by passive trans-
fer required up to 23 weekly low-dose virus challenges to become 
infected as compared to the control group that became infected 
after only a median of three challenges.209

Experiments in humanized mice and in monkeys have also dem-
onstrated therapeutic potential of second-generation bnAbs. Infant 
rhesus macaques were infected with SHIV-SF162P3 by the oral 
mucosal route and treated as early as 1 day after virus infection 
with a mix of the bnAbs PGT121 and VRC07. Unlike the untreated 
animals, the mAb-treated animals were free of virus in plasma and 
tissue by day 14 and remained free of virus even 6 months after the 
infectious exposure.56 A separate study employed monkeys that 
had been chronically infected with SHIV-SF162P3 for 9 months and 
subsequently infused with mAb cocktails containing b12, 3BNC117, 
and PGT121 (ref. 57). In the vast majority of animals, plasma viral 
loads were reduced within 7 days to undetectable levels until a 
median of 56 days; viremia rebounded when mAb levels decreased 
to sub-threshold levels. A reduction of cell-associated virus was 
also noted. In a parallel study, mAb treatment was employed in 
monkeys 3 months after SHIV-AD8 infection.58 Monotherapy with 
the bnAbs 3BNC117 or 10–1074 resulted in a rapid decline in viral 
loads reaching undetectable levels by 4 to 7 days, followed by virus 
rebound that identified escape mutants to the single mAbs. A single 
treatment using both mAbs together suppressed viremia for 3 to 
5 weeks, and readministration of the mAb combination allowed 
repeated transient suppression of viremia.

Monotherapy with PG16, NIH45-46G54W, PGT128 or 10–1074 
resulted in transiently reduced viral loads in humanized mice 
infected with the strain HIV-1YU2 (ref. 53). Virus rebound was associ-
ated with distinct escape mutations in the envelope gene. However, 
a single injection of a combination of bnAbs was capable of control-
ling HIV infection and suppressing viremia to levels below the limit 
of detection.53 Viral escape from one mAb is somewhat predictable, 
as the selective immune pressure is not sufficient to inhibit viral 
replication long-term. Based on in vitro neutralization assays and 
mathematical prediction models, it has been reported that a com-
bination of three to four potent bnAbs is likely to provide complete 
or near complete protection against HIV replication.210,211 Another 
study that utilized a similarly combined passive transfer regimen 
involving the mAbs PG16, 10–1074, and 3BNC117 confirmed sup-
pressive effects on HIV in humanized mice, which included lower-
ing of free virus in serum, delayed viral rebound after cessation of 
antiretroviral therapy (ART) and reduction of cell-associated HIV-1 
DNA.54

Although ART and multiple bnAbs are able to suppress viremia 
in infected mice, there are still latent reservoirs of HIV-infected cells 
that are refractory to those treatments. An approach, called “shock 
and kill”, that combines ART and inducers of viral transcription has 
so far failed to eradicate the latent HIV reservoir.212 However, a study 
in mice showed that a trimix of bnAbs in combination with three 
inducers was capable of decreasing the HIV reservoir as measured 
by viral rebound. Interestingly, the data also revealed that suppres-
sion of HIV by the passively transferred Abs was dependent on 
interaction of the IgG Fc with Fc receptors of immune cells suggest-
ing the importance of IgG effector functions.55 Other studies con-
firmed that Fc receptor-mediated effector functions of bnAbs play 
a substantial role in inhibiting HIV or SHIV infection.200,213–215 In this 
context, the antiviral activity of the IgG Fc is directed against both 
free virus and virus-infected cells. Therefore, the potency or antiviral 
capacity of an anti-HIV Ab is not only defined by the affinity function 
of its Fab but also by the effector mechanisms that are mediated by 
its Fc.72,78,144,216,217

Some first-generation and second-generation bnAbs have also 
progressed to human clinical trials. When used in HIV-positive 
individuals as therapy, first-generation bnAbs were well tolerated 

Figure 2  Broadly neutralizing antibodies (bnAbs) to HIV-1. The HIV 
envelope (env) spike consists of three gp120-gp41 heterodimers that 
are noncovalently linked to each other. The glycoprotein gp120 harbors 
the CD4 receptor binding site (CD4bs) and the coreceptor binding site, 
but the co-receptor binding region is only fully exposed upon binding 
of gp120 to CD4. The glycoprotein gp41 anchors the env spike into the 
virus membrane and harbors the fusion machinery that facilitates entry 
into the target cell. The env trimer spike is considered to be unstable, and 
decayed or nonfunctional structures appear to be a target for binding/
non-neutralizing antibodies. Neutralizing antibodies, especially bnAbs 
strongly bind the native or functional env trimer spike. Several vulnerable 
bnAb target sites have been identified and a number of bnAbs bind to at 
least 5 well-characterized locations on the env trimer. The high-mannose-
patch is located on the outer region of gp120, centered on glycans at 
Asn332 (N332). bnAbs to this site bind and penetrate the glycan shield 
and interact with amino acids in the variable loop 3 (V3) of gp120. Apex 
antibodies bind to lysine-rich regions on the V2 loop, surrounded by 
glycans at Asn160 (N160); antibodies to this site require long penetrating 
heavy chain structures. CD4bs antibodies have structural features that 
allow binding to the env trimer similar to that of the outer domain of 
CD4. The CD4bs is protected by the glycan shield and variable loops. 
MPER-specific antibodies usually have a hydrophobic character due to 
their binding target that is in close proximity to the lipid bilayer, which 
is partly recognized by this antibody class. These antibodies are usually 
self-reactive. Antibodies to the gp120-gp41 interface interact with both 
glycoproteins and appear to be trimer-specific. Abbreviations: CD4-
induced (CD4i), membrane-proximal external region (MPER).
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and appeared to be safe at doses up to 14 g of mAb over a 4-week 
period.218–220 Passive administration of 2F5 and 2G12 resulted in 
a transient reduction of viral loads in five of seven patients; the 
median decrease of RNA copies/ml in plasma was about 1 log dur-
ing the treatment phase (day 0–28) while the maximum decrease 
was 1.5 log.221 In a subsequent study, the effect of three bnAbs was 
tested in a human clinical trial. The goal of the experiment was to 
examine antibody-mediated suppression of HIV-1 rebound after 
cessation of ART.222 Sequential infusions of the mAbs 2G12, 4E10, 
and 2F5 to HIV-infected individuals undergoing interruption of ART 
showed a delay in viral rebound. Passively administered antibodies 
showed a substantial inhibitory effect in two of eight chronically 
infected and in all six acutely HIV patients as compared to a con-
trol group, and viral rebound was significantly delayed in acutely 
infected subjects that received mAb therapy versus those that did 
not receive mAb therapy. The authors also noted that the bnAb 
2G12 had the strongest antiviral effect of all three mAbs used, and 
that the loss of viremia control in 12 of the 14 immunized patients 
was associated with viral escape from that mAb. No escape mutants 
were noted for the other two mAbs, 4E10 and 2F5. Another group 
conducted a similar passive transfer experiment using the same 
three bnAbs and confirmed the previously obtained results.223

Phase 1 trials have now evaluated safety, pharmacokinetics and 
functionality of second-generation bnAbs in people as well. The 
bnAbs VRC01 and 3BNC117 have been among the first of these to 
prove their potency in humans; results with these mAbs were just 
published in the year 2015. Twenty-eight healthy volunteers were 
given intravenous infusions of the mAb VRC01 (ref. 224). VRC01 
appeared to be safe and well tolerated; also, no serious adverse 
events and no dose-related toxicities were noted following the 
mAb infusions. The mean concentrations over a 28-day period 
were 35 μg/ml (at 20 mg/kg) and 57 μg/ml (at 40 mg/kg); readmin-
istration on day 28 increased the mean concentration in serum to 
56–89 μg/ml; the half-life of VRC01 was 15 days. Furthermore, no 
anti-VRC01 antibody responses were detected in any volunteer at 
any time. In another human trial, VRC01 was given to HIV-infected 
individuals. ART-treated and ART-untreated HIV patients received 
infusions of the VRC01 mAb at a dosage of 1, 5, 20, or 40 mg/kg.59 
Two mAb infusions, conducted on day 0 and 28, did not reduce the 
amount of cell-associated viral DNA (also referred to as reservoir) 
in the ART-treated HIV patients with undetectable viral loads in 
plasma. However, a single infusion of VRC01 decreased the plasma 
viral load by 1.1–1.8 log10 in six of the eight ART-untreated viremic 
HIV patients. Reduction of viremia was transient and viral loads 
returned to baseline levels within 56 days after mAb infusion due to 
waning mAb levels and selection for less sensitive viruses.

Another human trial that employed passive transfer was 
published in the same year. The bnAb 3BNC117 was tested in 
12  healthy and 17 HIV-infected individuals.60 A single infusion of 
the mAb appeared to be safe and well tolerated at all doses tested  
(1, 3, 10, 30 mg/kg); also, no serious adverse events were noted. The 
half-life of 3BNC117 was 17 days in healthy volunteers and 9 days in 
HIV-infected patients. HIV-infected individuals that received lower 
doses of 3BNC117 showed only small and transient reductions in 
viral loads followed by a rapid return to baseline levels. However, 
a single infusion of the mAb at higher doses (10 and 30 mg/kg) 
reduced the viremia up to 2.5 log10 in 10 out of 11 subjects, and 
viral loads remained significantly reduced for 28 days. Emergence 
of resistant viral strains was variable among the 3BNC117 recipients. 
Development of increased neutralization resistance was observed 
in some patients that exhibited escape mutations in the CD4bs and 
amino acid insertions in the V5 loop of HIV env.

Further experiments were conducted to explore the antiviral 
capacity of the bnAb 3BNC117 (ref. 225). Suppression of viral load 
was attributed to clearance of free virus and reduction of virus spread 
by clearance of virus-infected cells; clearance of virus-infected cells 
was dependent on Fc-mediated effector functions of 3BNC117. 
Another study examined the effects of 3BNC117 monotherapy on 
the host’s antibody responses.226 Autologous IgG samples from 
day 0 and week 24 postinfusion were tested for their capacity to 
neutralize a panel of HIV-1 pseudoviruses and autologous viruses 
from day 0 and week 4 postinfusion. It was shown that autolo-
gous week 24 IgG, by which time 3BNC117 had already decayed 
to below detection, had an increased neutralizing activity against 
weeks 0 and 4 autologous viruses as compared to the neutralizing 
activity of autologous day 0 IgG. Therefore, patients that received 
a passive immunization against HIV appeared to develop stronger 
host antibody responses to their own HIV infection. A separate trial 
investigated the effects of 3BNC117 on HIV after ART interruption. 
The results showed that repeated mAb administrations significantly 
delayed virus rebound as compared to nontreated individuals; but it 
also revealed that virus rebounded after antibody levels waned, and 
that use of 3BNC117 alone led to neutralization-resistant escape 
mutants.227

Although it has been shown that sera from HIV-infected indi-
viduals can enhance HIV infection in vitro, there has been no 
clear evidence that passively transferred antibodies pose a risk to 
enhancement of HIV infection in vivo.228–230 Nonetheless, antibody-
dependent enhancement could theoretically represent a problem 
to passive immunization strategies against HIV. Despite the prom-
ise of utilizing bnAbs to prevent or treat HIV infection, reasonable 
risk assessments will need to be performed for each individual anti-
HIV mAb to exclude the chance of increased virus acquisition or 
increased virus replication following passive transfer to humans.229

AAV-MEDIATED DELIVERY OF ANTIBODIES AND ANTIBODY-
LIKE MOLECULES
With the availability of more than a dozen potent bnAbs, and given 
developments in antibody engineering that have enhanced bio-
chemical and antiviral properties,231–247 it is easy to imagine the 
potential for the effectiveness of such anti-HIV mAbs in both pre-
vention and therapeutic scenarios. In prevention scenarios, delivery 
of potent bnAbs could overcome the difficult barriers to trying to 
induce such antibodies, with the goal of creating a long-term steril-
izing barrier to infection. In therapeutic scenarios, the goals would 
be to greatly reduce viral replication and plasma viral loads, to elimi-
nate the need for continuing antiviral drug therapy, and it would 
also hope to reduce viral reservoirs over time toward a real cure.

One issue that will need to be addressed, particularly for thera-
peutic scenarios, is whether some particular combinations of mAbs 
provide remarkably synergistic levels of protective effects. Do some 
combinations of potent bnAbs result in a much greater degree of 
virus neutralizing activity than either alone?211 Do some combina-
tions of potent bnAbs make it much more difficult or impossible for 
the virus to escape the activity of the combination? Does escape 
from some combinations of potent bnAbs result in virus that is so 
poorly fit for replication that it can be easily controlled by the host? 
Does escape from some combinations of potent bnAbs result in 
virus that is so easily neutralized that it can be well controlled by the 
host immune responses? These questions can be readily addressed 
by cell culture and monkey studies.

Maintenance of effective concentrations of mAbs over prolonged 
periods by passive administration would require repeated, regular 
infusions over a prolonged period. This does not seem practically 
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possible on a large scale for a variety of reasons. First, it would be 
prohibitively expensive to use on a large scale just for the antibody 
production, purification and quality control. Second, long-term 
adherence is certainly likely to be a problem, particularly in many 
regions of the developing world. Recombinant adeno-associated 
virus (rAAV) is ideally suited to achieve the goal of long-term deliv-
ery (Figure 3). AAV-based gene delivery is considered to be a safe 
and effective technology.248–257 Numerous studies in monkeys258–261 
and people262–275 have shown the successful and safe application of 
rAAV vectors for the treatment of various genetic diseases. The posi-
tive results of clinical trials for lipoprotein lipase deficiency have led 
to the first gene therapy product to achieve regulatory approval by 
a governmental health institute.276–279

The only product that is made by rAAV derives from the transgene 
that was cloned into the vector.254,280–284 Genetically engineered AAV 
genomes persist in the cell in episomal form and will produce your 
protein of choice for the lifetime of the cell.285,286 AAV is capable 
of transducing quiescent cells such as those from skeletal muscle 
(Figure 4); as long as the transgene product is viewed as self by the 
host immune system, rAAV-delivered proteins can be secreted for 
decades from such long-lived cells.48,49,251,261,286,287 Several groups 
have demonstrated the protective efficacy of AAV-delivered anti-
bodies and antibody-like molecules against AIDS virus infection in 
monkeys and humanized mice.48–50,52,288–291

A pioneering study conducted in rhesus macaques employed 
AAV-delivered single-chain fragment variable (scFv) immunoadhes-
ins (antibody-like molecules) to protect against SIV infection.48 The 
genetic material encoding the scFv immunoadhesins 4L6 and 5L7 
used in that experiment was small enough to be accommodated by 
self-complementary AAV (scAAV) vector, a recombinant AAV vari-
ant that encapsidates double-stranded DNA.292 The scAAV vector 
was chosen due to reports of its enhanced transduction capability 
and performance at achieving higher rates of transgene expression. 
However, scAAV is limited at packaging longer sequences such as 
the genetic information of both heavy and light chain sequences 
of a full-length immunoglobulin G (IgG).293–295 Conventional 
single-stranded AAV (ssAAV) vector was used to deliver a rhesus 
CD4 - rhesus IgG fusion construct, termed N4. All three vectors (4L6, 
5L7, and N4) had an AAV1 capsid. Following intramuscular injection 
of the rAAVs, immunoadhesin concentrations in serum reached up 
to 190 μg/ml by 4 weeks, and levels of immunoadhesins were main-
tained in some of the scAAV recipients above 200 μg/ml through 
12 months. The nine AAV-immunized monkeys and two groups of 
control monkeys were challenged with a high dose of the strain 
SIVmac316 at 4 weeks following the AAV gene transfer. While all six 
control monkeys became infected by the SIV challenge, six of the 
nine AAV-immunized monkeys that maintained reasonable levels 
of immunoadhesins showed sterile protection against SIV exposure. 

Figure 3  Recombinant adeno-associated virus (rAAV) vectors for the delivery of monoclonal antibodies (mAbs). Wild-type adeno-associated virus (AAV) 
is a 25 nm small nonenveloped virus that packages a single-stranded DNA genome. The most prominent AAV serotype, AAV2, has a genome size of 
4.7 kb and harbors two viral genes (rep and cap) that are flanked by two 145 bp inverted terminal repeats (ITRs). Four Rep proteins (Rep78, Rep68, Rep52, 
and Rep40) are produced from transcripts using the p5 and p19 promoters, and these proteins are important for viral replication and regulation of AAV 
gene expression. The virus does not encode a polymerase enzyme and relies on cellular enzymatic activities. Furthermore, AAV relies on the presence 
of helper viruses such as herpesvirus or adenovirus in order to undergo productive infection (replication, gene expression, and virion production). The 
cap gene encodes three structural capsid proteins (VP1, VP2, and VP3) from two transcripts using the p40 promoter. For generating recombinant AAV 
(rAAV), the entire wild-type AAV genome is replaced by a unique transgene cassette (such as for a mAb) flanked by the AAV ITRs, which are the only 
wild-type sequences remaining. Production of rAAV virions is achieved by triple transfection using the rAAV vector plasmid and two helper plasmids 
in trans, followed by CsCl purification of the replication-deficient rAAV particles. rAAV particles can be encapsidated by any of the 12 AAV serotypes 
and more than 100 variants that are available. The conventional single-stranded AAV (ssAAV) vector packages single-stranded DNA. The modified 
self-complementary AAV (scAAV) encapsidates double-stranded DNA but has only half the packaging capacity of ssAAV. scAAV vectors are produced 
by modification of the 5’ITR (removal of the terminal resolution site and D sequence). The size limit of the scAAV vector system requires the heavy and 
light chain sequences of IgG to be placed on separate rAAV vectors.
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However, the three other AAV-immunized monkeys developed 
immunoadhesin-specific antibody responses, which incapacitated 
protective efficacy and led to SIV infection.

Our group set out to build on that study by attempting to deliver 
authentic IgG versions of the rhesus-derived 4L6 and 5L7 (ref. 296). 
We wished to address the question whether the delivery of authen-
tic full-length versions of these antibody-like molecules could obvi-
ate the anti-antibody response to them. Since both heavy and light 
chain sequences could not be accommodated by one scAAV, we 
placed them on two separate scAAV vectors. Additionally, we placed 
both heavy and light sequences onto one ssAAV vector by utilizing 
F2A peptide technology as previously described.297,298 Two scAAV vec-
tors or a single ssAAV vector, encapsidated by AAV1, were injected 
intramuscularly into 12 rhesus macaques and levels of AAV-delivered 
Abs were measured over time.49 The concentration of the SIV-specific 
antibodies in serum ranged from 1 to 270 μg/ml through 44 weeks, 
regardless which AAV vector delivery system was being used. 
However, the conversion to authentic IgG sequences did not pre-
vent the emergence of anti-antibody responses and this emergence 
limited the concentration of the SIV-specific antibodies that could 
be achieved. Nonetheless, we progressed with a challenge phase 
and conducted a repeated low dose challenge regimen using the 
neutralization-resistant strain SIVmac239. Although 4L6 and 5L7 IgGs 
showed no neutralizing activity in vitro, they exerted antiviral effects 

against highly pathogenic SIVmac239 challenges in vivo as assessed 
by the significant delay and reduction of viremia in plasma.49

Another study conducted in monkeys utilized AAV-antibody 
gene transfer to protect against SHIV infection.51 Rhesus macaques 
were injected intramuscularly with a ssAAV8 vector expressing the 
potent bnAb VRC07. In four of four test animals, the serum concen-
tration of the AAV-delivered antibody reached 8 μg/ml by week 4 
and plummeted to undetectable levels by week 9. This was appar-
ently due to a vigorous anti-VRC07 antibody response despite 
extensive attempts to make the VRC07 mAb as “rhesusized” as 
possible. A second group of monkeys then received the immuno-
suppressive agent cyclosporine A (CsA) prior to the AAV-antibody 
gene transfer. Although levels of delivered VRC07 reached serum 
concentrations as high as 66 μg/ml by week 3, anti-VRC07 antibody 
responses lowered the AAV-delivered antibody during and espe-
cially after immunosuppression. Following challenge with the strain 
SHIV-BaLP4, significantly more control monkeys became infected as 
compared to the AAV-antibody group.

One of the most potent and broad molecules capable of inhib-
iting AIDS virus entry is the antibody-like construct eCD4-Ig.50 This 
molecule is composed of the outer two domains of CD4 (entry 
receptor of the AIDS virus), the Fc portion of IgG and a CCR5 (entry 
coreceptor of the AIDS virus) mimetic peptide that is derived from 
the HIV-specific antibody E51 (refs. 299–302). While some sig-
nificant number of HIV-1 isolates are resistant to neutralization by 
potent bnAbs, eCD4-Ig has neutralized 100% of the tested neutral-
ization-resistant strains. Furthermore, eCD4-Ig has been shown to 
potently neutralize HIV type 2 and the neutralization-resistant strain 
SIVmac239. Following AAV1 gene transfer to monkeys, levels of the 
antibody-like molecule eCD4-Ig ranged between 17 and 77 μg/ml 
by week 30. The four AAV-immunized macaques and four control 
macaques were then repeatedly challenged with progressively 
increasing doses of SHIV-AD8. Complete protection was demon-
strated in the AAV-immunized animals, while all control animals 
became infected following the last challenge that utilized 4 AID50. 
Interestingly, anti-eCD4-Ig host antibody responses were low or 
absent, while AAV-transferred potent bnAbs used in that study elic-
ited moderate to strong anti-antibody responses.50

AAV-antibody gene transfer has also been used in humanized 
mice experiments. Notably, AAV-delivered bnAbs b12, VRC01 and 
10–1074 have demonstrated protective effects against HIV acqui-
sition and durable control of HIV in a therapeutic setting.52,54,291 
Although mouse experiments can demonstrate whether potent 
bnAbs have the ability to block or inhibit HIV infection in vivo, the 
humanized mouse model has certain limitations and may fall short 
when evaluating HIV pathogenesis, as well as safety and immuno-
genicity of AAV-delivered antibodies. Since virus challenge experi-
ments are performed in immunocompromised mice that have 
been engrafted with human cells, it is difficult to translate results to 
immunocompetent monkeys or humans.88

One trial is currently ongoing to evaluate safety, deliverability, 
and potential efficacy of rAAV-delivered potent bnAbs: PG9 in unin-
fected human volunteers in England.127

OBSTACLES FOR EFFICIENT AAV-ANTIBODY DELIVERY
Several features of the rAAV vector delivery system may serve 
to limit the effectiveness with which the desired protein can be 
expressed. As with any virus, AAV can be recognized as foreign by 
the host immune system.303–309 While rAAV vector does not directly 
express any wild-type AAV proteins, rAAV on its own may trigger 

Figure 4  AAV-mediated gene transfer of anti-HIV monoclonal antibodies 
(mAbs). A rAAV encoding an anti-HIV mAb is injected into muscle such as 
the deltoid muscle. Following intramuscular inoculation, rAAV binds to a 
serotype-specific cellular receptor on myocytes and becomes endocytosed. 
Virus particles are transported to the nucleus, into which the rAAV genome 
is released. The single-stranded DNA (in case of ssAAV) is then converted 
into transcriptionally active double-stranded DNA. Double-stranded 
rAAV genomes appear to be stabilized by ITR-to-ITR interactions and 
enzymatic modifications, leading to high molecular weight (MW) rAAV 
genome polymers that persist in episomal form for the lifetime of the 
cell. Adult human muscle cells have a lifespan of more than 10 years. The 
extrachromosomal rAAV DNA forms maintain gene expression and produce 
the therapeutic mAb, which undergoes the secretory pathway and is 
released into the circulatory system. Depending on which AAV serotype or 
variant is used, the injected rAAV virus can also transcytose through multiple 
cell layers, leading to access to blood vessels. This will transport a proportion 
of intramuscularly injected rAAV particles to the liver, where cell entry and 
gene expression will take place. Secretion of an anti-HIV mAb from muscle 
and liver will potentially create a prophylactic barrier against HIV infection 
or fight an ongoing HIV infection in a therapeutic setting. AAV, adeno-
associated virus; ITR, inverted terminal repeats.
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innate immune responses.307 Furthermore, pre-existing cellular308 
and humoral309 immunity to wild-type AAV may significantly limit 
the ability of the rAAV to “take” in the host.310

There are 12 AAV serotypes and more than 100 variants (serovars) 
as specified by phylogenetic analyses.252,311–313 A number of studies 
have reported that individual AAVs can be sensed by pattern rec-
ognition receptors (PRRs), which can lead to upregulation of host 
defense genes and the production of proinflammatory cytokines 
and chemokines. This in turn will activate cells of the innate immune 
system and may amplify the inflammatory signal by initiating adap-
tive immune responses. Toll-like-receptors (TLR) such as TLR-2 and 
TLR-9 have been shown to be involved in innate immune responses 
to AAV by recognizing the AAV capsid and the AAV genome, 
respectively.314–318

The prevalence of anti-AAV capsid IgG in the human population 
varies by AAV serotype; e.g., up to 72% of people are sero-positive 
for AAV2, 67% for AAV1 and 38% for AAV8. Also, antibodies against 
one serotype may cross-react against another serotype depending 
on how similar their capsid sequences are.319–321 Neutralizing anti-
bodies in serum at titers of more than 1:5 may already be sufficient 
to capture intravenously injected virus particles, and by so doing 
severely reduce transduction by rAAV.262,322–324 Furthermore, several 
groups have explored the possibility of AAV re-administration to 
muscle with moderate or no success when the exact same serotype 
was used325–327; only in the event of immunosuppressive or immuno-
modulatory intervention was it possible to achieve effective uptake 
of the same AAV serotype.328–330 Similarly, presence and activation 
of AAV capsid-specific memory CD8+ T cells can eliminate cells that 
have taken up rAAV particles.331 Human trials that have employed 
rAAV to provide functional protein to individuals with hereditary 
disorder have reported anti-capsid responses to AAV2, AAV8 and 
AAV1 (refs. 263,264,269). AAV gene transfer may also elicit immune 
responses against the rAAV-delivered transgene product if the host 
has never seen that specific protein; in that context, the magnitude 
of the response is dependent on the degree the endogenous gene 
is different from the delivered gene, in particular whether the host 
protein may be truncated or missing entirely.332–336 Human trials 
have reported transgene-specific cellular responses against rAAV-
delivered α1-antitrypsin (AAT), mini-dystrophin protein and coagu-
lation factor IX (F9).263,269,332,337–339 Furthermore, the magnitude and 
frequency of immune responses to rAAV vector and delivered trans-
gene product is influenced by several other factors including the 
AAV serotype or variant that is being used, rAAV tropism for anti-
gen-presenting cells (APCs), the rAAV dose and the route of rAAV 
administration.332,340–350

When considering use of rAAV for delivery of mAbs, the first 
inclination is to assume that human antibodies are natural protein 
products of humans and should therefore not be viewed as foreign. 
However, things may not be that simple. The human B cell repertoire 
can create an enormous number of different antibodies with enor-
mous sequence variation.165,351,352 A particular antibody being made 
by one individual will not likely ever have been seen by another 
individual and will likely be less tolerized by the other individual. 
Furthermore, any particular antibody being made by an individual 
must have been accepted by a complex checkpoint system during 
B cell development within that host.353–356 These considerations are 
further exaggerated by the highly evolved, highly mutated nature 
of the potent bnAbs one wants to deliver for the prevention or treat-
ment of HIV infection.150 bnAbs have undergone extensive SHM 
in their variable domains, which allows them to attain enhanced 
antiviral potency and breadth, but this may also be associated 

with some self-reactivity and with immunogenicity.154,357–360 CDR-
sequence containing regions of variable domains of IgGs (idiotypic 
variation) may contain CD4+ T cell epitopes that induce unwanted 
immune responses in the mAb recipient.361,362 Other properties of 
mAbs may also contribute to their immunogenicity in the recipient 
host: allotypic variation, misfolding, aggregation and differences in 
glycosylation.363,364 Immune responses following passive transfer to 
humans have been reported for a number of therapeutic mAb.365–368  
Although species-specific antibodies have shown to have less 
immunogenic potential, immune responses to mAbs in humans 
have occurred independently of the nature of the transferred mAb: 
murine versus humanized versus fully human.365,369–371

There have been five monkey trials to date where rAAV has been 
used to deliver antibodies or antibody-like molecules against HIV or 
SIV. The pioneering study by Johnson et al.48 utilized rAAV1 to deliv-
ery the antibody-like molecules (immunoadhesins) 4L6, 5L7, and 
N4 as prophylaxis against SIV challenge. In contrast to the heavy 
and light chain coding sequences of a full-length mAb, the coding 
sequence of an immunoadhesin is small enough to be accommo-
dated by scAAV; this vector type was being used for 4L6 and 5L7. 
Three of nine rhesus monkeys developed anti-immunoadhesin 
responses, and these three monkeys were not protected from SIV 
infection. Although 4L6 and 5L7 are composed of fully rhesus-
derived sequences, humoral responses targeted these sequences. 
The authors found that reactivity was confined to the variable 
domains of these two immunoadhesins. Humoral responses were 
also measured against the rhesus CD4 moiety of N4, albeit modest. 
It is worth noting that 4L6 and 5L7 are extremely hypermutated and 
bear very long CDR3 sequences. Also, sequences of heavy and light 
chains were obtained by phage display, which might not resemble 
a natural pairing of these chains. The artificial fusion of variable light 
(VL) and variable heavy (VH) domains, as well as CD4 with the IgG 
Fc could have potentially created conformational epitopes that 
could be immunogenic.372 Our group converted those immunoad-
hesin sequences to authentic IgG molecules to potentially avoid 
any unnatural structures.296 However, Fuchs et al.49 and Martinez-
Navio et al.359 found that full-length IgG versions of 4L6 and 5L7 did 
not prevent anti-antibody responses. Six out of six monkeys that 
received 4L6 IgG1 and three out of six that received 5L7 IgG1 gener-
ated anti-antibody responses. Both heavy and light chain variable 
regions were targeted including measured reactivity to the heavy 
chain CDR3 (ref. 359).

Our group has also delivered rhesusized versions of anti-HIV bnAbs 
(1NC9, 8ANC195, 3BNC117, 10–1074, and 10E8) to monkeys; anti-
antibody responses were readily detected against all AAV-delivered 
antibodies in all eight animals.359 The levels of delivered mAbs were 
driven to below detection in all animals for all antibodies for which 
specific detection methods were available. Immunogenicity of the 
tested anti-HIV bnAbs correlated significantly with the degree of 
sequence divergence from germline.359 In another study, Saunders et 
al.51 delivered the HIV-specific bnAb VRC07 using AAV8. Four of four 
monkeys elicited anti-antibody responses to the mAb, and these 
unwanted anti-antibody responses resulted in a loss of transgene 
product in all animals by 9 weeks following rAAV administration.51 
It is worth noting that the vigorous anti-antibody responses were 
mounted against VRC07, despite extensive efforts to “rhesusize” the 
mAb as much as possible. The bnAb VRC07 was created by pairing 
the light chain of the bnAb VRC01 with a heavy chain isolated from 
a B cell clone of the VRC01 lineage.373 This unnatural pairing of heavy 
and light chains, along with the 14% SHM rate of VRC01 (ref. 167) 
(full-length antibody sequence as compared to full-length germline 
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sequence) and the further mutated VRC07 heavy chain sequence, 
may have contributed to the immunogenicity of VRC07. In a sec-
ond group of animals, use of CsA did not prevent anti-VRC07 anti-
body responses, but humoral responses were blunted in three of six 
monkeys by that immunosuppressive intervention, and those three 
monkeys maintained measurable mAb levels through 16 weeks.51

Gardner et al.50 delivered the broad and potent anti-HIV entry 
inhibitor eCD4-Ig by AAV1 to monkeys. While two of four monkeys 
had a weak anti-eCD4-Ig response, the other two showed no detect-
able anti-inhibitor reactivity. Comparably modest anti-inhibitor 
responses have also been observed with N4 (ref. 48). Since rhesus 
CD4 and rhesus IgG Fc are self proteins to rhesus monkeys, no con-
siderable humoral responses were elicited.50 Furthermore, no reac-
tivity was raised against the CCR5 mimetic peptide, a CDR3-derived 
peptide299,301 that was artificially fused to the IgG Fc.50 Apparently, 
the amino acid sequence and the arrangement of the CCR5 mimetic 
peptide have not presented a major immunogenic stimulus in 
monkeys. The same group also tested the immunogenicity of the 
AAV-delivered bnAbs 3BNC117, NIH45-45, 10–1074, and PGT121 
in monkeys.50 The bnAbs elicited significantly higher anti-antibody 
responses as compared to eCD4-Ig. The rate of SHM among those 4 
bnAbs is relatively high: 3BNC117 (36.9%), NIH45-46 (44%), 10–1074 
(24.4%), and PGT121 (21.2%).167

The inherent nature of an anti-HIV bnAb may be sufficient to elicit 
immune responses in the recipient host since the recipient likely 
never would have generated or experienced the specific variable 
domains. Human mAbs used therapeutically have been shown to 
elicit immune responses in a substantial fraction of humans follow-
ing passive transfer.365,366,368 To our knowledge, no side-by-side com-
parison has been conducted that evaluates the immunogenicity of 
a mAb when administered passively versus by AAV gene transfer. 
The anti-HIV bnAb VRC01 did not appear to elicit anti-VRC01 anti-
body responses in humans following one or two administrations.224 
A simianized version of VRC01 elicited anti-VRC01 antibodies in two 
of eight macaques following four passive administrations.208 The simi-
anized mAb VRC07 elicited robust anti-VRC07 antibody responses in 
four of four monkeys when delivered by rAAV,51 similar to the experi-
ence of Martinez-Navio et al. with a variety of AAV-delivered rhesus 
and rhesusized human mAbs.359 Again, the anti-anti responses to the 
AAV-delivered mAbs were directed principally or exclusively to the 
variable domains, i.e., they were anti-idiotypic in nature.51,359

A number of studies have explored ways of reducing immune 
responses toward a variety of AAV-delivered gene products. The use 
of immunosuppressive agents such as CsA has shown partial success 
at reducing immune responses and facilitating transgene expression 
in monkeys.51 Temporary inhibition of CD4+ T cells has shown to be 
effective at preventing immune responses against AAV-mediated 
gene delivery, particularly in the context of AAV readministration in 
mice.330 A single patient case report showed that combined use of 
intravenous immunoglobulin (IVIG), B cell ablation and a corticoste-
roid has allowed for successful AAV-mediated gene transfer in the 
absence of immune responses towards AAV capsid and the delivered 
transgene product.374 Passive transfer of a large dose of mAb prior 
to recombinant AAV administration may circumvent the problem of 
“inverse dose-immunogenicity relationship”.365,375 If readministration 
of rAAV is desired, the second AAV inoculation could employ a differ-
ent serotype than the one used in the primary inoculation. Also, the 
use of engineered AAV capsids may help at minimizing host immune 
responses; AAV capsid mutations that involve Tyr, Lys, Ser, and Thr 
residues have shown to improve AAV transduction, and such capsid 
mutations could allow efficient AAV gene transfer at a lower AAV dose 

while potentially reducing the sensing by the innate immune sys-
tem.343,376–378 Use of specific microRNA binding sites (miRNAbs) within 
the rAAV genome may prevent transgene expression in professional 
antigen presenting cells (APCs) and thus inhibit elicitation of immune 
responses.379,380 Liver-directed AAV gene transfer may accomplish 
induction of tolerance toward any mAb. Expression of transgene 
products in liver tissue has been demonstrated to be tolerogenic by 
mechanisms that include but are not limited to induction of regula-
tory T cells (Tregs).381–386

SUMMARY
Wild-type AAV has never been associated with the cause of any 
known diseases in humans, and recombinant AAV has demon-
strated its overall efficacy and safety in more than 120 clinical tri-
als, with transient tissue inflammation as the most severe side 
effect.256,387 Given the need to explore unconventional approaches 
against HIV, AAV-mediated delivery of potent anti-HIV bnAbs rep-
resents a promising approach for the prevention and treatment 
of HIV infection. Trials in monkeys have demonstrated significant 
efficacy of rAAV-delivered antibodies and antibody-like molecules 
for prevention of AIDS virus infection. Nonetheless, despite the safe 
and effective application that has been attributed to AAV-mediated 
gene transfer, immune responses to AAV-delivered antibodies 
remain the most significant impediment that will limit the effective-
ness of this approach. This impediment needs to be better under-
stood and overcome for the promise of the AAV-antibody approach 
to be effectively realized in people.
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